
Portland State University Portland State University 

PDXScholar PDXScholar 

Computer Science Faculty Publications and 
Presentations Computer Science 

10-3-2021 

Predicting Human–pathogen Protein–protein Predicting Human–pathogen Protein–protein 

Interactions Using Natural Language Processing Interactions Using Natural Language Processing 

Methods Methods 

Nikhil Mathews 
University at Albany, SUNY, NY 

Tuan Tran 
University at Albany, SUNY, NY 

Banafsheh Rekabdar 
Portland State University, rekabdar@pdx.edu 

Chinwe Ekenna 
University at Albany, SUNY, NY 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac 

 Part of the Computer Sciences Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Mathews, N., Tran, T., Rekabdar, B., & Ekenna, C. (2021). Predicting human–pathogen protein–protein 
interactions using Natural Language Processing methods. Informatics in Medicine Unlocked, 26, 100738. 

This Article is brought to you for free and open access. It has been accepted for inclusion in Computer Science 
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can 
make this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F280&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/280
mailto:pdxscholar@pdx.edu


Informatics in Medicine Unlocked 26 (2021) 100738

Available online 25 September 2021
2352-9148/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Informatics in Medicine Unlocked

journal homepage: www.elsevier.com/locate/imu

Predicting human–pathogen protein–protein interactions using Natural
Language Processing methods
Nikhil Mathews a, Tuan Tran a,∗, Banafsheh Rekabdar b, Chinwe Ekenna a

a Department of Computer Science, University at Albany, SUNY, NY 12206, USA
b Portland State University, USA

A R T I C L E I N F O

Keywords:
Natural Language Processing
protein–protein interactions
Deep learning
Neural networks

A B S T R A C T

In this paper, we predict the interaction of proteins between Humans and Yersinia pestis via amino acid
sequences. We utilize multiple Natural Language Processing (NLP) methods available in deep learning in
a unique format and produce promising results. Our developed model gives a cross-validation AUC score
of 0.92 and is comparable with other work that utilizes extensive biochemical properties i.e, network and
sequence in conjunction. We achieve this by combining advanced tools in neural machine translation into
an integrated end-to-end deep learning framework as well as methods of preprocessing that are novel to the
field of bioinformatics. We show that our proposed approach is robust to different protein–protein interactions
between host and pathogen data.

1. Introduction

The unseen battle between humans and pathogens have been fought
since the dawn of time, much of which happens at a molecular level.
As the most important type of host-pathogen interaction, protein–
protein interactions (PPI) between host and pathogen play an important
role in infection and disease progression. One such organism is the
Yersinia pestis, a rod-shaped bacteria and plague pathogen classified as
a potential agent of bio-terrorism responsible for three pandemics that
have killed tens of millions of people.

In 2019, Lian et al. in [1] developed a new machine-learning-based
predictor of human-Yersinia pestis PPIs. Three conventional sequence-
based encoding schemes (NetSS) and two host network-property-related
encoding schemes (NetTP) were introduced. The individual predictive
models for each encoding scheme were inferred by Random Forest.
The first sequence encoding scheme, Auto Covariance (AC), employed
seven physio-chemical properties of amino acids, including hydropho-
bicity, hydrophilicity, volumes of side chains, polarity, polarizability,
solvent-accessible surface area, and net charge index of side chains,
to infer the AC feature vector using an equation. This model yielded
an impressive AUC of 0.88. Then, the composition of k-spaced amino
acid pairs (CKSAAP) encoding considers 400 amino acid pairs that can
be extended to the k-spaced amino acid pairs (i.e., the pairs separated
by k other amino acids). Here, the CKSAAP encoding considered the
k-spaced amino acid pairs, with k = 0, 1, 2, and 3. Finally, the
PseTC encoding uses the tripeptide composition to represent a protein

∗ Corresponding author.
E-mail addresses: nnikhiltittymathews@albany.edu (N. Mathews), ttran3@albany.edu (T. Tran), rekabdar@pdx.edu (B. Rekabdar), cekenna@albany.edu

(C. Ekenna).

sequence by dividing the 20 amino acids into 13 groups and then calcu-
late the group-based tripeptide composition. Regarding network-based
encoding schemes, they designed NetTP to systematically characterize
the host proteins’ network topology properties and designed NetSS
to reflect the molecular mimicry strategy used by pathogen proteins.
Finally, through the noisy-OR algorithm, 5 individual models were
integrated into a final powerful model with an AUC value of 0.922 in
the 5-fold cross-validation, as well as 0.924 on independent testing and
could achieve a better performance than two state-of-the-art human
bacteria PPI predictors. It must be noted that among network-based
encoding models, no model exceeded an AUC of 0.82, while among
sequence-based encoding models, none went beyond 0.88.

We will use sequence-based deep learning models to exceed this
with the help of neural machine translation. Deep learning is part of
a family of machine learning methods based on artificial neural net-
works that mimic the workings of the human brain in processing data
for applications such as speech recognition and translation, decision
making, object detection, etc. One important use of this would be to
find patterns in sequential or temporal data which is what we will use
to examine amino acid sequences of protein pairs that interact as well
as those that do not, and use these methods to predict interactions
with accuracy that exceeds all 5 previously mentioned model’s indi-
vidual performance while not using any physio-chemical or biological
properties.

https://doi.org/10.1016/j.imu.2021.100738
Received 6 June 2021; Received in revised form 8 September 2021; Accepted 15 September 2021

http://www.elsevier.com/locate/imu
http://www.elsevier.com/locate/imu
mailto:nnikhiltittymathews@albany.edu
mailto:ttran3@albany.edu
mailto:rekabdar@pdx.edu
mailto:cekenna@albany.edu
https://doi.org/10.1016/j.imu.2021.100738
https://doi.org/10.1016/j.imu.2021.100738
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2021.100738&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Informatics in Medicine Unlocked 26 (2021) 100738

2

N. Mathews et al.

2. Related work

The use of machine learning began in earnest after the explosion of
computational power in the last two decades. Consequently, its use in
biological sequence predictions is relatively recent.

Ahmed et al. [2] extracted triplet and quadruplet features to train 4
different models in total that used Support Vector Machines as well as
neural networks. The best one was chosen for prediction. In the neural
network, 4 layers and a varying number of nodes in the input and
hidden layers were used. This setup along with 60,000 data points to
train and test gave an Area under the curve analysis of 0.92. Another
one is by Li [3] which is similar to this work and both inputs go through
encoding and embedding, a convolution filter-pooling layer pair for
feature extraction, and a Long short-term memory (LSTM) before they
are joined by a dense layer to binary output. Having a dataset of several
hundred thousand gave it an accuracy of up to 98%.

Similar to our model, Tsukiyama et al. [4] first developed the
LSTM model (an artificial recurrent neural network architecture) with
word2vec to predict PPIs between humans and viruses, named LSTM-
PHV, by using amino acid sequences alone. The LSTM-PHV effectively
learned the training data with a highly imbalanced ratio of positive to
negative samples and achieved an AUC of 0.976 with an accuracy of
98.4% using 5-fold cross-validation. In predicting PPIs between human
and unknown or new viruses, the LSTM-PHV presented higher perfor-
mance than the existing predictors when they were trained by mul-
tiple host protein-including datasets. Interestingly, using only amino
acid sequence contexts as ‘‘words’’ presented remarkably high perfor-
mances. The use of uniform manifold approximation and projection
demonstrated that the LSTM-PHV clearly distinguished the positive PPI
samples from the negative ones. The structure of the model here is
similar to what is described in our paper as ‘4D Bi-LSTM doubleip’.

Zhou et al. [5] used knowledge bases (KBs) that contain huge
amounts of structured information of protein entities and their rela-
tions, which can be encoded in entity and relation embeddings to help
PPI extraction. However, the prior knowledge of protein–protein pairs
must be selectively used so that it is suitable for different contexts.
Specifically, the work proposes a Knowledge Selection Model (KSM)
to fuse the selected prior knowledge and context information for PPI
extraction. Firstly, two Transformers encode the context sequence of a
protein pair according to each protein embedding, respectively. Then,
the two outputs are fed to mutual attention to capture the important
context features of the protein pair. Next, the context features are
used to distill the relation embedding by a knowledge selector. Finally,
the selected relation embedding and the context features are concate-
nated for PPI extraction. Experiments on the BioCreative PPI dataset
show that KSM achieves a new state-of-the-art performance (38.08%
F1-score) by adding knowledge selection.

By including another important aspect of PPI, Tsubaki et al. [6]
predicted the compound–protein interactions (CPIs) where data are
provided as discrete symbolic data, i.e. compounds are represented as
graphs where the vertices are atoms, the edges are chemical bonds, and
proteins are sequences in which the characters are amino acids. In this
study, they investigated the use of end-to-end representation learning
for compounds and proteins, integrate the representations, and develop
a new CPI prediction approach by combining a graph neural network
(GNN) for compounds and a convolutional neural network (CNN) for
proteins. They demonstrated that the proposed end-to-end approach
achieves competitive or higher performance as compared to various
existing CPI prediction methods. In addition, the proposed approach
significantly outperformed existing methods on an unbalanced dataset.
This suggests that data-driven representations of compounds and pro-
teins obtained by end-to-end GNNs and CNNs are more robust than
traditional chemical and biological features obtained from databases.

Finally, Yang et al. [7] applied an unsupervised sequence embed-
ding technique (doc2vec) to represent protein sequences as rich feature
vectors of low dimensionality. Training a Random Forest (RF) classifier

through a training dataset that covers known PPIs between human and
all viruses, they obtained excellent predictive accuracy outperforming
various combinations of machine learning algorithms and commonly
used sequence encoding schemes to provide competitive and promising
performance, suggesting that the doc2vec encoding scheme effectively
captures context information of protein sequences, pertaining to cor-
responding protein–protein interactions. Looking at most published
journals, perhaps the biggest challenge for this work will be the paucity
of data, having to work with around 7000 data points for both training
and testing.

3. Methodology

3.1. Dataset

Our dataset is extracted from the work in [1]. The input data, both
training and testing, is given in the format of:

𝐻𝑢𝑚𝑎𝑛.𝑃 .𝑖𝑑 𝑌 𝑒𝑟𝑠𝑖𝑛𝑖𝑎.𝑃 .𝑖𝑑 + 1∕ − 1

where +1 denotes positive interaction and -1, negative interaction.
There are 6270 datapoints in the training set and 1514 datapoints in
the testing set. The test/train split is stratified, which is to say both
have a True False ratio of 1:1. Since we are looking for amino acid
sequences, web scraping is used to look up the UniProt website [8] by
their respective protein id to get a dataset that looks like:

[𝑀,𝑌 , 𝑉 , 𝑇 ,𝑀...𝑅] [𝑀,𝑇 ,𝐺, 𝑃 ,𝑄...𝐴]

In our work, each protein peptide chain is at least 35 units long and
consists of 20 types of amino acids that are represented by the letters
of the alphabet. NLP methods is used to train the model and testing
accuracy is measured using the receiver operating characteristic (ROC)
curve and the area under the ROC Curve (AUC) available from the
sklearn package [9] in python. The results for each model shown are
based on AUC score by testing them with the independent dataset.

3.2. Recurrent neural network

The first method that will be used is named Recurrent Neural
Network (RNN) [10]. Based on a slight modification of the simple feed
forward architecture, they are a class of neural networks that allow
previous outputs to be used as inputs while having hidden states, which
makes it ideal for the prediction of temporal data. At a high level, it
remembers the past and makes predictions based on what it learned.
The LSTM [11] is based on the RNN architecture uses a combination of
various gates to retain context during predictions which makes it more
powerful than standard RNN or its modified counterpart, the Gated
Recurrent Unit [12].

However, this may not be enough since sequences can be thousands
of units long. An LSTM would give more priority to ‘‘words’’ that are
towards the end during its decision calculus while it is entirely possible
that amino acid sequences at the beginning are just as important in
determining PPI. To handle this, we employ a modification of the
LSTM called Bidirectional LSTM which essentially creates an identical
LSTM configuration to examine sequences from the opposite end. The
additional hidden layer weights created are then concatenated to the
original.

The encoding or ‘‘words’’ we feed to the NLP model as input will
vary each time. Assuming the network takes each amino acid sequence
from Human and Yersinia as input, we could give a simple first degree
sequence input as shown earlier, or we could convert it into second
degree (2D) as shown below and feed it to the network:

[𝑀𝑌 , 𝑌 𝑉 , 𝑉 𝑇 ,…] [𝑀𝑇 , 𝑇𝐺,𝐺𝑃 ,…]

or we could convert it into a third degree (3D) input:

[𝑀𝑌𝑉 , 𝑌 𝑉 𝑇 , 𝑉 𝑇𝑀,…] [𝑀𝑇𝐺, 𝑇𝐺𝑃 ,𝐺𝑃𝑄,…]



Informatics in Medicine Unlocked 26 (2021) 100738

3

N. Mathews et al.

This is done so that we account for every two or three sequences of
amino acids that could play an important role in determining interac-
tion and is represented as ‘‘words’’ during neural machine translation.
If we assume that these common sequence bits from both Human
and Yersinia play a role in the prediction of interaction, we could
concatenate them and give a single third degree input as:

[𝑀𝑌𝑉 , 𝑌 𝑉 𝑇 , 𝑉 𝑇𝑀,… ,𝑀𝑇𝐺, 𝑇𝐺𝑃 ,𝐺𝑃𝑄,…]

The next phase is to find a way for the neural network to understand
these ‘‘words’’. Usually, categorical data is processed by one hot en-
coding them. For language, however, since there are several hundred
thousand words and every sentence usually uses a word once, we tend
to get an extremely sparse matrix making it computationally expensive.
So, encoding is used where each word is assigned an index value
to an embedding matrix, and its actual value in the neural network
is the embedding vector whose position with respect to other words
can be understood in n-dimensional space where n is the embedding
dimension. This is what we will apply in our work.

For example, considering the 3D join input shown above, it is first
converted into a ‘sentence’ or a sequence of ‘words’ as follows:

[𝑀𝑌𝑉 𝑌 𝑉 𝑇 𝑉 𝑇𝑀 ...𝑀𝑇𝐺 𝑇𝐺𝑃 𝐺𝑃𝑄 ...]

The number assigned to each ‘word’ will be decided by the tokenizer
which is then used to convert the data (a list of ‘sentences’) to a pure
integer sequence matrix of width equal to a pre-designated maximum
sequence length. By default, in NLP, ‘sentences’ longer than this max-
imum length are pre-truncated and those lesser than the maximum
length are pre-padded, which is to say, zeros are added on the left side.
Also, when you create a tokenizer, it may be important to specify a
maximum vocabulary size above 3D input data since the combinations
of amino acids or ‘words’ go up polynomially each time D increases
by 1. The tokenizer in that case will include words with the highest
frequency. Now that the input data is uniform, each word in a sentence
is expressed as a vector in n-dimensional space with the help of an
embedding layer. The position of these vectors changes based on the
training of the neural network during back propagation.

3.3. Convolution neural network

The next tool employed will be the convolution neural network,
where feature extraction is done using several pairs of Convolution lay-
ers or Kernels, and pooling filters. The convolution operation extracts
high-level features such as edges, from the input image after which
the pooling layer reduces its spatial size to decrease the computational
power required to process the data through dimensionality reduction.
It also helps us find dominant features. CNN is one of the most widely
used Deep Learning methods in computer vision. It has also been
found to be useful in sequential data analysis and is called ‘‘Temporal
Convolutional Network’’ (TCN) [13] when used in this capacity. Fig. 1
shows the overview of TCN architecture with dilation factors 𝑑 = 1, 2, 4
and filter size of 3.

According to the work in [14], the distinguishing characteristics of
TCNs are: (1) the convolutions in the architecture are causal, meaning
that there is no information ‘‘leakage’’ from future to past; (2) the
architecture can take a sequence of any length and map it to an output
sequence of the same length, just as with an RNN. The most important
component of TCNs is dilated causal convolution. ‘‘Causal’’ simply
means a filter at time step t can only see inputs that are no later than t.
A residual block stacks two dilated causal convolution layers together,
and the results from the final convolution are added back to the inputs
to obtain the outputs of the block. What TCNs do is simply stacking a
number of residual blocks together to get the receptive field that we
desire. If the receptive field is larger or equal to the maximum length
of any sequences, the results of a TCN will be semantically equivalent
to the results of an RNN. Other than replacing the Bidirectional LSTM
with CNN, the architecture is still largely similar and the approach for
the problem remains identical as explained earlier.

Fig. 1. TCN architecture.

Fig. 2. The ‘doubleip’ configuration using Bi-LSTM.

4. Implementation

The machine learning models are created and trained in Tensor-
Flow [15] using Keras [16]. TensorFlow is an open-source machine
learning environment designed and developed by Google. It is very
popular and supports libraries that can allow the software to run
without changes on a regular CPU. It offers good computational graph
visualizations, a varied library, good scalability, pipelining, and perfor-
mance. Keras offers profound levels of abstraction and encapsulation
which allows the user to focus almost entirely on neural net design
and data preprocessing in exchange for computational efficiency and
architecture customization. The model’s implementation is carried out
using Google Colab Pro which offers high-speed 25 GB RAM and Tesla
P100-PCIE-16 GB GPU. The implementation detail, neural network
architectures, and dataset are available at our GitHub.

5. Experimental results

5.1. Bi-LSTM

We start with the most common method used to solve this problem,
which is, send each Human and Yersinia sequence to separate em-
bedding matrices and then connect to a Bidirectional LSTM to predict
interaction. For this work, we call this the doubleip configuration,
shown in Fig. 2.

The other method as discussed earlier will be to concatenate the two
sequences and evaluate them through a single embedding matrix and
Bi-LSTM. In this work, we call this the ‘join’ configuration, shown in
Fig. 3. The ‘join’ configuration is one of the methods used in NLP for
sentiment analysis.

We create an end to end configuration that combines the two
discussed above so that the neural network can account for the separate
nature of both Human and Yersinia (doubleip) as well as account for
the possibility that common sequence bits or ‘‘words’’ from both species

https://github.com/nikhil-mathews/MastersPr_Predicting-Human-Pathogen-PPIs-using-Natural-Language-Processing-methods/


Informatics in Medicine Unlocked 26 (2021) 100738

4

N. Mathews et al.

Fig. 3. The ‘join’ configuration using Bi-LSTM.

Fig. 4. The ‘combine’ configuration using Bi-LSTM.

Table 1
AUC scores while using Bi-LSTM.

Config. D1 D2 D3 D4 D5 D6

Join 0.766 0.784 0.820 0.847 0.867 0.849
Doubleip 0.812 0.835 0.870 0.891 0.890 0.903
Combine 0.830 0.843 0.884 0.899 0.900 0.906

play a role in the prediction of interaction (join). Let us call this combine
configuration, shown in Fig. 4.

Table 1 and Fig. 5 shows the AUC for our 3 configurations using
Bi-LSTM. The most obvious observation while using doubleip is that
accuracy increases with an increase in complexity (size) of the words.
However, keep in mind that there are some peptide chains with just 35
amino acids which will not be represented adequately as the dimension
(𝐷) increases because of the vocabulary cap imposed by the tokenizer
making the chances of ‘words’ from smaller peptide chains to be
represented go down drastically. In 5D input, for example, the total
possible combinations of amino acids are 205 = 3,200,000, and even if
just half of that is in the training data and assuming the vocabulary cap
to be 500,000, many of them would be left out causing several peptide
chains to be single digits long, while in 6D, several sequences are not
represented at all. For join configuration, we observe that accuracy
increases with word size but the results are not as good as for doubleip
configuration. Additionally, it becomes obvious that our theory was
correct, Combine configuration seems to give us the best results. Overall,
the best accuracy is 99% for all 6D models.

5.2. CNN

The convolutional neural network, or to be more specific, the Tem-
poral Convolutional Network is often not the standard approach since
it does not appear ‘instinctive’. However, there are some advantages
to including a CNN as shown in our case. Fig. 6 shows the combine
configuration using CNN. The configuration used here has 32 filters, 3
kernels followed by Max pooling. We exclude 6D inputs due to reasons
mentioned earlier as well as the fact that the gains appear negligible
from there.

Fig. 5. Doubleip-join-combine configuration comparison.

Fig. 6. The ‘combine’ configuration using CNN.

Table 2
AUC scores while using CNN.

Config. D1 D2 D3 D4 D5

Join 0.766 0.818 0.833 0.886 0.883
Doubleip 0.876 0.880 0.889 0.898 0.899
Combine 0.870 0.884 0.883 0.894 0.897

Table 2 shows the AUC for our 3 configurations using CNN. Simi-
larly, the model performance improves as the D increases when using
CNN. Fig. 7 shows the performance comparison using BiLSTM and CNN.
We observe that using CNN instead of Bi-LSTM gives us higher accuracy
at lower degrees and as 𝐷 increases it plateaus to approximations of
those given by the Bi-LSTM. The doubleip configuration gives significant
gains for lower 𝐷 inputs compared to Bi-LSTMs, and they are shown to
be comparable to 5𝐷 Bi-LSTM results. To understand the significance
of this, keep in mind that 1𝐷 CNN models train in about 1% of the time
taken to train a 5𝐷 Bi-LSTM model. In fact, it has been observed that
CNN based models overall take significantly less time to train than their
counterparts which play an important role in hyperparameter tuning.
Another interesting observation is that, unlike Bi-LSTMs, the combine
configuration seems to give little to no improvement on CNN based
models. Overall, the best accuracy is 97% for all 6D models.

5.3. Advanced preprocessing

There are several preprocessing approaches available in neural ma-
chine translation that have been developed in the last few years. We
will apply some of them to our problem.



Informatics in Medicine Unlocked 26 (2021) 100738

5

N. Mathews et al.

Fig. 7. BiLSTM vs CNN.

Fig. 8. Sequence length distribution in Yersinia test data.

5.3.1. Sequence truncation
Everything we have used till now applies default NLP procedures,

which as mentioned earlier, pre-truncates and pre-pads sequences to
a MAX length so that they can be processed by the neural network.
During pre-truncation, words (or rather, their index numbers given by
the tokenizer) from the left are cut off to fit MAX length. In this case,
the problem is that amino acid lengths in each peptide chain vary from
35 to nearly 9000 which put us in a quandary when setting MAX length.
If it is too low, you miss out on too many ‘words’ reducing the accuracy
of the model. The next obvious move would be to make it as high as
possible to include the maximum number of words. But this causes a
drastic reduction in accuracy as well.

To better illustrate that problem, consider the sequence length
distribution shown in Fig. 8. The MAX length (red line) covers most
data points, meaning most words are included. However, you also see
a lot of empty space below that red line. When this is translated to
a sequence matrix, we end up with a lot of zeros due to padding, in
other words, we have a sparse matrix. Both CNN and Bi-LSTMS do not
work well in this scenario. We initially selected MAX length as close to
the median as possible to give us the best results, at the cost of losing
significant data. To address this problem, we propose the following
configuration.

Fig. 9 shows us a ‘3X’ preprocessing configuration. Input sequences
are pre-truncated as well as post-truncated in order to get the words
from both sides. We also add center truncation to get as many words

Fig. 9. 3X preprocessing for Yersinia sequences.

Fig. 10. 3X preprocessing using Bi-LSTMs.

Table 3
AUC scores while using CNN with 3X preprocessing.

Config. D1 D2 D3 D4 D5

Join 0.824 0.838 0.855 0.881 0.897
Doubleip 0.891 0.899 0.900 0.901 0.905
Combine 0.874 0.889 0.903 0.906 0.913

in the middle. These three inputs are put through separate embedding
matrices which are connected in an end-to-end configuration to allow
the neural network to decide their importance.

We start by testing this in Bi-LSTMs to get the following results
shown in Fig. 10. It can be observed that 3X preprocessing offers little
to no improvement. So we do not proceed any further and instead use
the CNN models.

Table 3 and Fig. 11 show the result for 3X preprocessing using CNN.
We see that the impact of 3X on CNN is significant when compared
to default preprocessing. This shows us that CNN with doubleip and
combine configurations are very effective. Overall, the best accuracy is
99% for all 5D models.

This method has brought us closer to the final AUC score of the
integrated model in the reference work [1]. From this point onward,
we began to deal with the principle of diminishing returns. That means
we hit the later end of the curve and any major changes to the model
only gave us marginal improvements in our score.

5.3.2. Attention mechanism
Traditionally, seq2seq processing in NLP had a standard encoder–

decoder configuration, where the encoder would go through the input
sequence and send it as a hidden state vector to the decoder which then



Informatics in Medicine Unlocked 26 (2021) 100738

6

N. Mathews et al.

Fig. 11. 3X preprocessing using CNN.

Fig. 12. Attention using CNN and Bi-LSTM with doubleip configuration.

uses that hidden state to create another sequence word by word. When
the input sequence is too long, the model would be inaccurate because
RNN would prioritize words towards the end. To address this drawback,
we applied the attention layer [17]. In this model, every hidden layer
created by the Bi-LSTM in the encoder is considered to create a context
vector that determines the next word in the decoder.

Fig. 12 shows the comparison when applying the attention layer for
CNN and Bi-LSTM. The attention mechanism does not seem to improve
at lower degrees but starts to prove itself as D increases. However,
it does not seem to exceed the models used earlier. Using 3X inputs
for attention also does not seem to make any difference. Overall, the
accuracy is 98% for Bi-LSTM with attention and 99% for CNN with
attention.

5.3.3. Transformers
Recently, the work [18] introduced a new architecture called Trans-

formers which has a solely attention-based encoder–decoder configu-
ration where the encoder turns a sequence into a continuous repre-
sentation while the decoder uses it to generate a word step by step.
In this approach, common amino acid sequences in both species are
processed in the same n-dimensional space. One way to get around this
and get an approximation of doubleip results would be using something
we call differential join. Here, each amino acid is represented by a

Table 4
AUC scores for transformers.

Config. D1 D2 D3 D4 D5

Normal join 0.750 0.819 0.846 0.887 0.896
Diff join 0.786 0.801 0.869 0.892 0.895

Fig. 13. Transformers vs Bi-LSTM vs CNN.

different letter for both Human and Yersinia sequences. This way, every
word that represents each species in the embedding matrix can never
be the same. The AUC scores for Transformers using default inputs
(pre-truncated) are shown in Table 4:

Fig. 13 shows the comparison using 3 different approaches. Trans-
formers give us the best performance for join configuration with ac-
curacy about 99% for D5. We will be using this property next. The
differential join inputs give us better results until we get to higher
degrees.

5.4. Final model

To get the best AUC score we will combine the best methods
examined above. Fig. 14 shows the overview of our model. We will use
a combine configuration where CNN will use 3X doubleip along with 3X
normal join using Transformers. We do not use differential join because
its functionality is carried out by the CNN doubleip configuration which
has proved to be of high performance. As mentioned earlier, combine
architecture needs to account for the separate nature of both Human
and Yersinia, as well as account for the possibility that common se-
quence bits or ‘‘words’’ from both species play a role in the prediction
of interaction which is where normal join using Transformers comes into
play. The degree of the input sequences will be 5D since that gives us
the best results while representing every input sequence, even if it is
by single digits. This is in spite of the fact that MAX vocabulary size
for doubleip is at 500,000 while for join is 1,000,000. The width of the
input matrix, which is the MAX sequence length, is kept at 1000 for
doubleip and 2000 for join. The following steps provide an overview of
our process:

1. Input preparation: Human sequence, Yersinia sequence, and a
concatenated Human and Yersinia sequence called Joined.

2. Convert each of these three sequences to 5D format as mentioned
above.

3. For each new training data:

• Convert the list of 5D sequences to a single sentence containing
a string of words.



Informatics in Medicine Unlocked 26 (2021) 100738

7

N. Mathews et al.

Fig. 14. Final model.

• For Human and Yersinia sentences, create separate tokenizers
with a maximum vocabulary size of 500,000, then create index
numbers of words for each species by frequency of occurrence.

• For Joined sentences, create one tokenizer with a maximum
vocabulary size of 1,000,000, then create index numbers of words
for all sentences in Joined by frequency of occurrence.

4. Convert the list of 5D sequences of Human, Yersinia, and Joined
to a single sentence containing a string of words.

5. Load the tokenizer for Joined sequences and apply it to Joined
sentences to create three integer input matrices of width 2000 that
are pre-padded and pre-truncated, post-padded and post-truncated, and
center-truncated.

6. Load the tokenizer for Human sequences and apply it to Human
sentences to create three integer input matrices of width 1000 that
are pre-padded and pre-truncated, post-padded and post-truncated,
and center-truncated. Do the same for Yersinia sequences using its
tokenizer.

7. Send the 6 matrices created by Human and Yersinia sequences to
separate Embedding-CNN layers and the 3 matrices created by Joined
sequences to separate dual embedding-Transformer layers.

8. Concatenate all the outputs to a single dense layer before sending
it to a single output neuron with sigmoid activation.

The drop rates for CNN are kept at 50% while for the neural
network in the transformers with two attention heads are at 90%. The
embedding dimensionality at 25 seems to give the best results which
is surprising because for NLP processing with the English language,
usually it is kept at around 300 despite having a much lesser MAX
vocabulary size. The Adam optimizer seems to give the best results
although, for Bi-LSTM models, its learning rate had to be increased.
The batch size is 32 to give some generalization but had to be lowered
to 16 during cross-validation because of a decrease in training data.

6. Discussion

6.1. Human-Yersinia PPI

This integrated end-to-end neural network gives us the best per-
formance so far. We now have an AUC score on the independent test
dataset of 0.919, as well as a five-fold cross-validation score of 0.910
on the training set. The impact of 3X inputs has also been validated.

Fig. 15. ROC curve comparison.

In the test data, isolating 233 smallest sequences gave an AUC score
of 0.914 while 280 longest sequences gave 0.899. Overall, we achieve
better results than NetSS (0.88) and NetTP (0.82) in [1]. Interestingly,
from Fig. 15, small sequences give us better thresholds with more ‘pure’
true positives while big sequences give us higher and more ‘impure’ true
positives.

6.2. Human-Virus PPI

We applied this process to other scenarios to test the versatility
of the model by trying to solve a different problem. Recently, Yang
et al. [7] proposed to predict human–virus PPI through a sequence
embedding-based machine learning method (doc2vec) to represent pro-
tein sequences, a method similar to our final model. A Random Forest
(RF) classifier was also trained and included that obtained excellent
accuracy outperforming various combinations of machine learning al-
gorithms and commonly-used sequence encoding schemes. Our final
model was applied to this problem, without any examination of data
or hyperparameter tuning.

We used the train–test dataset from [7] with over 50,000 common
data points across all tests and trains. So all of them were concatenated,
duplicates removed, randomized, and split into a single train–test pair
in an 80–20 ratio. Even though web scraping did not get the sequences
of all proteins, we now have a dataset that is half a million rows long
and this was the biggest challenge to execute. The training data had
to be divided into 50 subsections and saved, the model would then
be trained by loading each one of the subsections into the RAM one
by one. The doubleip embedding dimensionality was increased to 50 to
account for the greater number of words in the vocabulary that was
inevitable considering the large dataset. The creation of tokenizers was
also a challenge since 25 GB RAM could only hold half the training
data while executing create-tokenizers function at the same time. To
overcome this challenge, the model was applied using the train–test
groups as per source data and gave an average AUC of above 0.939
which is comparable to 0.954 from the work in [7]. It must be noted
that for any PPI usage of this model, the column names used must be
[Human, Yersinia, Label, Joined].

6.3. Comparison to other sequence based encoding methods

6.3.1. Conjoint triad (CT)
Based on the physicochemical properties of their side chains, 20

amino acids are clustered into seven groups, replacing each amino
acid in a protein sequence with the corresponding group number, the
frequency of each conjoint triad in the protein sequence is determined
through a sliding window. As a consequence, a protein pair is finally



Informatics in Medicine Unlocked 26 (2021) 100738

8

N. Mathews et al.

represented by a 686-dimensional vector [19]. On the other hand, our
model uses every 5 combinations of amino acids as words (5D) to be
represented as an input matrix.

6.3.2. Local descriptor (LD)
Similar to CT encoding, the seven groups of amino acids are also

used in LD. A protein sequence is divided into ten local regions to
further extract features of each sub-region, mainly reflecting local
characteristics of the underlying protein. Each region is represented
by three features that reflect the characteristics of seven amino acid
groups. The three features are Composition (C), Transition (T), and
Distribution (D), where C represents the composition of each amino
acid group, T reflects the composition of any two amino acid groups,
and D represents the distribution of the first, 25%, 50%, 75%, and
100% of the total number of amino acids [20]. Our model uses none of
this or any knowledge in biochemistry.

6.3.3. Auto covariance (AC)
AC encoding accounts for correlations and interactions between

different position sequences and uses seven residue physicochemical
properties to represent the protein. They take into account the distance
between different sequences in the chain [21]. Just like before, our
model uses no knowledge in biochemistry, but it does in a way consider
the distance between sequences because each sequence is represented
by a word and we use NLP techniques, which means their order is
important.

6.3.4. Doc2vec+RF
This is similar to the final model implemented here. Used in the

Human–Virus PPI prediction work described earlier [7], it uses 4D and
5D words to train the embedding matrix. But this was done using a
distributed-memory (DM) model instead of CNN+Transformers and the
words were non-overlapping unlike the ones used here which were
overlapping words. Moreover, The model was trained using Random
Forest unlike ours which was trained using end-to-end deep learning.
Also, from what we understand, they employed the standard ‘doubleip’
configuration instead of ‘combine’ configuration which uses another
embedding matrix to represent sequences of both species due to reasons
described previously. Moreover, they did not account for every part of
the sequence like it was done here using ‘3X’ configuration.

6.4. Future work

As described earlier, the deep learning architecture used here shows
the versatility of our approach. However, improvements can be made to
the transformers used for this data like the residual network combined
with hyperparameter tuning for different datasets this will be in future
works. Once all sequence related work has been done, the next step
would be to train a Graphical Neural Network that accounts for PPI by
protein ID with the help of an adjacency matrix and Node Embeddings.
Another factor to take into account is Protein folding which is a process
by which a polypeptide chain folds to become a biologically active
protein and is crucial to its function. Protein folding prediction has been
done with relatively good accuracy with AlphaFold [22] using amino
acid sequences as input. We plan to test the folding landscape of these
proteins or the 3D structure representation as an additional input in the
end-to-end framework.

7. Conclusion

In this work, we applied multiple Natural Language Processing
methods to predict the interaction of proteins between Human and
Yersinia pestis by examining their respective amino acid sequences.

The results compare favorably with the work in [1] that has a model
which gives the independent test and cross-validation scores of 0.924
and 0.922 respectively after processing both sequential and network
data, unlike our model that only takes in sequential data. The results
vis-à-vis the second work [7] is also impressive considering the fact that
little analysis of any sort has been carried out. The main strength of our
approach is that our design provides comparable performance for other
datasets using innovative methods with little to none pre-processing
and hyperparameter tuning demonstrated with human–virus PPI.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] Lian X, Yang S, Li H, Fu C, Zhang Z. Machine-learning-based predictor of
human–bacteria protein–protein interactions by incorporating comprehensive
host-network properties. J Proteome Res 2019;18(5):2195–205.

[2] Ahmed I, Witbooi P, Christoffels A. Prediction of human-bacillus anthracis
protein–protein interactions using multi-layer neural network. Bioinformatics
2018;34(24):4159–64.

[3] Li H, Gong X-J, Yu H, Zhou C. Deep neural network based predictions of protein
interactions using primary sequences. Molecules 2018;23(8):1923.

[4] Tsukiyama S, Hasan MM, Fujii S, Kurata H. LSTM-PHV: Prediction of
human-virus protein-protein interactions by LSTM with word2vec. BioRxiv 2021.

[5] Zhou H, Li X, Yao W, Liu Z, Ning S, Lang C, et al. Improving neural protein-
protein interaction extraction with knowledge selection. Comput Biol Chem
2019;83:107146.

[6] Tsubaki M, Tomii K, Sese J. Compound–protein interaction prediction with end-
to-end learning of neural networks for graphs and sequences. Bioinformatics
2019;35(2):309–18.

[7] Yang X, Yang S, Li Q, Wuchty S, Zhang Z. Prediction of human-virus protein-
protein interactions through a sequence embedding-based machine learning
method. Comput Struct Biotechnol J 2020;18:153–61.

[8] UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res
2021;49(D1):D480–9.

[9] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine learning in Python. J Mach Learn Res 2011;12:2825–30.

[10] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by
error propagation. Tech. rep., California Univ San Diego La Jolla Inst for
Cognitive Science; 1985.

[11] Schmidhuber J, Hochreiter S. Long short-term memory. Neural Comput
1997;9(8):1735–80.

[12] Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H,
et al. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. 2014, arXiv preprint arXiv:1406.1078.

[13] Lea C, Vidal R, Reiter A, Hager GD. Temporal convolutional networks: A unified
approach to action segmentation. In: European conference on computer vision.
Springer; 2016, p. 47–54.

[14] Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. 2018, arXiv preprint arXiv:
1803.01271.

[15] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow:
Large-scale machine learning on heterogeneous systems. 2015, Software available
from tensorflow.org. [Online]. Available: http://tensorflow.org/.

[16] Chollet F, et al. Keras. 2015, https://keras.io.
[17] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to

align and translate. 2014, arXiv preprint arXiv:1409.0473.
[18] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.

Attention is all you need. 2017, arXiv preprint arXiv:1706.03762.
[19] Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein

interaction using a deep-learning algorithm. BMC Bioinformatics 2017;18(1):1–8.
[20] Davies MN, Secker A, Freitas AA, Clark E, Timmis J, Flower DR.

Optimizing amino acid groupings for GPCR classification. Bioinformatics
2008;24(18):1980–6.

[21] Yang KK, Wu Z, Bedbrook CN, Arnold FH. Learned protein embeddings for
machine learning. Bioinformatics 2018;34(15):2642–8.

[22] Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Im-
proved protein structure prediction using potentials from deep learning. Nature
2020;577(7792):706–10.

http://refhub.elsevier.com/S2352-9148(21)00215-X/sb1
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb1
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb1
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb1
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb1
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb2
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb2
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb2
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb2
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb2
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb3
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb3
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb3
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb4
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb4
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb4
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb5
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb5
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb5
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb5
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb5
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb6
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb6
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb6
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb6
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb6
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb7
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb7
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb7
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb7
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb7
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb8
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb8
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb8
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb9
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb9
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb9
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb10
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb10
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb10
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb10
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb10
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb11
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb11
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb11
http://arxiv.org/abs/1406.1078
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb13
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb13
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb13
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb13
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb13
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://tensorflow.org/
https://keras.io
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1706.03762
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb19
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb19
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb19
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb20
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb20
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb20
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb20
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb20
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb21
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb21
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb21
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb22
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb22
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb22
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb22
http://refhub.elsevier.com/S2352-9148(21)00215-X/sb22

	Predicting Human–pathogen Protein–protein Interactions Using Natural Language Processing Methods
	Let us know how access to this document benefits you.
	Citation Details

	Predicting human–pathogen protein–protein interactions using Natural Language Processing methods
	Introduction
	Related work
	Methodology
	Dataset
	Recurrent neural network
	Convolution neural network

	Implementation
	Experimental results
	Bi-LSTM
	CNN
	Advanced preprocessing
	Sequence truncation
	Attention mechanism
	Transformers

	Final model

	Discussion
	Human-Yersinia PPI
	Human-Virus PPI
	Comparison to other sequence based encoding methods
	Conjoint triad (CT)
	Local descriptor (LD)
	Auto covariance (AC)
	Doc2vec+RF

	Future work

	Conclusion
	Declaration of competing interest
	References


