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The performance of different sequential auction settings for the procure-
ment of truckload services is compared. In this environment, demands
arrive randomly over time and are described by pickup and delivery loca-
tions and hard time windows. When loads arrive, carriers compete for
their transport. Different auction and information disclosure settings are
studied. Learning methodologies are discussed and analyzed. Simulation
results are presented.

Recent research in auction and marketplace design highlights the
importance of auction rules on bidders and market performance (1, 2).
The main focus of this research is to compare and evaluate the effect
of distinct auction rules on the performance of a transportation mar-
ketplace. This investigation focuses on the dynamic procurement of
truckload pickup and delivery services in a sequential auction trans-
portation marketplace; this marketplace is known as the truckload
procurement marketplace (TLPM).

This work was motivated by the growth of network business-
to-business forecasts (3). This growth is partly supported by the
increasing use of private exchanges, whereby a company or group
of companies invites selected suppliers to interact in a real-time
marketplace, compete, and provide the required services. In the
logistics sector, shippers have also set up private exchanges, which
they use for confidential communications with their carriers. For
example, DuPont has a logistics web portal to manage all inbound
and outbound freight movements across all transportation modes
(4). These exchanges enable freight visibility and also consolida-
tion and optimization opportunities (5). On the supply side, carri-
ers have begun to offer more Internet-based services, particularly
the larger motor carriers (6 ).

Carriers participating in a TLPM face complex, interrelated deci-
sion problems. Two distinct problems stand out: (a) profit maxi-
mization problem (choose best pricing or bidding policy) and (b) cost
minimization problem (operate the fleet in the most efficient way).
Sequential auctions are notoriously complex problems; further, no
equilibrium solution exists if there are several auctions (three or more)

and multiunit demand bidders (7). Therefore, in this work, carriers
are assumed boundedly rational. In addition, because of the inherent
complexity, TLPM carriers are assumed not to attempt to acquire
or use any knowledge about competitors’ explicit decision (bidding)
processes. Carriers solely learn about the distribution of past market
prices or the relationships between realized profits and bids. Previ-
ous work has already dealt with the importance of dynamic vehicle
routing technology and cost estimation in a TLPM (8). This work
focuses on the previously mentioned profit maximization problem.
Different learning approaches are adapted and evaluated in a freight
transportation context.

The goal is not to find the optimal rules or procedures that lead to
the best possible bidding. Rather, the goal is to define and simulate
plausible bounded-rational procedures and behaviors of carriers
competing in a TLPM. Three different auction formats are com-
pared using simulation experiments: second-price auctions, first-
price auctions with minimum information disclosure, and first-price
auctions with maximum information disclosure.

MARKET DESCRIPTION

A TLPM enables the sale of cargo capacity mainly on the basis of
price, yet still satisfies customer level-of-service demands. The spe-
cific focus of the study is the reverse auction, by which shippers
post loads and carriers compete for them (bidding). The auctions
operate in real time, and transaction volumes and prices reflect the
status of demand and supply. A framework to study transportation
marketplaces is presented by Figliozzi et al. (9).

The market consists of shippers, which independently call for ship-
ment procurement auctions; and carriers, which participate in the auc-
tions (assuming that the probability of two auctions being called at the
same time is zero). Auctions are performed one at a time as shipments
arrive to the auction market. Shippers generate a stream of shipments,
with corresponding attributes, according to predetermined probabil-
ity distribution functions. Shipment attributes include origin and des-
tination, time windows, and reservation price. Reservation price is the
maximum amount that the shipper is willing to pay for the trans-
portation service. It is assumed that an auction announcement, bid-
ding, and resolution take place in real time, thereby precluding the
option of bidding on two auctions simultaneously.

In the TLPM, there are n carriers competing, and a carrier is
denoted by i ∈ ℑ, where ℑ = {1, 2, . . . , n} is the set of all carriers.
Let the shipment, auction arrival, and announcement epochs be 
{t1, t2, . . . , tN} such that ti < ti+1. Let {s1, s2, . . . , sN} be the set of
arriving shipments. Let tj represent the time when shipment sj arrives
and is auctioned. There is a one-to-one correspondence between
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each tj and sj (i.e., for each tj, there is just one sj). Arrival times and
shipments are not known in advance. The arrival instants {t1, t2,
. . . , tN} follow some general arrival process. Further, arrival times
and shipments are assumed to come from a probability space (Ω, F,
P), with outcomes {ω1, ω2, . . . , ωN}. Any arriving shipment sj rep-
resents a realization at time tj from the aforementioned probability
space; therefore, ωj = {tj, sj}.

In an auction for shipment si, each carrier i ∈ ℑ simultaneously
bids a monetary amount b i

j ∈ R (every carrier must participate in
each auction, i.e., submit a bid). A set of bids bℑ

j = {b1
j, . . . , bn

j} gen-
erates publicly observed information yj. Under maximum informa-
tion disclosure, all bids are revealed after the auction; this is yj = bℑ

j.
Under minimum information disclosure, no bids are revealed after
the auction; this is yj = {}. Each carrier is solely informed about
bidding outcome: successful or unsuccessful.

The fleet status of carrier i when shipment sj arrives is denoted as
z i

j, which consists of two different sets: Si
j (set of shipments acquired

up to time tj by carrier i ∈ ℑ) and Vi
j (set of vehicles in the fleet of

carrier i, vehicle status updated to time tj). The estimated cost of
serving shipment sj by carrier i ∈ ℑ of type z i

j is denoted ci (sj, z
i
j ).

Let I i
j be the indicator variable for carrier i for shipment sj, such that

I i
j = 1 if carrier i secured the auction for shipment sj and I i

j = 0, other-
wise. The set of indicator variables is denoted Iℑ

j = {I1
j, . . . , I n

j} and
Let πi

j be the profit obtained by carrier i for shipment sj, 
then π i

j = [bi
j − ci(sj, θi

j)]I
i
j.

LEARNING IN A TLPM

In an auction context, learning methods seek good bidding strate-
gies by approximating the behavior of competitors. Most learning
methods assume that competitors’ bidding behavior is stable. This
assumed bidding stability is like believing that all competitors are
in a strategic equilibrium.

Walliser distinguishes four distinct dynamic processes to play
games: in a decreasing order of cognitive capacities, they are educ-
tive processes, epistematic learning (fictitious play, or FP), behav-
ioral learning (reinforcement learning, or RL), and evolutionary
processes (10). An eductive process requires knowledge about com-
petitors’ behavior (agents simulate competitors’ behavior). Episte-
matic and behavioral learning are similar to FP and RL, respectively.
In the evolutionary process, a player has (is born with) a given strat-
egy; after playing that strategy, the player dies and reproduces in pro-
portion to the utilities obtained (usually in a game in which it has
been randomly matched to another player).

This work studies the two intermediate types of learning. On the
one hand, eductive-like type of play requires carriers to have almost
unbounded computational power and expertise. On the other hand,
evolutionary model players seem too simplistic—they have no
memory and simply react in response to the last result. Further, the
notion that a company is born, dies, and reproduces with each auc-
tion does not fit well behaviorally in the defined TLPM. Ultimately,
neither extreme approach is practically or theoretically compelling
in the TLPM context. Carriers that survive competition in a com-
petitive market like truckload procurement cannot be inefficient or
unskilled. They are merely limited in the strategies that they can
implement. It is assumed that carriers would like to implement the
strategy (regardless of its complexity) that ensured higher profits,
but they are restricted by their cognitive and informational abilities
(which give rise to bounded rationality).

Σ i j
iI∈ℑ ≤ 1.
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In practical and theoretical applications, the setting of initial
beliefs has always been a thorny issue. Implemented learning mod-
els must specify what agents initially know. Ideally, how or why
these initial assumptions were built should always be reasonably jus-
tified or explained. Thus, restricting research to the TLPM context
has clear advantages.

Normal operating ratios in the trucking industry range from 0.90
to 0.95 (11). It is expected that operating ratios in a TLPM would
not radically differ from that range. If prices are too high, shippers
can always opt out, abandon the marketplace, and find an external
carrier. Prices cannot be substantially lower because carriers would
run continuously in the red, which does not lead to a self-sustainable
marketplace. Obviously, operating ratio fluctuations in a competi-
tive market are expected, in response to natural changes in demand
and supply. However, these fluctuations should be in the range of
historical long-term operating ratios unless the market structure is
substantially changed.

Another practical consideration is the usage of ratios or factors in
the trucking industry. Traditionally, the trucking industry has used
numerous factors and indicators to analyze a carrier’s performance,
costs, and profits. It seems natural that some carriers would obtain a
bid after multiplying the estimated cost by a bidding coefficient or fac-
tor. Actually, experimental data show that the use of multiplicative
bidding factors is quite common (12).

LEARNING MECHANISMS

In RL, the required knowledge about the game payoff structure and
competitors’ behavior is extremely limited or null. From a single
carrier’s perspective, the situation is modeled as a game against
nature; each action (bid) has some random payoff about which the
carrier has no previous knowledge. Learning in this situation is the
process of moving (in the action space) in a direction of higher
profit. Experimentation (trial and error) is necessary to identify good
and bad directions.

Let M be the ordered set of real numbers that are multiplicative
coefficients, with M = {mc0, . . . , mcK}, such that if mck ∈ M and
mck+1 ∈ M, then mck < mck+1. Using multiplicative coefficients, the
profit obtained for any shipment sj, when using the multiplicative
coefficient mck, equals

The first equation applies to first-price auctions, and the second
equation applies to second-price auctions. In the second-price auc-
tion, the payment depends on the value of the second-best bid, which
is represented by the term b(2)

j . A general introduction to auctions is
found in the comprehensive book by Krishna (7 ).

Adapting the reinforcement model to TLPM bidding, the proba-
bility ϕ i

j (mck) of carrier i using a multiplicative coefficient mck in
the auction for shipment sj equals

Narendra and Thathachar showed that a player’s time average
utility, when confronting an opponent playing a random but sta-
tionary strategy, converges to the maximum payoff level obtainable
against the distribution of opponents’ play (13). The convergence is

ϕ λπ ϕ λπj
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k j
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k j
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obtained as the reinforcement parameter λ goes to 0. To use Equa-
tion 3, each bidder needs information only on what it has bid and the
result of the auction. To use this model, the profits π i

j−1(mck) must be
normalized to lie between 0 and 1 so that they may be interpreted as
probabilities. The indicator variable I i

j(mck) equals 1 if carrier i used
the multiplicative coefficient mck when bidding for shipment sj; the
indicator is equal to 0 otherwise. The parameter λ is called the RL
parameter; it usually varies between 0 < λ < 1.

The reinforcement is proportional to the realized payoff, which is
always positive by assumption. Any action played with these assump-
tions, even those with low performance, receives positive reinforce-
ment as long as it is played (14). Therefore, a mediocre action can be
reinforced, while, at the same time, better actions are negatively re-
inforced. Further, in an auction context, there is no learning when the
auction is lost, because π i

j−1(mck) = 0 ∀ mck ∈ M if I i
j−1 = 0.

Borgers and Sarin propose a model that deals with the aforemen-
tioned problems (15). In this model, the stimulus can be positive or
negative, depending on whether the realized profit is greater or less
than the agent’s aspiration level. If the agent’s aspiration level for
shipment sj is denoted as ρi

j and the effective profit is denoted as

then

When ρi
j = 0, Equation 5 provides the same probability as updat-

ing Equation 3. Borgers and Sarin explore the implications of differ-
ent policies to set the level of the aspiration level. These implications
are clearly game dependent. A general observation applies for aspi-
ration levels that are unreachable. In this case, Equation 4 is always
negative; therefore, the learning algorithm can never settle on a given
strategy, even if the opponent plays a stationary strategy.

These learning mechanisms were originally designed for games
with a finite number of actions and without private values (or at a
minimum for players with a constant private value). In the TLPM
context, the cost of serving shipments may vary significantly. Fur-
ther, even the best or optimal multiplier coefficient can get a nega-
tive reinforcement when an auction is lost simply because the cost
of serving a shipment is too high. This negative reinforcement for
the good coefficient creates instability and tends to equalize the
attractiveness of the different multiplicative coefficients. This prob-
lem worsens as the number of competitors is increased, causing a
higher proportion of lost auctions (i.e., negative reinforcement).

This research proposes a modified version of the stimulus
response model with RL that better adapts to TLPM bidding. Each
multiplicative coefficient mck has an associated average profit value
π
_

i
j(mck), that equals

The aspiration level is defined as the average profit over all past
auctions:

ρ
π

j
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Therefore, the average effective profit is defined as π
_

i
j −1(mck) =

π
_

i
j −1(mck) − ρ

_ i
j. Probabilities are therefore updated using Equation 6.

With the latter formulation (Equation 6), a good multiplica-
tive coefficient does not get a negative reinforcement unless its
average profit falls below the general profit average. At the same
time, there is learning even if the auction is lost. The learning
mechanism that uses Equation 6 is named average reinforcement
learning (ARL).

Stimulus-response learning requires the least information and can
be applied to first- and second-price auctions. The probabilities
updating Equations 3 and 6 are the same for first- and second-price
auctions. Therefore, the application of the RL model does not change
with the auction format that is used in the TLPM. Using this learn-
ing method, a carrier does not need to model either the behavior or
the actions of competitors. The learning method is essentially myopic
because it does not attempt to measure the effect of the current
auction on future auctions. The method clearly fits in the category of
no-knowledge–myopic carrier bounded rationality.

Because the method is myopic, for the first-price auction, the mul-
tiplicative coefficients must equal or be greater than 1 (i.e., mc0 ≥ 1).
A coefficient less than 1 generates only 0 or negative profits. In a
second-price auction, the multiplicative coefficients can be less
than 1 and still generate positive profits because the payment depends
on the competitors’ bids.

In both types of auctions, it is necessary to specify not only the
set of multiplicative coefficients but also the initial probabilities. If
Equation 5 is used, it is also necessary to set the aspiration level. If
Equation 6 is used, it is necessary to set the level of the initial prof-
its but not the aspiration level. A uniform probability distribution is
the classical assumption and indicates a complete lack of knowledge
about the competitive environment.

In RL, therefore, the agent does not consider strategic inter-
action. The agent is unable to model any other agent’s play or behav-
ior. This agent is informed only by past experience and is content
with observing the sequence of own past actions and the corre-
sponding payoffs. Using only this action-reward experience, suc-
cessful strategies are reinforced and failed strategies are inhibited.
Maximization does not occur but rather movement in a utility-
increasing direction, by choosing a strategy or by switching to a
strategy with a probability positively related to the utility index.

RL (and its variants) is a strategy designed to operate in an envi-
ronment in which the player (carrier) is unable to see competitors’
actions. Therefore, it is able to strongly reinforce (positively or nega-
tively) only one action: the last action played. Unlike RL, FP requires
the observation of competitors’ actions. A good introduction to types
of RL and FP can be found in the work of Fudenberg and Levine (14).

FP came about as an algorithm to look for Nash equilibrium in
finite games of complete information (16 ). It is assumed that the car-
rier observes the whole sequence of competitors’ actions and draws
a probabilistic behavioral model of the opponents’ actions. The agent
does not try to reveal opponents’ bounded rationality from their
actions, although the agent may eventually know that opponents
learned and modified their strategies too. The agent models not
behavior but simply a distribution of opponents’ actions. Players do
not try to influence the future play of their opponents. Players behave
as if they think they are facing a stationary, but unknown, distribution
of the opponents’ strategies. Players ignore any dynamic links between
their play today and their opponents’ play tomorrow.

ϕ λπ ϕj
i

k j
i

k j
i

k j
iImc mc mc m( )= − ( )⎡⎣ ⎤⎦ ( )+− − −1 1 1 1 cc mck j

i
k( ) ( )−λπ 1 6( )



A player that uses a generalized FP learning scheme assumes that
the opponents’ next bid vector is distributed according to a weighted
empirical distribution of their past bid vectors. The method cannot
be straightforwardly adapted to games with an infinite set of strate-
gies (e.g., the real numbers in an auction). Two ways of tackling this
problem are (a) the player divides the set of real numbers into a finite
number of subsets, which are then associated with a strategy, or
(b) the player uses a probability distribution, defined over the set of
real numbers to approximate the probabilities of competitors’ play.
In either case, the carrier must determine an estimated stationary
price function ξ (with carriers estimating a normal distribution using
competitors’ past bids). If a second-price auction format is used in
the TLPM, the carrier bids using

If a first-price auction format is used in the TLPM, the carriers bid
using

In the second-price auction (Equation 7), the best price is simply
the corresponding cost ci(sj, z

i
j) because of the special properties of

one-item second-price auctions (Equation 8) (independence between
the winner’s bid and the corresponding payment). Equation 8 has to
be solved numerically or analytically.

SIMULATION FRAMEWORK

In this study, truckload carriers compete over a square area, with
each side’s length equal to one unit of distance. For convenience,
trucks travel at constant speed equal to one unit of distance per unit
of time. Demands for truckload pickup and delivery cover this area
and also time. Origins and destinations of demands are uniformly
distributed over the square area, so that the average loaded distance
for a request is 0.52 unit of distance. All the arrivals are random; the
arrival process follows a time Poisson process. The expected inter-
arrival time is E[T] = 1/(Kλ), where λ is the demand request rate per
vehicle and K is the total market fleet size.

The total market fleet size used is four vehicles (although similar
trends were obtained with larger fleets—eight vehicles—as long as
the same arrival rate/fleet size ratio is used). Roughly, the average ser-
vice time for a shipment is 0.77 unit of time (approximately λ = 1.3).
The service time is broken down into 0.52 unit of time corresponding
to the average loaded distance, plus 0.25 unit of time that approxi-
mates the average empty distance (average empty distance varies with
arrival rates and time windows). Different Poisson arrival rates/truck/
per unit of time are simulated (ranging from 0.5 to 1.5). As a gen-
eral guideline, these values correspond to situations in which the
carriers are

• λ = 0.5 (uncongested),
• λ = 1.0 (congested), and
• λ = 1.5 (extremely congested).

The shipments have hard time windows. In all cases, it is assumed
that the earliest pickup time is the arrival time of the demand to the
marketplace. The latest delivery time (LDT) is assumed to be

LDT arrival time 2 shipment loaded distance

uniform 0.0,  1.0

= + × +( )

+ × ( )

0 25

2

.

b E b c s z I b Rj
i i
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All the shipments have a reservation price that is uniformly dis-
tributed (1.42, 1.52). In all cases, reservation prices exceed the max-
imum marginal cost possible in the simulated area (≈1.41 units of
distance). It is also assumed that all the vehicles and loads are com-
patible; no special equipment is required for specific loads. In all the
simulations, two carriers are competing for the demand. In all cases,
there is an initial warm-up or learning period of 250 auctions.

Multiple performance measures are used. The first is total profits,
which equal the sum of all payments received by won auctions minus
the empty distance incurred to serve all won shipments (shipment
loaded distances are not included in the bids; loaded distances can-
cel out when computing profits). The profit for a particular shipment
is defined as the difference between the payment received and the
increment of the empty distance cost necessary to serve this ship-
ment. The second performance measure is number of auctions won
or number of shipments served, an indicator of market share. The
third measure is shippers’ consumer surplus, which is the accumu-
lated difference between reservation prices and prices paid. The
fourth measure is total wealth generated equal to the accumulated
difference between reservation price (of served shipments) and
empty distance traveled.

Carrier fleet assignment and cost estimation are based on the static
optimization, which is based on an approach proposed by Yang et al.
(17 ). This approach solves static snapshots of the dynamic vehicle
routing problem with time windows using an exact mathematical pro-
gramming formulation. As new load occurs, static snapshot problems
are solved repeatedly, enabling a complete reassignment of trucks to
loads at each arrival instance.

The second-price auction used in the TLPM operates as follows:

• Each carrier submits a single bid.
• The winner is the carrier with the lowest bid (which must be

below the reservation price; otherwise, the auction is declared vacant).
• The item (shipment) is awarded to the winner.
• The winner is paid either the value of the second-lowest bid or

the reservation price, whichever is the lowest.
• The other carriers (not winners) do not win, pay, or receive

anything.
• The same procedure applies to first-price auctions, except that

the winner is paid the value of the winning bid.

ANALYSIS OF EXPERIMENTAL RESULTS

Figure 1 illustrates the relative performance of ARL and RL in a
first-price auction. Both learning methods select a bidding factor
among 11 different possibilities, ranging from 1.0 to 2.0 in intervals
of 0.1. The learning factor is λ = 0.10. Figure 1 shows the relative
performance of ARL and RL after 500 auctions. It is clear that ARL
obtains higher profits as the arrival rate increases. RL has poorer per-
formance because it cannot converge steadily to the optimal coeffi-
cient. RL speed can be quite slow in an auction setting like TLPM.
The optimal bidding factor can be used, and there is still about a
50% chance of losing (assuming two bidders with equal fleets and
technologies). If the optimal bidding factor loses two or three times,
its chances of being played again may decrease considerably and
hinder convergence to the optimal or even convergence at all. As
discussed previously, this issue can be avoided using averages (ARL
method). The carrier RL tends to price lower (it keeps probing low-
bidding coefficients longer) and therefore serves a higher number of
shipments.
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FIGURE 2 Effect of simulation length on profit change (ARL versus RL; arrival rate � 1).

bid less and serve more shipments. Again, the difference dimin-
ishes as the arrival rate increases. In the TLPM context, even a sim-
ple static optimization provides better results than a search based
on reinforcement learning. Not surprisingly, more information and
optimization lead to better results. Therefore, if there is maximum
information disclosure, carriers will choose to use FP or a similar
bidding strategy, particularly because FP (myopic) and ARL com-
plexity differ little.

In second-price auctions, FP coincides with marginal cost bidding
(regardless of the price distribution, the expected profit is always
optimized with marginal cost bidding). RL and ARL do not perform
better than FP in the simulated experiments.

The next experiment compares the performance of different sequen-
tial auction settings from carriers’ and shippers’ points of view. Four
different measures are used to compare the auction environments:
carrier profits, consumer surplus, number of shipments served, and
total wealth generated. To facilitate comparisons among the four
graphs shown in Figures 4 through 7, second-price auctions with
marginal cost bidding are used as the standard to measure the two
types of first-price auctions.

Figure 4 illustrates the profits obtained by carriers. FP carriers
obtain higher profits than ARL carriers across the board. FP carriers
use the obtained price information to their advantage. The highest
carrier profit levels occur with second-price auctions. These
results do not alter or contradict theoretical results. With asym-

Although convergence has not been proved, the simulation data
suggest that the learning influence on profits levels out as the simu-
lated number of auctions is increased. Figure 2 shows profit changes
as the number of auctions is increased (ARL versus RL with an
arrival rate of 1). In all cases, the same initial warm-up is used. To
ease comparisons, the profit level after 500 auctions in Figure 1
(arrival rate = 1) corresponds to the profit level shown in Figure 2
for a simulation length of 500 auctions. In general, the length of the
necessary warm-up will strongly depend on the learning parameters
being used, initial conditions, and the simulated marketplace. In
general, larger values of the learning factor λ will tend to need shorter
warm-up periods (therefore shorter learning, because they tend to
converge faster) but at the higher risk of adopting nonoptimal policies
for longer periods of time.

The next experiment compares the performance of RL and FP in
first-price auctions. RL uses more information than FP. Therefore, it
is expected that a carrier using FP must outperform a carrier using RL.
Figure 3 shows the relative performance of FP and ARL after 500 auc-
tions. The ARL player has the same characteristics as the ARL player
in Figure 1. The FP carrier divides possible competitors’ bids into
15 intervals (from 0.0 to 1.5 in intervals of width 0.1) and starts with
their uniform probability distribution.

Clearly, the FP carrier obtains higher profits across the board.
Using competitor past bidding data to obtain the bid that maximizes
expected profits clearly pays off. In this case, carrier ARL tends to



metric cost distribution functions, Maskin and Riley show that
there is no revenue ordering between independent-value first-and-
second price auctions (18).

Figure 5 illustrates the consumer surplus obtained with the three
auction types. Clearly, first-price auctions with RL (minimum infor-
mation disclosed) benefit shippers. Unsurprisingly, Figure 5 is
almost the reverse image of Figure 4. Figure 6 shows the number of
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shipments served with each auction setting. As expected, second-
price auctions serve more shipments. Even in asymmetric auctions,
it is still a weakly dominant strategy for a bidder to bid its own
value in a second-price auction (this property of one-item second-
price auction is independent of the competitors’ valuations). There-
fore, in second-price auctions, the shipment goes to the carrier with
the lowest cost.
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FIGURE 3 ARL versus FP (RL performance as base).
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In contrast, with ARL, there is a positive probability that inefficient
assignments exist, because a higher-cost competitor can use a bidding
coefficient that results in a lower bid. Similarly with FP carriers, if the
price functions differ (which is likely because each carrier models the
competitors’ prices), a higher-cost carrier can underbid a lower-cost
carrier with a positive probability.

Figure 7 shows the wealth generated with each auction setting.
Second-price auctions generate more wealth across the board. Mar-
ginal cost bidding is the most price-efficient mechanism of the
tested auction settings. As the arrival rate increases, the gap in total
wealth generated tends to close (Figure 7). Consistent with previous
results, the lowest wealth generated corresponds to the case with FP
bidders.

In summary, under the current TLPM setting, carriers, shippers,
and a social planner would each select a different auction setting.
Carriers would like to choose a second-price auction. If a first-price
auction were used, carriers would like to have maximum informa-
tion disclosure. More information enables players to maximize
profits, although total wealth generated is the lowest. Shippers would
like to choose a first-price auction with minimum information dis-
closure; more uncertainty about winning leads carriers to offer
lower prices. However, the uncertainty leads to fewer shipments
served. Finally, from a societal viewpoint, the most efficient sys-
tem is the second-price auction. More shipments are served and
more wealth is generated.

CONCLUSIONS

A sequential auction framework was used to compare distinct sequen-
tial auction settings. RL and FP, two learning mechanisms adequate
for TLPM settings, are introduced and analyzed.

Computational experiments indicate that auction setting and infor-
mation disclosure affect TLPM performance. Maximum information
disclosure enables carriers to maximize profits at the expense of ship-
pers’ consumer surplus; minimum information disclosure enables
shippers to maximize consumer surplus but at the expense of fewer
shipments served. Marginal bidding in second-price auctions gener-
ates more wealth and more shipments served than first-price auctions.
The results illustrate that critical arrival rates provide no incentive to
use bidding factors (no deviations from static marginal cost bidding).
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