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An essay on proof, conviction, and explanation: 

Multiple representation systems in combinatorics 

 

There is a longstanding conversation in the mathematics education literature about proofs that 

explain versus proofs that only convince. In this essay, we offer a characterization of explanatory 

proofs with three goals in mind. We first propose a theory of explanatory proofs for mathematics 

education in terms of the representation systems. Then, we illustrate these ideas in terms of 

combinatorial proofs, focusing on binomial identities. Finally, we leverage our theory to explain 

audience-dependent and audience-invariant aspects of explanatory proof. Throughout, we use 

the context of combinatorics to emphasize points and to offer examples of proofs that can be 

explanatory or only convincing, depending on how one understands the claim being made.  
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Introduction and Motivation 

 

Consider the following identity. For all nonnegative integers m ≤ k ≤ n, the binomial 

coefficients satisfy: 

(
𝑛
𝑘

) (
𝑘
𝑚

) = (
𝑛
𝑚

) (
𝑛 − 𝑚
𝑘 − 𝑚

).                                                     (1)  

 

Which of the proofs below do you consider to be explanatory? 

 

 
Figure 1. An enumerative proof of (1). 

 

 
Figure 2. An algebraic proof of (1). 

 

In our experience, many mathematics educators tend to find Proof 1 to be explanatory, while 

few find Proof 2 to be explanatory. In what follows, we provide a theory of proof explanation in 

which either proof can be judged as explanatory, depending upon the motivation and background 

knowledge of the reader. This theory also offers a means to explain why Proof 1 may be more 

likely to be judged as explanatory than Proof 2. 

Our main goal is to provide a theoretical characterization of explanatory proof, particularly 

leveraging examples of proofs in combinatorics to do so. The purpose of this paper is threefold. 

First, we propose a theory of explanatory proofs for mathematics education in terms of the 

representation systems in which proofs are developed, written, and understood. Mathematics 

educators have long contended that there is an important distinction between proofs that explain 

and proofs that only convince (e.g., Hanna, 1990; Hersh, 1993; Pulte, Hanna, & Jahnke, 2009; 

Stylianides, Sandefur, & Watson, 2016; Weber, 2010a). However, the community also 

acknowledges that there is no consensus on what an explanatory proof in mathematics education 

is or should be; indeed, many believe this concept is poorly understood (Bartlo, 2013; Stylianides 

et al., 2016; Raman, 2003). Consequently, a theory of explanatory proof, adequate for the aims 

of mathematics educators, is urgently needed. We provide a candidate for such a theory. Second, 
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we illustrate why the field of combinatorics in general, and the topic of binomial identities in 

particular, provides a fruitful context to study proofs that convince and explain. Third, we seek to 

leverage our theory to explain audience-dependent and audience-invariant aspects of explanatory 

proof. Specifically, we maintain that our theory can elucidate why the explanatory nature (or lack 

thereof) of some proofs will depend both on who is reading the proof and what is to be 

explained, while the explanatory nature of other proofs will be agreed upon by most students and 

mathematicians.  

 

Background Literature and Relevant Theoretical Perspectives 

 

What Is a Proof?  
We draw on a definition of proof (Figure 3) that Stylianides (2007) has developed for 

characterizing proof in school mathematics.  

 

 
Figure 3. Stylianides’ (2007) definition of proof. 

 

We add several clarifications to Stylianides’ (2007) characterization of proof. First, proofs 

form a subset of mathematical arguments; every proof is a mathematical argument but not every 

mathematical argument is a proof. Second, Stylianides’ aim was to define proof in a way that 

respected the role of the classroom community while retaining the mathematical integrity of 

proof (e.g., the modes of argumentation are valid). Here, related to Stylianides’ characterization, 

we interpret a true statement as one the professional mathematical community accepts as true, an 

inferential scheme as valid if that community would find it valid, and a representation as 

appropriate if that community would find it suitable for proof. In this sense, being a proof must 

satisfy constraints apart from any individual or classroom community (Balacheff, 2009). Third, 

when an individual decides if an argument is a proof, she must estimate the community, and 

specifically, the cognition of professional mathematicians. For instance, for a particular inference 

to be allowable in a proof, it is not enough for the individual to accept it; she must also believe it 

to be valid for the community. Hence, deciding whether an argument is a proof involves a social 

judgment. We will later contrast this with deciding whether an argument is convincing or 

explanatory, which we will frame as psychological judgments. Fourth, by proving, we are 

referring to the activity in which an individual is trying to construct an argument that conforms to 

the norms in Stylianides’ characterization. 

 

The Value of Explanatory Proofs 

Mathematics educators have recommended that proof play a central role in mathematics 

classrooms (see Stylianides et al., 2016, for a summary). One line of argument is that a proof 

demonstrates that a theorem is a logically necessary consequence of statements that are accepted 
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as true; accordingly, a proof can provide students with psychological certainty that theorems are 

true (Harel & Sowder, 1998). However, many scholars have argued that a proof can explain why 

a theorem is true to students (deVilliers, 1990; Hanna, 1990; Hersh, 1993; Weber, 2010a), noting 

that proofs often play an explanatory role in professional mathematicians’ practice (e.g., 

deVilliers, 1990; Steiner, 1978).  

To highlight this distinction, researchers have distinguished between proofs that (only) 

convince and proofs that simultaneously convince and explain. We refer to the latter as 

explanatory proofs. Hanna (1990) makes the distinction as follows: a proof that proves “shows 

only that a theorem is true; it provides evidential reasons alone” (p.10), while an explanatory 

proof “also shows why a theorem is true; it provides a set of reasons that derive from the 

phenomenon itself” (p.10). We thus interpret Hanna’s term “proofs that prove” as being 

synonymous with proofs that only convince. Hanna urges mathematics educators to consider the 

pedagogical value of explanatory proofs. Hersh (1993) agrees, arguing that although the primary 

purpose for proofs in mathematical practice is to provide conviction, the primary purpose of 

proof in classrooms should be to provide explanation: “In mathematical research, the purpose of 

proof is to convince. The test of whether something is a proof is whether it convinces qualified 

judges. In the classroom, on the other hand, the purpose of proof is to explain” (p.389). 

Numerous mathematics educators endorse the conclusion that explanatory proofs should play 

an important role in mathematics classrooms (e.g., deVilliers, 1990; Stylianides et al., 2016; 

Weber, 2010a).  

 

What Is an Explanatory Proof in Mathematics Education?  

If we accept that explanatory proofs should play a role in classrooms, then it is important to 

have a good sense of what an explanatory proof is. However, mathematics educators have 

observed that no widely shared operationalization of explanatory proof exists (Bartlo, 2013; 

Raman, 2003; Weber, 2010a). Indeed, we find it telling that in our reading of Pulte et al.’s (2009) 

edited volume on proof and explanation, we found no operationalized definition that would 

distinguish proofs that explain from proofs that merely convince. 

Following Bartlo’s (2013) literature review, we note that mathematics educators’ attempts to 

clarify the meaning of explanatory proofs typically take one of three forms. First, mathematics 

educators have adapted definitions of explanatory proof from the philosophy literature. For 

instance, Steiner (1978) states that a proof is explanatory when it reveals a ‘characteristic 

property,’ where a property is characteristic if the proof would fail if the property was false and 

one could use the same proof technique but substitute another characteristic property to prove a 

new theorem. Hanna (1990) defines explanatory proofs in terms of characteristic properties: 

“Following Steiner (1978), I will say a proof explains when it shows what ‘characteristic 

property’ entails the theorem that it purports to prove” (p.10). However, such definitions evaluate 

the explanatory nature of a proof independently of the student reading the proof (Bartlo, 2013; 

Weber, 2010a). If one accepts the premise that a proof that is explanatory to a mathematician 

might not be explanatory to a student, then objective, audience-independent definitions will be 

incomplete for mathematics educators’ purposes. 

Second, mathematics educators have provided examples of proofs that are (or are not) 

explanatory. Bartlo (2013) summarized the typical examples: 

These often involve showing proofs that involve pictures and stating that the visual proofs 

explain what they are proving, and showing proofs by induction or involving complicated 
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algebra and stating that those proofs only show that a statement is true without offering any 

explanation (Bartlo, 2013, p.34).  

 

For instance, Hanna (1990) offers several proofs for a sum of the first n positive integers. She 

exemplifies a proof that proves with mathematical induction in Figure 4, saying: 

 

Now, this is certainly an acceptable proof: it demonstrates that a mathematical statement is 

true. What it does not do, however, is show why the sum of the first n integers is 
𝑛(𝑛+1)

2
 or 

what characteristic property of the sum of the first n-integers might be responsible for the 

value 
𝑛(𝑛+1)

2
 (Hanna, 1990, p.10). 

Hanna presents the diagrammatic argument in Figure 5 as a proof that explains (although she 

does not specify what characteristic property this proof relies on or what is being explained). 

 

 
Figure 4. A proof that proves (Hanna, 1990). 

 

 
Figure 5. A proof that explains (Hanna, 1990). 

 

These examples help frame debates on explanatory proofs but have not led to consensus on 

what makes a proof explanatory. Inductive proofs are often considered paradigmatic cases of 

proofs that are not explanatory (e.g., Lange, 2009), yet some mathematics educators have argued 

that such proofs can be explanatory (e.g., Harel, 2001; Stylianides, et al., 2016).  

 The third approach for defining explanatory proofs posits that the explanation from a proof 

is rooted in students’ proving activity (Balacheff, 2009; Nunokawa, 2009; Raman, 2003; 

Stylianides, et al., 2016; Weber, 2010a; Weber & Alcock, 2004). A commonality in these 

approaches is that in the process of proving, one may engage in argumentative processes that 

provide insight as to why a theorem is true, but that may be insufficiently rigorous to qualify as a 
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proof. If the proof itself closely resembles the informal reasoning processes used to create it, then 

it qualifies as explanatory. This reminds us of Garuti et al.’s (1998) construct of cognitive unity, 

in which cognitive unity is achieved whenever an individual’s process used to form or evaluate a 

conjecture is related to the proof they constructed to establish the conjecture. If cognitive unity is 

achieved, the (possibly non-rigorous) insights that explain why a theorem is true are present to 

the individual in the proof that she produces, so the proof is viewed as explanatory to the 

individual. While this approach is useful for illuminating how explanation and proof may co-

evolve in the proving process (Nunokawa, 2009), it is limited in the following respect: If 

explanation is by definition rooted in proving activity (Balacheff, 2009; Nunokawa, 2009), then 

it would seem that all proofs, if properly understood, are explanations. Balacheff (2009) 

explicitly endorses this position. However, this is in contrast with the claims of Hanna (1990) 

and Hersh (1993) that some proofs are not explanatory and thus undesirable to use in lectures. 

We also agree with Bartlo (2013) that it seems possible for a proof to be explanatory to an 

individual without the individual linking the proof to some other activity or argument. For 

instance, we believe most combinatorialists would find Proof 1 to be explanatory when they read 

it, without reflecting on how the proof might have been generated. 

We agree with Bartlo (2013) that each of the three approaches above did not provide
1
 an 

adequate characterization of explanatory proof for mathematics educators’ purposes, but we also 

believe that they provide some insights into the nature of explanatory proof for which an 

adequate theory should account. To summarize: 

 Whether a proof is explanatory should, in some cases, depend upon who is reading 
the proof. 

 Nonetheless, there is some uniformity in mathematics educators’ judgments on 
whether some proofs are explanatory.  

 Proofs that explicitly rely on visual reasoning are frequently judged as explanatory. 

 Purely algebraic demonstrations are often not considered explanatory, although they 
can sometimes be explanatory to some audiences. 

 Individuals’ engagement in the proving process, especially if they can relate the 
process used to understand why a theorem is true to the resulting proof, is important 

for determining whether a proof is explanatory.  

We now present a theory that we contend accounts for each of these phenomena. 

 

Characterizing Proof, Conviction, and Explanation 

in Terms of Representation Systems 

 

Representation Systems 

Recall that in Stylianides’ characterization of proof, an argument must be presented in a 

mode of representation that is acceptable to the appropriate community (professional or 

classroom). We extend this idea of representation systems and, in subsequent sections, use them 

to define which arguments will be convincing and explanatory. 

Following Weber and Alcock (2009) and consistent with Balacheff (2009), we define a 

representation system (RS) as a structure with permissible configurations and inferential 

schemes. Permissible configurations are organizations of inscriptions (words, symbols, lines) 

that represent mathematical objects and relationships between these objects. Permissible 

                                                 
1
 Providing such a definition was not necessarily their intent. 
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configurations include equations, graphs, and some English sentences.  Inferential schemes allow 

the user to infer new mathematical statements from other mathematical statements (where 

statements are represented as permissible configurations). A personal inferential scheme is an 

individual’s (possibly pragmatic and defeasible) means to infer new statements from permissible 

configurations. A truth-preserving inferential scheme is an inferential scheme that the individual 

believes will always yield true statements from true premises. A valid inferential scheme is an 

inferential scheme that is regarded by the mathematical community as truth-preserving and 

acceptable within a proof. 

To illustrate, consider the combinatorial notion of “n choose k,” denoted (
𝑛
𝑘

). This notion can 

be reasoned about in many different RSs, and we exemplify just two in this section (we elaborate 

a third in Proof C below). First, we consider an enumerative RS, the RS in which Proof 1 in the 

beginning of this paper is couched. Here “n choose k” is represented by natural language 

sentences describing real-life situations in which one chooses k objects from a set of n objects, 

such as when choosing committees (these words and sentences are the respective characters and 

permissible configurations of the system). A crucial valid inferential scheme for this RS is that if 

two different combinatorial expressions can be represented as different ways of counting the 

same set of objects, then the two combinatorial expressions are equal. Other valid inferential 

schemes may draw on ideas like the multiplication principle or equivalence.  

We can also consider an algebraic RS in which Proof 2 is couched. Here, “n choose k” can be 

represented by the expression 
𝑛!

(𝑛−𝑘)!𝑘!
, where characters involve symbols and variables, and 

permissible configurations include algebraic expressions and equations. A crucial valid 

inferential scheme for this RS is the transitive property for equality of real numbers. Other valid 

inferential schemes include general algebraic techniques and properties of factorials.  

The RS in which an individual chooses to reason may have a significant impact on the types 

of arguments she can construct. Arguments within one RS may be difficult to replicate in another 

RS. For instance, we do not see how one could couch Proof 1 in an algebraic RS or Proof 2 in an 

enumerative RS. However, even if there is a correspondence between two RSs, an inference 

within one RS may take less cognitive effort than the analogous inference in the other. To 

illustrate, consider Figure 6 (taken from Sfard, 1991), which represents the same mathematical 

concept in two different ways. Now imagine trying to justify that the shortest stroll between 12 

and 4 is four steps. It seems clear that producing a justification in the second graphical RS is less 

cognitively demanding than in the first, and will likely be easier to understand. 

We refer to personal inferences that are easy for an individual to produce and understand 

because of her familiarity with an RS as natural inferences. We make three important 

clarifications. First, what inferences are natural depends on the individual. In Figure 6, viewing 

North(x) as moving up a node is intuitive based on our experience reading maps and reasoning 

about diagrams. For someone without such experience, the visual RS in Figure 6 might not 

permit natural inferences. Second, with sufficient experience within an RS, some inferences may 

become natural to an expert, even if they seem mysterious to a layperson. For instance, those 

with substantial experience in high school algebra will find it natural to simplify expressions by 

cancelling like expressions from the numerator and denominator, even though some learners 

might find such simplifications challenging. Third, natural inferences are not necessarily truth-

preserving or valid. For instance, concluding that a function is increasing because its graph goes 

up as it is read from left to right is both defeasible and generally not permissible in a proof (e.g., 

Weber & Mejía-Ramos, 2019). 
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Figure 6. Sfard’s (1991) representations of Promenades and Strolls. 

 

To keep our discussion manageable, we will focus on students reasoning in RSs in which 

there is a shared understanding between the student and the community as to which inferential 

schemes are permissible. This is an oversimplification in two respects. First, students often are 

reasoning in RSs where they do not understand the difference between personal and valid 

inferential schemes (Balacheff, 2009), so with regard to explanatory proofs, we are speaking to 

relatively mature students. Second, even in professional mathematical communities, there is 

often ambiguity as to which inferential schemes are valid or require further justification. 

Generalizing our framework beyond our simplified scope is an interesting project for future 

research. 

 

Convincing Arguments and Their Relationship to Proof 

We consider a mathematical argument to be convincing to an individual when it has the 

following characteristics: (i) it begins with axioms, definitions, or statements the individual 

believes are true, (ii) it employs personal inferential schemes the individual believes are truth-

preserving, and (iii) it is couched within, or can be mapped to, an RS the individual finds 

personally meaningful. By personally meaningful, we mean the individual understands how the 

permissible configurations in the RS represent the relationship between the mathematical ideas 

under consideration.  

To us, the biggest difference between evaluating whether an argument is convincing or 

qualifies as a proof is that the former is a personal psychological judgment while the latter is 

inherently a social judgment. In our view, evaluating whether an argument is a proof requires 

one to consider whether the argument is appropriate to the community. There is no such 

requirement in our characterization of whether an argument is convincing.  

With regard to (i), Stylianides’ (2007) description requires proof begin with arguments that 

are accepted statements by a community. We presume if a statement is not an axiom or 
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definition, the statement would need to have been proven to be accepted. For a convincing 

argument, the bar is lower. The individual need only believe the statement is true, even if her 

community has not yet accepted it. For instance, imagine a mathematician who believes that the 

Riemann Hypothesis is true (as many mathematicians do). She may find an argument showing 

that statement S that is implied by the Riemann Hypothesis to be a convincing argument for S 

despite being aware that this is not a proof of S, since the Riemann Hypothesis is not a theorem.  

With regard to (ii), an individual may believe some inferential schemes are truth-preserving 

even if she is aware that they are beyond the reach of her classroom community or that the 

mathematical community would not regard them as valid. For instance, students may gain 

conviction by generalizing from examples even if they are aware this is impermissible in a proof 

(e.g., Brown, 2014).  

With regard to (iii), an individual may consider an RS as personally meaningful even if she is 

aware that the mathematical community regards it as inappropriate for proof. For instance, in his 

Proofs Without Words, Nelsen (1993) indicates he finds picture arguments to be convincing but 

does not think they qualify as proofs. Similarly, Weber (2010b) describes a student who finds a 

graphical justification to be “completely convincing” but nonetheless not to qualify as a proof. 

The student’s rationale is: “they don’t really allow us to use graphs. And this, I’m basing this 

whole proof off of a graph which is not, I would say, professional… So, that’s what I’ve been 

learning in class. We’re not allowed to draw any pictures.” (p.323). Here a student distinguishes 

between RSs in which the inferential schemes are personally convincing to him and those which 

he believes are valid. Finally, while the examples above illustrate how individuals may find an 

argument convincing while not being a proof, it can also be the case that there are proofs that are 

not convincing. This can occur, for instance, if there is an inferential scheme that an individual 

knows the mathematical community accepts as valid but about which the individual has personal 

doubts. This can occur with students if an argument is couched in an RS that the student does not 

really understand. This likely occurs rarely in mathematical practice; but this may occur with 

students, such as when they accept proofs as valid yet nonetheless find them unpersuasive. 

   

Explanatory Arguments and Their Relationship to Conviction and Proof 

We define a mathematical argument as explanatory to an individual with respect to an RS 

when it has the following characteristics: (i) it begins with axioms, definitions, or statements the 

individual believes are true, (ii) it employs inferential schemes that are natural, and (iii) it is 

couched within, or can be mapped to, an RS the individual finds personally valuable.  

By personally valuable, we mean a personally meaningful RS that an individual additionally 

feels would be interesting or appropriate to couch a proof. Individuals’ reasons for personally 

valuing an RS may be idiosyncratic, but we offer two general factors that students or 

mathematicians may consider. First, some mathematicians prefer RSs that place a proof in its 

“proper context,” meaning that the RS relates to the primary meanings of the concepts involved 

in the proven statement (Paseau, 2010). For instance, if an individual thought that (
𝑛
𝑘

) really was 

about choosing k-element subsets from an n element set, and felt that the formula 
𝑛!

(𝑛−𝑘)!𝑘!
 was a 

secondary expression that just happens to algebraically capture the number of ways to choose 

these subsets, she would likely value the enumerative RS of Proof 1. Alternatively, an individual 

who felt that (
𝑛
𝑘

) really was an abbreviation for 
𝑛!

(𝑛−𝑘)!𝑘!
,  and felt that choosing k-element subsets 

from an n element sets was an interesting interpretation or application of the expression 
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abbreviated by (
𝑛
𝑘

), would likely value the algebraic RS of Proof 2. As Paseau (2010) notes, 

mathematicians may disagree on the ‘proper context’ for a proof. Second, an RS may be 

personally valued by an individual if it aligns with that individuals’ preferred reasoning style. 

For instance, an individual who prefers to reason visually will tend to value RSs that represent 

concepts diagrammatically and allow for perceptual inferences.  

As with the relationship between conviction and proof, we again observe that in our framing 

not every explanation is a proof and not every proof is explanatory. The differences between 

proof and explanation parallel the differences between proof and conviction laid out earlier –

evaluating an argument as a proof involves a social judgment and evaluating an argument as 

explanatory is a psychological judgment. For instance, many individuals such as Nelsen (1993) 

find some of Nelsen’s “proofs without words” to be explanatory (because they rely on natural 

inferences) but not to qualify as bona fide proofs (because they occur in an inappropriate RS)
2
.  

In the mathematics education literature, there is a focus on explanatory proofs—that is, 

arguments that are both explanatory and proofs. For the remainder of this paper, we will focus on 

explanatory proofs, contrasting them with convincing proofs that are not explanatory. We 

highlight four consequences from our definition of explanatory arguments.  

We first contend that explanatory proofs will generally be convincing as well. Criterion (i) 

for conviction and explanation are identical. With regard to (ii), in our conception, a truth-

preserving inference need not be natural to an individual. An individual can verify a cumbersome 

calculation without finding it to be natural (i.e., the calculation may require substantial cognitive 

effort). Alternatively, as previously noted, a natural inference need not be truth-preserving. 

However, in general, if an individual finds an inference to be natural within an RS she 

understands and finds valuable (criteria (ii) and (iii) for explanation) and she believes that 

mathematicians would find the inference to be valid (a criterion for proof), the individual will 

typically find the inference to be truth-preserving (criterion (ii) for conviction). Finally, criterion 

(iii) for explanation implies criterion (iii) for conviction. That is, if an RS is personally valuable, 

it will be personally meaningful. 

Second, this definition views explanations as explaining how rather than why. This is 

consistent with the way mathematicians use the word “explain” in their writing. Based on a 

corpus analysis of a large number of mathematical articles, Mejia-Ramos and Inglis (2017) found 

that mathematicians were far more likely to use the phrase “explain how” in their text than 

“explain why.” Note that by emphasizing explaining how we are not suggesting that an 

explanatory proof merely explains how to carry out steps in a procedure; justification is central 

to our understanding of an explanatory proof, and we propose that an explanatory proof outlines 

a method for how a statement might be justified. That is, by explaining how a statement can be 

justified, the proof makes explicit why that statement is true. 

Third, proofs are not globally explanatory, but explanatory with respect to a given RS. What 

is being explained is how to justify a claim within a desirable RS or with a particular type of 

reasoning. For instance, Proof 1 explains how to prove an identity enumeratively, and Proof 2 

explains how to prove it algebraically. We explore this further in the subsequent section. 

                                                 
2
 Balacheff (2009) also defined explanation as a psychological construct, proof as a social construct, and both 

characterized in terms of representation systems. However, at least in terms of student-generated proofs, he viewed a 

proof as a socially accepted explanation (i.e., all proofs are explanations). Our characterization says a student-

generated proof might not be explanatory if it was generated with non-natural inferences or in an RS that a student 

did not personally value. 
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Fourth, this definition is clearly student-centered. With respect to (ii), recall we defined 

natural inferences as inferences that are easy for an individual to produce and understand because 

of her familiarity with an RS. Whether an inferential scheme is natural is partially dependent 

upon the individual’s experience working within that RS. Further, with respect to (iii), the types 

of RSs that are considered valuable can vary between individuals. Thus, we reiterate that RSs 

(and therefore the extent to which a certain proof might be considered explanatory) are closely 

related to an individual’s prior knowledge and background experience.  

 

Clarifying Aspects of Explanatory Proof through a Discussion of Mathematical Examples 

in a Combinatorial Context 

 

Insights from Proofs of Binomial Identities 

To elaborate our definitions of RSs and explanatory proof, we consider examples from 

combinatorics involving binomial identities. In our experience, this topic naturally lends itself to 

moving between RSs. Indeed, as we will describe, it is commonplace to use a secondary RS 

(perhaps enumerative) to prove a relationship in a given RS (perhaps algebraic). To appreciate 

the upcoming discussion, take a moment to consider the following identity. For all integers 0 ≤ k 

≤ n, the binomial coefficients satisfy: 

 

(
𝑛
𝑘

) =  (
𝑛

𝑛 − 𝑘
).                                                           (2) 

 

When you see equation (2), how do you interpret the claim being made? Is it a claim about 

two coefficients in a polynomial? Is it an assertion about two types of subsets of an n-element 

set? Is it describing a property of a recursively defined triangular array (Pascal’s triangle)? Is it 

saying several of these? Something else? Depending on how you answer this question, you may 

have different expectations of what constitutes a “proof that explains,” and you may find 

different proofs more or less explanatory, or even more or less convincing.  

In this section we provide proofs of claim (2) in three different representation systems. We 

offer proofs in RSs that emphasize enumeration (Proof A), rules of algebra (Proof B), and the 

binomial theorem (Proof C), acknowledging that we could also explore additional RSs of this 

same expression (such as induction, block-walking, Taylor’s theorem, etc.).  

Proof A: An explanatory proof in an enumerative RS. In an enumerative proof, we argue 

that the two sides of the identity represent two different counting processes (e.g., Lockwood, 

2013) that either a) count the same set of outcomes (a direct combinatorial proof) or b) count two 

different sets of outcomes between which there is a bijection (a bijective combinatorial proof). 

Valid inferential schemes include enumerative arguments that draw on fundamental 

combinatorial principles and the fact that sets have a unique cardinality. For simplicity, we 

provide one example of a direct combinatorial proof.  

We show that both sides of the identity count the following set: the set of k-member 

committees of a group of n people. That is, we interpret equation (2) as a statement that relates 
different expressions counting subsets of n-element sets. The left-hand side counts the number of 

k-member committees by selecting k members from the n people that should be included in the 

committee. The right-hand side counts the number of k-member committees by enumerating their 

complements – by selecting the n–k group members from n people who will not serve on the 

committee. Because both sides of the identity count the same quantity (the number of k-member 

committees), the expressions must be numerically equal. This proof explains how we justify the 
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combinatorial identity in terms of counting subsets; in this way, we gain insight into why the 

statement is true. 

Proof B: An explanatory proof in an algebraic RS. We can accept the enumerative 

justification above as being both convincing and a proof, yet we can still wonder about how the 

combinatorial identity can be justified algebraically. In an algebraic RS, equation (2) can be 

interpreted as a statement about factorial expressions involving (nonnegative) integers, and valid 

rules of inference include properties of integers and algebraic rules.  

Substituting the algebraic interpretation of binomial coefficients (
𝑛
𝑘

) =
𝑛!

(𝑛−𝑘)!𝑘!
  into (2) and 

applying rules of algebra yields the following proof:  

(
𝑛
𝑘

) =  
𝑛!

(𝑛−𝑘)!𝑘!
=

𝑛!

𝑘!(𝑛−𝑘)!
=

𝑛!

(𝑛−(𝑛−𝑘))!(𝑛−𝑘)!
= (

𝑛
𝑛 − 𝑘

). 

Since we can use rules of algebra to manipulate and transform one expression into the other, both 

sides of (2) are algebraically equivalent, and the statement follows. This algebraic proof explains 

something different than the enumerative proof – how we justify the identity in terms of 

algebraic rules and inferences. By detailing how the identity can be justified algebraically, it 

proves directly why the algebraic claim is true. These first two proofs, A and B, are similar to 

the examples of Proofs 1 and 2 from the introduction. 

Proof C: An explanatory proof in a binomial theorem RS. In another RS, we could 

perceive binomial coefficients (
𝑛
𝑘

) in terms of their role in the binomial theorem. The theorem 

states
3
 that for all nonnegative integers a, b, and n,  

(𝑎 + 𝑏)𝑛 =  ∑ (
𝑛
𝑘

) 𝑎𝑘𝑏𝑛−𝑘 .𝑛
𝑘=0                                                (3) 

Thus the interpretation of (
𝑛
𝑘

) is as the coefficient of the term 𝑎𝑘𝑏𝑛−𝑘 in the expansion of the 

expression (𝑎 + 𝑏)𝑛. In this RS, valid rules of inference involve rules of algebraic expansion and 
the equality of corresponding coefficients. 

To justify (2) in this sense, we consider the following: 

 

 
 

Again, this proof explains how (2) can be derived within the context of the binomial theorem, 

and in doing so, it makes explicit why the binomial coefficients in (2) must be equal. Like Proof 

B, this proof also relies on algebra, but the proofs are different in the ways they appeal to specific 

rules of inference appropriate to the respective RSs. Here the initial step involves interpreting the 

two sides of (2) not as an algebraic expression of 
𝑛!

(𝑛−𝑘)!𝑘!
, but rather as specific coefficients of 

two binomial expansions. 

 

Reflections on the Algebraic and Enumerative Proofs – What Is Being Explained?  

                                                 
3
 The theorem extends to other, non-integer values, but we focus on this version. 
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We take these three proofs as reference points for continuing our discussion of proofs that 

explain and proofs that only convince. A common way to view these proofs would be to say that 

the algebraic Proof B only convinces, while the enumerative Proof A is somehow more 

explanatory (and perhaps Proof C is somewhere in between). One could argue that the 

enumerative proof involves some evocative real-world activity (choosing committees) while the 

algebraic proof involves merely symbol-pushing. We understand the appeal of this perspective, 

and as combinatorialists we find the enumerative proofs to be particularly satisfying. However, 

we argue that there is a deeper story to tell, and each of the above proofs can be considered to be 

explanatory and/or convincing depending on which RS a certain individual might adopt. 

We contend that the question What is the proof explaining? is not a simple inquiry, but it is 

made somewhat clearer when viewed in the context of RSs. For example, we would argue that 

the enumerative Proof A is explanatory in the enumerative RS because it demonstrates how (2) 

can be justified in terms of counting subsets (in particular, committees). However, this 

enumerative proof is not explanatory in an algebraic RS or in an RS focused on the binomial 

theorem. That is, even if one fully understands the enumerative Proof A, there still remains the 

mystery of why the result follows if we interpret (
𝑛
𝑘

) as 
𝑛!

(𝑛−𝑘)!𝑘!
  or as a coefficient of a binomial 

expansion. Conversely, the algebraic Proof B does not provide explanation for how the identity 

might be justified in an enumerative domain; however, Proof B is explanatory in the RS of 

algebra, interpreting (
𝑛
𝑘

) as a particular quotient of factorial expressions. 

In short, what constitutes an explanation is relative to the RS used to interpret the claim being 

made. How does this relate to convincing? We contend that a proof of a claim in a given RS may 

be convincing to an individual but not explanatory for them, particularly if they interpret the 

claim using another RS. In our examples of multiple proofs of the identity (2), we suggest that 

the algebraic proof may be convincing to an individual who reads (2) as a claim in the 

enumerative RS, even if it is not explanatory to them (it does not explain the enumeration). This 

is especially true if the individual acknowledges the validity of the identity (
𝑛
𝑘

) =  
𝑛!

(𝑛−𝑘)!𝑘!
 , 

which can function as a translation device between the enumerative and algebraic RSs. Similarly, 

the enumerative proof may convince someone that the algebraic claim must be true, even if the 

enumerative proof offers no insight into what specific algebraic steps could be used to verify this 

fact in an algebraic RS.  

We commonly use such relationships between RSs to prove results in combinatorics. To 

emphasize this point, consider the following identity 

∑ (
𝑛
𝑘

) = 2𝑛𝑛
𝑘=0 .                                                             (4) 

This identity is quite natural to prove enumeratively. Both sides count the total number of subsets 

of any size from a set of n elements. The left-hand side counts this by summing the numbers of 

k-element subsets for all possible values of k from 0 to n. The right-hand side counts this by 

considering, for each of the n elements in the set, whether or not to include it as an element of a 

subset. Identity (4) is also straightforward to prove using the binomial theorem, substituting the 

value 1 for both a and b in (3). However, it is not immediately apparent why the corresponding 

algebraic fact about sums of quotients of factorial expressions should hold (just try it). Here, 

then, an enumerative proof may convince us of the ultimate correctness of the algebraic claim, 

and it may give us confidence that an algebraic derivation exists, but it does not itself explicitly 

reveal or fully explain the conjectured algebraic claim. In other words, if all we needed was to be 

convinced that this identity holds, it would suffice to use an enumerative argument or the 
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binomial theorem to prove the result, rather than an algebraic argument. But if we sought to 

understand why such a miraculous algebraic claim holds algebraically, we might remain just as 

mystified after these proofs as we were before. 

More commonly in combinatorics research, we proceed in the other direction – using algebra 

to convince us of identities that are difficult to prove enumeratively. For example, generating 

functions offer a well-established technique of translating combinatorial questions into algebraic 

settings, using algebra to derive results, then translating back into the combinatorial context. A 

proof by generating functions is explanatory in an algebraic RS, demonstrating clearly how 

algebraic manipulations establish the relationship, but it does not necessarily explain how the 

relationship may be justified enumeratively.  

The fact that there are different RSs in which proofs may convince or explain is a wonderful 

aspect of mathematics, affording opportunities to develop convincing proofs even if the 

derivation of a claim in a preferred RS is particularly difficult. Our point, then, is that it is overly 

simplistic to characterize a proof as being objectively convincing or explanatory without further 

specifying what precisely is being explained and to whom, and in particular, in what RS the 

statement to prove is being interpreted. 

 

Relation to Previous Insights about Explanatory Proof 

Earlier, we summarized five insights about explanatory proofs from the mathematics 

education literature for which a good characterization of explanatory proof should account. Here 

we argue that our characterization meets these challenges. 

Explanatory proofs should be individual-dependent. Whether a proof is explanatory to an 

individual depends critically on which RSs that individual understands and personally values. As 

different students have different experiences, interests, and reasoning preferences, their 

relationship to specific RSs will also be different. A student’s tendency to value algebra over 

enumeration may stem from an overall comfort level with algebra and a feeling of inadequacy or 

inexperience in being able to solve counting problems (indeed, student difficulties with 

combinatorics are well documented, e.g., Batanero, et al., 1997). For such students, it is 

understandable that they would value algebra over counting, as an algebraic RS would likely 

allow them to feel more comfortable and confident in their proof. Similarly, a mathematician 

may value an enumerative proof because it offers insight about an enumeration technique that 

they value, even if they are just as comfortable and confident about algebra.  

There is some uniformity about which proofs are explanatory. In the next two 

paragraphs, we describe two areas of such uniformity, the tendency of visual arguments to be 

explanatory and the reasons why complicated algebraic arguments tend not to be. 

Proofs that rely on visual reasoning tend to be explanatory. As Bartlo (2013) observes, 

mathematics educators tend to offer visual proofs as explanatory proofs. These proofs usually 

involve inferential schemes based on our intuitions about two-dimensional Euclidean space (e.g., 

Weber & Mejia-Ramos, 2019) or on geometry facts learned at a young age. For instance, 

Hanna’s (1990) explanatory proof in Figure 2 relies on basic geometric intuition and facts. For 

most students with extensive mathematical training, the geometric RS in which Hanna is 

working will be understood well and the inferential schemes relying on two-dimensional 

Euclidean space will be natural. This is one reason why justifications couched within a visual RS 

tend to be viewed as explanatory.  

Proofs that rely on complex algebraic manipulations tend not to be explanatory. Bartlo 

(2013) further observes that the most frequent exemplars of non-explanatory proofs rely on 
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complicated algebra. We suggest that the fact that the algebraic manipulations are complicated 

implies that the algebraic inferences being made are framed as requiring substantial cognitive 

effort and not being natural. Standard template-based proofs by induction (c.f. Harel, 2001), such 

as the proof in Figure 4 that Hanna (1990) highlights as non-explanatory, offer an interesting 

special case of this. Many of the algebraic inferences are truth preserving upon reflection, but 

they are not natural inferences that can easily be seen by dint of the algebraic RS. Further, the 

overarching structure of the inductive step involves deducing S(k+1) = 
(𝑛+1)(𝑛+2)

2
 from the 

inductive hypothesis. Again, an individual who understood proof by induction could verify that 

this (along with the base case) was sufficient to prove the theorem, but this is not obvious on the 

surface, and is often not how we think about “what the theorem statement is really about”. For 

instance, unlike Hanna’s (1990) explanatory proof presented in Figure 5, the proof does not 

represent the summation of n numbers as the accumulation of n quantities. (However, Harel 

(2001) and Stylianides et al. (2016) suggest that proofs by induction can be explanatory if they 

are manifestations of students’ natural recursive reasoning). In addition, it may be the case that 

complex algebraic proofs do not typically explain what an individual wants to be explained. That 

is, as in the case of combinatorial identities, often algebraic expressions serve as a proxy for 

different mathematical phenomena or objects that an individual values, and the algebra in and of 

itself is not what an individual seeks to justify or explain about a statement. 

Students are more likely to find their own proofs, which are the result of their own 

proving process, to be explanatory. As Stylianides et al. (2016) and Nunokawa (2009) observe, 

under some conditions, students are likely to view a proof in which the students’ final proof 

product is based on their initial exploration to be explanatory. We believe this insight is a 

consequence of our characterization of explanation. Students will tend to explore the veracity of 

conjectures in RSs that they understand well and personally value. Hence, when students decide 

that a conjecture is true, they do so based on an explanatory argument that they generated. If a 

cognitive unity (Garuti et al., 1998) between this argument in their proof is achieved, then the 

individual will perceive a mapping between their explanatory argument and the proof that they 

produced. This satisfies our condition for a proof to be explanatory.  

 

Conclusion  

Our goals in this paper were threefold: to propose a theory of explanatory proofs for 

mathematics education, framed in terms of the representation systems in which proofs are 

developed, written, and understood; to use combinatorics as a domain in which to illustrate our 

proposed theory; and to leverage our theory to explain audience-dependent and audience-

invariant aspects of explanatory proof. Wanting to move beyond simply labeling proofs as 

explanatory, we hope to have contributed to a more nuanced perspective on proofs that explain.  

The notion of RSs in proof allows us to reframe how we think about students’ proving 

activity. The idea that students may work from different RSs gives a lens through which to 

consider student activity in proof-based classes, perhaps giving students more credit than simply 

dismissing their activity as meaningless and purely syntactic. For example, when a student tends 

toward algebra when trying to prove a binomial identity, it is easy to assume they are engaging 

superficially, not sufficiently attempting to understand the situation conceptually. But such a 

student may be viewing the statement to be proven through an algebraic RS, which may 

represent the primary meaning of the claim to them. By clarifying how arguments might be 

construed as explanatory or convincing to an individual (and by suggesting that arguments may 

be explanatory in a variety of different ways), we allow for potentially broader views of how 
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individuals make sense of and use mathematical concepts, ideas, or perspectives. Thus, this 

perspective on proofs that explain may give agency to the prover.  
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