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vehicle routing problem (VRP) analyzed in this paper is neither
dynamic nor stochastic since all the information related to the cus-
tomers’ demands is known before the vehicles leave the depot or DC.
The routes are designed daily, and the number of routes and distance
needed depend on the available freight.

Despite the growing implementation of customer-responsive
and made-to-order supply chains, the impact of variations on the num-
ber of customer requests and demands on average VRP distance
traveled has not yet been studied in the literature. All experimental
studies have focused on the approximation of the length of specific
traveling salesman problem (TSP) or VRP instances (i.e., given a
set of customer demands known a priori, how well a given formula
approximates the real distance of one specific instance). This research
has a different objective: given N potential customers and a vari-
able customer demand (locations, demands, time windows, etc.) in
a service area, how well a given formula approximates the average
distance of VRP solutions for different levels of n and routing
constraints.

LITERATURE REVIEW

There is an extensive body of TSP- and VRP-related literature in
operations research and transportation journals. The goal of this sec-
tion is not to present a review of TSP and VRP solution methods but
to focus on the literature that deals with the estimation of distances
in TSPs and VRPs. Comprehensive reviews of solution methods for
TSPs and VRPs are given by Gutin and Punnen (1) and Toth and
Vigo (2), respectively.

A seminal contribution to an estimate of the length of a short-
est closed path or tour through a set of points was established by
Beardwood et al. (3). These authors demonstrated that for a set Vn with
n points distributed in an area A, the length of the TSP tour through
the set V n asymptotically converges to

The value of k is a constant. The asymptotic validity of this formula
for TSPs was experimentally tested by Ong and Huang (4) by using
a nearest neighbor and exchange improvement heuristics. With a
Euclidean metric and a uniform distribution of customers, the con-
stant term has been estimated at k = 0.765 (5). For reasonably com-
pact and convex areas, the limit provided by Equation 1 converges

TSP V n k nA( ) = ( )1
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and Routing Constraints

Miguel Andres Figliozzi

This paper studies approximations to the average length of vehicle
routing problems (VRPs). The approximations are valuable for strategic
and planning analysis of transportation and logistics problems. The focus
is on VRPs with varying numbers of customers, demands, and locations.
This modeling environment can be used in transport and logistics models
that deal with a distribution center serving an area with daily variations
in demand. The routes are calculated daily on the basis of what freight
is available. New approximations and experimental settings are intro-
duced. Average distance traveled is estimated as a function of the number
of customers served and the number of routes needed. Approximations
are tested in instances with different customer spatial distributions,
demand levels, numbers of customers, and time windows. Regression
results indicate that the proposed approximations can reasonably pre-
dict the average length of VRPs in randomly generated problems and
real urban networks.

In many logistics problems it is necessary to estimate the distance
that a fleet of vehicles travel to meet a set of customer demands.
Traveled distance is not only an important element of carriers’
variable costs but also a key input in tactical and strategic models to
solve problems such as facility location, fleet sizing, and network
design. In particular, this research focuses on the ubiquitous case
of a depot or distribution center (DC) serving up to N potential
customers in the DC’s delivery region. In many practical situa-
tions, not all potential customers request a visit on the same day.
The number of customers served per day, n, may be significantly
smaller than N. There may also be a significant variation in the num-
ber of customers visited per day of the week (e.g., early weekdays
versus weekends). The amount to be delivered or picked up may
also vary on a daily basis (e.g., from one to several pallets), as might
other requirements such as time window constraints. The daily cus-
tomer demand is known a night in advance; hence, each daily route
and sequence of customers depends on what freight is available on
a particular day for delivery or pickup. Although there is variability
in the amount and characteristics of the day-to-day demand, the
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rapidly (6). In compact and convex areas, the following approximation
formula can be used:

Equation 2 requires a Euclidean travel metric or L2 metric. Jaillet (7)
estimated the constant k ≈ 0.97 for the Manhattan travel metric or
L1 metric.

Approximations to the length of capacitated VRPs (CVRPs) were
first published in the late 1960s and early 1970s (8–10). Webb studied
the correlation between route distance and customer–depot distances.
Eilon et al. (10) proposed several approximations to the length of the
CVRP based on the shape and area of delivery, the average distance
between customers and the depot, the capacity of the vehicle in terms
of the number of customers that can be served per vehicle, and the
area of a rectangular delivery region.

Daganzo (11) proposed a simple and intuitive formula for the CVRP
when the depot is not necessarily located in the area that contains
the customers:

CVRP(Vn) is the total distance of the CVRP problem serving n cus-
tomers, the average distance between the customers and the depot is
r–, and the maximum number of customers that can be served per
vehicle is C. Hence, the number of routes m is known a priori and
can be calculated as n/C. Equation 3 can be interpreted as having
(a) a term related to the distance between the depot and customers
and (b) a term related to the distance between customers. The coef-
ficients of Equation 3 were derived by assuming C > 6 and N > 4C2.
Daganzo’s approximation works better in elongated areas as the
routes were formed following the “strip” strategy. Robusté et al. (12)
use simulations to analyze elliptical areas and propose adjustments
based on area shape, vehicle capacity, and number of customers.
Erera’s dissertation (13) proposes continuous approximations to
estimate expected detour and distances in the stochastic version of
the CVRP.

Chien (14) carried out simulations and linear regressions to test
the accuracy of various models to estimate the length of TSP. Chien
tested rectangular areas with eight length–width ratios ranging from
1 to 8 and circular sectors with eight central angles ranging from
45 to 360 degrees. Exact solutions to solve the TSPs were used, and
the size of the problems is five to 30 customers. The depot was
always located at the origin, the left-lower corner of the rectangular
areas. Chien randomly generated test problems and by using linear
regressions found the best-fitting parameters. The mean absolute
percentage error (MAPE) was the benchmark to compare specifi-
cations. Chien found that the lowest MAPE for the best model is
equal to 6.9%.

Chien used the area of the smallest rectangle that covers the
customers; this area is denoted R. Equation 4 is not convenient for
planning purposes when there may be many possible subsets of cus-
tomers that are not known a priori. The previous models were also
estimated for each of the 16 different regions; R2 and MAPE are
reported for each type of region and model. The estimated parameters
change according to the shape of the region.

TSP MAPE (4)V n r nR R( ) ≈ + = =2 1 0 67 0 99 6 92. . . .

CVRP V n rn C nA rm nA( ) ≈ + = +2 0 57 2 0 57 3. . ( )

TSP V n nA( ) ≈ 0 765 2. ( )
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Kwon et al. (15) also carried out simulations and linear regres-
sions, but in addition they used neural networks to find better approx-
imations. To test the accuracy of different models, they tested TSPs
in rectangular areas with eight length–width ratios ranging from 
1 to 8. Models were estimated with the depot located at the origin
and at the middle of the rectangle. The sizes of the problems ranged
from 10 to 80 customers. Kwon et al. compared Equation 4 with two
additional approximations that make use of the geometric informa-
tion proportioned by the length–width ratio (S) of the rectangle
(length and width defined in such a way that the ratio is always larger
than or equal to 1). The results obtained for the depot located at the
origin are as follows:

Accounting for the shape of the area improves accuracy, although
this is at the expense of adding one and two extra terms in the last
two expressions. R1 is defined as the area of the smallest rectangle
that covers the customer and the depot. With the depot located at the
center of the rectangle, the results obtained are as follows:

MAPE slightly increases when the depot is located at the center
of the rectangle. Kwon et al. (15) also used neural networks to find
a model that better predicts TSP length. They concluded that the
capability of neural networks to find “hidden” relationships provides
a slight edge against regression models. However, the models are
less parsimonious and the terms harder to interpret geometrically.

APPROXIMATIONS PROPOSED AND TESTED

In the preceding section, approximations and simulation results for
the TSP were reviewed. There are strong theoretical and intuitive 

reasons to include both and r– terms in the models. Although
Daganzo (11) and Robusté et al. (12) propose distance formulas for
the CVRP, the number of necessary routes or vehicles, m, is known
a priori. Daganzo and Robusté et al. assume demands that are fac-
tors of the vehicles’ capacities; with this assumption the number
of vehicles can be accurately determined by using m = n/C. In this
research it is also assumed that the number of routes needed is
known a priori.

Given n customers and m routes, there is a relationship between
the number of links that connect the depot and the first or last cus-
tomer of each route and the number of local intercustomer links.
Any solution to a TSP with n customers uses n + 1 links, where n − 1
links are local and two links are connecting. If capacity or window

nA

TSP V n r n S n( ) ≈ + − +( ) + +( )[ ]1 15 0 79 0 0012 1 0 97 1. . . . nnR
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constraints are added, the resulting VRP has m ≥ 1 routes. In general,
for m routes and n customers, any solution to a VRP uses n + m links.
In general, for any given n and m, the number of connecting links
is 2m and the number of local links is n − m.

Six approximations or models to estimate the length of VRP
instances are proposed:

The parameters kl, kb, and km are estimated by linear regression. The
term (n − m)/n is proposed in this research to modify the local tour
distance in Models 2, 4, and 6. This term has some desirable prop-
erties: (a) when n = m the estimated local distance is zero, whereas
(b) when n >> m or m = 1 the local tour distance tends to the expres-
sion suggested by Beardwood et al. (3). This research proposes the use
of these ideas to reflect the trade-offs between n and m and improve
the accuracy of the average VRP distance estimation as a function
of n and m.

Increased accuracy can be obtained if additional terms related to
the shape of the region and customers are added, as do Kwon et al.
(15), or if a third term is added, as in Equations 5 and 6:

The functional form of this term was not justified by Kwon et al.
(15). This research conjectures that this term is a proxy for the
average distance from the depot to the first customer plus the dis-
tance from the last customer to the depot. It has been shown (16) that

the average distance to the nearest neighbor is a function of . The

term may be significant in estimating distances for the TSP
when n is small and m = 1.

The term kmm estimates the connecting distance and captures
increases in connecting distance as m increases or as the depot moves
away from the customers. The proposed models, Expressions 9
through 14, are evaluated by using numerical experiments in the
section on analysis and discussion of experimental results. The next
section describes the experimental setting.

EXPERIMENTAL SETTING

This research utilizes the classical instances of the VRP with time
windows proposed by Solomon (17) to test the models. The Solomon
instances include distinct spatial customer distributions, vehicles’
capacities, customer demands, and customer time windows. These

k A nb

1 n

nA n A n+( ) ≈1

Model VRP6 14: ( )V( ) ≈ − + +k
n m

n
An k A n k ml b m

Model VRP5 13: ( )V( ) ≈ + +k An k A n k ml b m

Model VRP4 12: ( )V( ) ≈ − +k
n m

n
An k ml m

Model VRP3 11: ( )V( ) ≈ +k An k ml m

Model VRP2 2 10: ( )V( ) ≈ − +k
n m

n
An rml

Model VRP1 2 9: ( )V( ) ≈ +k An rml
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problems have been widely studied in the operations research 
literature, and in addition the data sets are readily available. (Sev-
eral websites maintain downloadable data sets of the instances,
including Solomon’s own website: web.cba.neu.edu/∼msolomon/
problems.htm.)

In the Solomon problems there are 100 customers per instance.
The distances and travel times are Euclidean. There are six classes
of problems, depending on the geographic location of customers
(R, random; C, clustered; RC, mixed random and clustered) and
time windows length (1, short time windows; 2, long time windows).
The customer coordinates are identical for all problems within
one type (i.e., R, C, and RC). The sets R1, C1, and RC1 have vehicle
capacity of 200 units, allowing fewer customers per route than the
remaining sets. In contrast, Problem Sets R2, C2, and RC2 have vehi-
cle capacity equal to 1,000, 700, and 1,000 units, respectively, allow-
ing a larger number of customers per route. Because of the short time
windows, Problem Sets R1, C1, and RC1 allow only a few customers
per route (5 to 10). Problem sets R2, C2, and RC2 have longer time
windows, and route sizes are on the order of 30 customers per route.
The first instance of each problem class is used in this research.

Random samples of the Solomon problems are used to examine
the accuracy of Models 9 through 14. Out of N = 100 possible cus-
tomers in a service area A, a problem or instance is formed by a subset
of n randomly selected customers. On the basis of the first instance
of the six problem types proposed by Solomon, 15 subsets of cus-
tomers of size 70, 60, 50, 40, 30, 20, and 10 were randomly selected
from the original 100 customers. To incorporate different levels of
customer demand, new instances were created by applying the demand
factors presented in Table 1 to each subset of customers. On the basis
of the factors in the second row of demand factors in Table 1, the cus-
tomers have demands similar to those in the original Solomon prob-
lems. The resulting problems using the highest demand multipliers
(last row of Table 1) are such that some customers are truckload (TL)
or almost TL customers. Increasing some customer demands to or
close to the TL level was done to test the models when problems are
highly constrained and have a large number of routes and a small
number of customers per route. On the other hand, the situation of
having a large number of customers per route is obtained when the
demand factor is zero (first row Table 1). In all cases the routes’ dura-
tions were limited by the depot time window. Finally, in all Solomon
problems, customers’ time windows are different in width and start
time. This adds a layer of variability. Hence, for each problem class
or set, variability is introduced in three distinct ways: different

TABLE 1 Truck Capacity and Customer Demand Data 
by Problem Type

Instance

C1 R1 CR1 C2 R2 CR2

Vehicle 200 200 200 700 1,000 1,000
capacity

Max. 50 41 40 41 41 40
demand

Demand 0 0 0 0 0 0
factors 1 1 1 1 1 1

1.6 1.78 1.8 3.6 5.68 5.8
2.2 2.56 2.6 6.2 10.36 10.6
2.8 3.34 3.4 8.8 15.04 15.4
3.4 4.12 4.2 11.4 19.72 20.2
4 4.9 5 14 24.4 25



subsets of customer locations, different levels of customer demands,
and nonuniform time windows.

Most studies have focused on the derivation or testing of asymp-
totic estimators of the length TSPs (3, 4). Hence, experimental
tests have mostly included a large number of customers per route.
However, real-life routes have a relatively small number of customers
per route because of capacity or tour length constraints. For exam-
ple, in Denver, Colorado, more than 50% of single and combination
truck routes include less than six stops (18); 95% of the truck routes
include less than 20 stops. This research work tests the models by
using instances that range from one customer per route to more than
35 customers per route.

In the Solomon problems the depot has a central location with
respect to the customers. To test the model when the depot is
located in the periphery, all the created instances were also solved
with the depot located at the origin [i.e., coordinates (0, 0)]. To
study the model quality and parameter values without time windows,
all the problem instances were also solved without time windows.
To the best of the author’s knowledge, there is no published research
reporting MAPE and simulation results for CVRP or VRP with
time windows.

All problem instances in this research were solved with a VRP
improvements heuristic that has obtained the best published solution
in terms of number of vehicles (19). The solution quality of this
heuristic is clearly superior to the performance of savings or con-
struction heuristics used in previous research efforts such as those
of Ong and Huang (4) or Robusté et al. (12). The overall solution
quality of the heuristic used—that is, the total number of vehicles
needed to solve the 56 Solomon problems—is approximately 4% over
the best known solutions (20, 21).

To evaluate the prediction accuracy, the MAPE and the mean
percentage error (MPE) are used. They are calculated as follows:

where the actual distance for instance i is denoted Di and the estimated
distance is denoted Ei.

For a given set of instances it is always the case that MPE ≤ MAPE.
The MPE indicates whether the estimation, on average, overestimates
or underestimates the actual distance. The MAPE provides the aver-
age deviation between actual and estimated distance as a percentage
of the actual distance.

ANALYSIS AND DISCUSSION 
OF EXPERIMENTAL RESULTS

Results for CVRP instances (i.e., no time windows) and the depot
located at the center are shown in Table 2. All the regression results
were obtained by forcing the intercept or constant term to be zero;
this is consistent with previous studies by Chien (14) and Kwon et al.
(15). In the regression models, the average distance per sample size
is the dependent variable. Model fit R2, MAPE, and MPE are dis-
played for Models 1 through 6. The average, maximum, and minimum
correspond to the first Solomon problem in each of the six problem
types (R1, C1, RC1, R2, C2, and RC2). For the sake of clarity, only
three decimals are displayed.
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In Table 2, all six models have good R2 values. However, models
with more terms (such as Models 5 and 6) have a superior MAPE
performance. The models that adjust the tour distances by using the
term (n − m)/n (Models 2, 4, and 6) have a better MAPE perfor-
mance than do their counterparts with the same number of estimated
coefficients (Models 1, 3, and 5, respectively).

Table 3 indicates the impact of time windows on the accuracy of
average distance estimation. These results were obtained by using the
same instances used previously to obtain Table 2 but considering all
the customer time windows as originally intended in the Solomon
problems. A slight decrease in the R2 values is observed. Imposing
time windows decreases the predictive ability of all six models. The
increases in MAPE range from 50% to 175% for Model 3. As observed
in Table 2, the models that adjust the tour distances by using the term
(n − m)/n have a better MAPE performance than do their counterparts.

TABLE 2 Model Fit Comparison with a Central Depot 
and No Time Windows

Model Statistic R 2 MPE (%) MAPE (%)

Model 1 Average 0.966 1.4 6.0
Min 0.933 −0.8 4.2
Max 0.986 3.5 7.3

Model 2 Average 0.991 1.5 4.7
Min 0.986 −1.2 3.1
Max 0.994 4.2 6.5

Model 3 Average 0.999 1.0 4.0
Min 0.998 −0.9 2.2
Max 1.000 3.5 6.4

Model 4 Average 0.999 −0.7 3.2
Min 0.999 −2.6 1.7
Max 1.000 1.6 4.5

Model 5 Average 0.999 −0.4 3.1
Min 0.999 −0.7 2.0
Max 1.000 −0.1 4.3

Model 6 Average 1.000 −0.1 2.4
Min 0.999 −0.3 1.5
Max 1.000 0.1 3.4

TABLE 3 Model Fit Comparison with a Central Depot 
and Time Windows

Model Statistic R 2 MPE (%) MAPE (%)

Model 1 Average 0.968 6.2 12.0
Min 0.954 3.2 6.2
Max 0.982 10.2 17.9

Model 2 Average 0.984 4.9 7.9
Min 0.977 2.5 5.2
Max 0.990 9.2 12.7

Model 3 Average 0.994 6.8 11.0
Min 0.987 3.5 5.8
Max 0.998 12.3 17.8

Model 4 Average 0.997 4.3 6.9
Min 0.994 1.6 2.8
Max 0.999 8.8 12.1

Model 5 Average 0.998 −0.3 4.8
Min 0.997 −0.8 2.8
Max 0.999 0.2 7.1

Model 6 Average 0.999 −0.1 3.7
Min 0.998 −0.5 2.1
Max 1.000 0.3 5.7



Furthermore, the performance of Models 2, 4, and 6 is better with
time windows compared with that of Models 1, 3, and 5. This can be
explained by the larger number of routes needed when time windows
are introduced; when m is larger, the term (n − m)/n plays a more
significant role.

Time windows also affect the value of the estimated local tour
parameter kl. Table 4 shows the value of the parameter kl for Model 2
and customers without time window constraints. The value of kl

changes with the spatial distribution of the customers; it is highest
for randomly distributed instances and lowest for clustered instances.
This is intuitively correct since the value of kl is a proxy for the aver-
age distance between customers in a local tour (between the first and
last customer of a route). Table 5 shows the value of the parameter kl

for Model 2 and customers with time window constraints. In com-
parison with the values in Table 4, all parameters kl show an increase
that is highly statistically significant. This is intuitively correct since
time window constraints do not allow the formation of compact routes;
hence, the average distance between customers in the local tours
almost doubles.

The same models were also estimated with the depot located at
the corner [i.e., coordinates (0, 0)]. Moving the depot to the corner
increases the average distance between the depot and the customers
considerably. Tables 6 and 7 show the results with and without time
windows and the depot at a corner. Despite the change in the depot
location, the same trends are still observed: (a) the models adjusted
by (n − m)/n perform better in terms of MAPE than their counterparts,
(b) time windows decrease the predictive accuracy of the models,
and (c) with time windows the parameter kl increases. With the cor-
ner depot, all three models perform better in terms of MPE and
MAPE than with a centrally located depot. The same phenomenon
can be observed in the experimental results of Kwon et al. (15) for
TSP distances.

Figliozzi 5

The value of km is closer to the corresponding value of 2r– when
the depot is not centrally located. With a central depot, the value of the
parameter km in Models 3 through 6 is within approximately 20% of
the corresponding value of 2r–; with a corner depot, the value of the
parameter km in Models 3 through 6 is within approximately 10% of
the corresponding value of 2r–. Hence, the average distance from the
depot to the customers, 2r–, still appears in Models 3 through 6 but
under the form of the estimated coefficient km.

The comparisons of the results in Tables 2, 3, 6, and 7 indicate
that Model 6 is clearly superior in terms of MPE and MAPE across
all experimental settings. However, the improved accuracy requires
the estimation of a larger number of parameters (three). In addition,
the interpretation of the term is not straightforward. The
sign of the estimated kb parameter is positive in all instances with a
centrally located depot, but it is negative in some instances with a

k A nb

TABLE 4 Local Tour Regression
Coefficient Without Time Windows
(Model 2)

Instance Coeff. t-Stat. St. Error

C101 0.62 41.58 0.01

R101 0.87 37.40 0.02

RC101 0.79 25.82 0.03

C201 0.64 57.71 0.01

R201 0.90 48.85 0.02

RC201 0.80 33.79 0.02

Average 0.77 40.86 0.02

TABLE 5 Local Tour Regression
Coefficient with Time Windows (Model 2)

Instance Coeff. t-Stat. St. Error

C101 1.30 56.24 0.02

R101 1.39 45.80 0.03

RC101 1.06 45.17 0.02

C201 1.32 69.79 0.02

R201 1.89 53.47 0.04

RC201 1.74 63.38 0.03

Average 1.45 55.64 0.03

TABLE 6 Model Fit Comparison with a Corner Depot 
and No Time Windows

Model Statistic R 2 MPE (%) MAPE (%)

Model 1 Average 0.985 0.8 3.3
Min. 0.970 −1.0 1.7
Max. 0.994 2.8 4.5

Model 2 Average 0.981 1.4 2.9
Min. 0.965 −0.2 1.5
Max. 0.995 3.0 4.7

Model 3 Average 1.000 −1.0 3.1
Min. 0.999 −2.3 1.9
Max. 1.000 0.9 4.4

Model 4 Average 1.000 0.1 2.1
Min. 0.999 −1.0 1.7
Max. 1.000 1.2 2.6

Model 5 Average 1.000 −0.4 2.1
Min. 0.999 −0.7 1.3
Max. 1.000 −0.1 2.6

Model 6 Average 1.000 −0.1 1.7
Min. 0.999 −0.3 1.2
Max. 1.000 0.0 2.2

TABLE 7 Model Fit Comparison with a Corner Depot 
and Time Windows

Model Statistic R 2 MPE (%) MAPE (%)

Model 1 Average 0.955 3.4 8.7
Min. 0.941 0.0 5.6
Max. 0.977 6.2 13.2

Model 2 Average 0.985 3.2 5.4
Min. 0.976 0.9 3.2
Max. 0.989 6.6 9.3

Model 3 Average 0.998 2.7 5.6
Min. 0.996 1.0 2.4
Max. 0.999 6.2 10.2

Model 4 Average 0.999 3.0 5.0
Min. 0.997 1.0 3.5
Max. 0.999 6.1 9.0

Model 5 Average 0.999 −0.4 3.9
Min. 0.999 −0.9 2.1
Max. 1.000 −0.1 5.6

Model 6 Average 0.999 −0.2 2.9
Min. 0.999 −0.5 1.6
Max. 1.000 0.0 4.5



corner depot. The sign change takes place in both Models 5 and 6.
A plausible explanation is that the term captures part of
the average distance to or from the depot when the depot is located
inside the customer service area; this is congruent with the assump-
tions of the analytical expression provided by Clark and Evans (16)
for the average nearest neighbor distance.

Model 2 is superior if parsimony and interpretability in addition to
accuracy are taken into account. Model 2 is simple and easily inter-
preted as well as robust when time windows are introduced. The
coefficient kb is in all cases easily interpreted, highly significant, and
positive. Furthermore, Model 2 outperforms Model 3, which uses two
regression coefficients with time windows and a corner depot. This
can be attributed to the influence of the term (n − m)/n, which plays
a larger role when more routes are required (more routes are required
when time windows are introduced and when the depot is moved
away from the customers).

REAL-LIFE APPLICATION

Previous literature has only tested TSP or CVRP distance approxima-
tions on simulated environments with Euclidean distances. Although
approximation formulas have theoretical applications in transport
and logistics planning models, they can also be used to estimate dis-
tance, costs, and times in real-life planning applications. The origi-
nal motivation for this research came from the study of distribution
routes for a freight forwarding company based in Sydney, Australia.
Distribution tours originated at a depot located close to the Port of
Sydney; the customers were mostly located in different industrial
suburbs. The pattern of customer distribution resembles the mix of
random and clustered customers as in the random–clustered Solomon
problems. The company’s customers are in the hundreds, but they are

k A nb
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not visited every day. The freight forwarding company consolidates
less-than-container shipments, and customers are visited only if a
consignment has arrived before the distribution cutoff time. Further
details about the tour characteristics are given by Figliozzi (22).

Model 4 was tested with customers located in the industrial suburb
of Bankstown with 30 customers distributed in an irregular area
of 39.5 km2 (see Figure 1). The delivery area is bordered by the
Bankstown local airport in the west, a freeway in the south, and sec-
ondary highways in the east and north. The average distance between
the depot and the industrial suburb is approximately 22 km on the
connecting freeway. To test Model 4, five sets of 2, 4, 6, 8, 10, 15, and
20 customers were randomly chosen among the existing customers
in the suburb to simulate the daily demand. Selecting random sub-
sets of customers from the pool of existing customers in the area is
a fair representation of the real demand. The number of customers
visited per day varies widely; it may be as low as one or two or,
exceptionally, close to 30. In the results presented below, all cus-
tomers have the same probability of a visit. Although this is not the
case in reality, it simplifies the exposition and introduces greater
variation in the customer subsets.

Because of contract and labor policies, the main distribution cost
is associated with the number of driver hours needed. Therefore, the
objective is to minimize total route durations, avoiding expensive
overtime (the overtime pay rate is 50% higher). An important con-
sideration in working with travel times in an urban area is that
speeds are strongly influenced by congestion, road characteristics,
and speed limits. In this application the travel speeds used are 65 km/h
on freeways, 35 km/h on main connecting streets (four lanes or more
with traffic lights), and 25 km/h on local streets. With this speed
information, a matrix of shortest travel times between customers and
depot was constructed by using the urban highway network and geo-
graphic information system software. Figure 2 shows the relationship

Silverwater 
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Sydney CBD 
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Smithfield 
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Delivery 
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FIGURE 1 Relative location of the Port of Sydney and delivery industrial areas.



between the Euclidean distance and the distance based on the shortest
time path for all customers and the depot. The high concentration of
short distance points close to the origin corresponds to the distances
between customers in the suburb, while the longer distances are
mostly depot–customer. The R2 of 0.93 indicates that despite the
irregular shape of the distribution area and the mix of travel speeds,
the Euclidean distance is a fairly good predictor of the actual distance
traveled between customer pairs or customer–depot pairs. From exist-
ing customer data, an average service time of 45 min per customer
is used.

Three routing scenarios were constructed: (a) no constraints or
TSP case, (b) with a tour duration constraint of 8 h, and (c) adding
4-h time windows per customer. The number of routes varied from
one in the TSP instances to five in the instances with time windows.
The regression was estimated with the consolidated data from all
three scenarios. The results are shown in Table 8. The network dis-
tance traveled is well approximated with a MAPE of 4.2%. The pre-
diction of travel time or driving time in hours has a MAPE of 11.7%.
The good MAPE is not surprising given the good correlation between
distance traveled and time driven (see Figure 3). Model 4 was used
to approximate times and distances due to the different travel speeds;
the connecting distance between depot and customers does not
always follow the same type of highway. These results are encour-
aging and show that the proposed models may have useful applica-
tions in urban networks and modeling applications (23, 24). While

these results are promising, from this example it is impossible to
generalize the results. Further research is necessary to study the accu-
racy of VRP distance approximation in cities with different layouts
and highway networks.

CONCLUSIONS

This research studies approximations to the average length of VRPs
when there is variability in the number, level, and locations of cus-
tomer demands. The approximations are intended for strategic and
planning analysis of transportation and logistics problems, when
the number and location of customers vary daily and are not known
a priori.

A new parsimonious, intuitive, and effective approximation is
proposed and successfully tested by using instances with different
patterns of customer spatial distribution, time windows, customer
demands, and depot locations. It was found that time windows neg-
atively affect the accuracy of the approximations. Time windows
increase travel distance not only because the number of routes is
increased but also because the separation between customers per
route is increased. As the distance between the depot and delivery
region increases, the accuracy of the approximation increases. The
approximation was also tested in a real-life urban network with
encouraging results.

Figliozzi 7

y = 1.7316x + 2.8966
R2 = 0.9282
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FIGURE 2 Euclidean distance versus shortest time distance among customers and depot customers.

TABLE 8 Real-Life Network Distance and Time Estimation (Model 4)

Coefficient

Instance R 2 MPE (%) MAPE (%) kl km

Distance 0.999 −0.5 4.2 Estimated 0.80 km 49.51 km
t-stat. 4.158 48.317

Time driven 0.988 5.9 11.7 Estimated 0.028 h 1.25 h
t-stat. 2.838 13.088
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FIGURE 3 Distance traveled and time driven.
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