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E-Cigarette Chemistry and Analytical Detection

Robert M. Strongin
Department of Chemistry, Portland State University, Portland, Oregon 97201, USA;

Abstract

The study of e-cigarette aerosol properties can inform public health while longer-term 

epidemiological investigations are ongoing. The determination of aerosol levels of known toxins, 

as well as of molecules with unknown inhalation toxicity profiles, affords specific information for 

estimating the risks of e-cigarettes and for uncovering areas that should be prioritized for further 

investigation.
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INTRODUCTION

E-cigarettes are the basis of a multibillion dollar global industry. Their introduction as 

commercial products in 2006–2007 created an ongoing debate that has polarized the public 

health community. Their long-term health effects are unknown. There is a well-documented 

latency period for tobacco-related disease that spans a minimum of 25 years (1). It will thus 

be at least two decades until definitive findings from long-term studies on e-cigarette use are 

available. Meanwhile, investigations of e-cigarette aerosol chemistry can provide 

information needed for evidence-based decisions and policies.

Types of E-Cigarettes

The term electronic cigarette refers to a variety of evolving devices that are designed to 

deliver nicotine and/or other substances under aerosolization conditions without combustion 

and tar generation. E-cigarettes consist of a mouthpiece, a tank for e-liquid, and an atomizer. 

The atomizer has a wicking material that delivers liquid to a battery-powered heating coil. 

The e-liquid, upon heating, forms an aerosol inhaled by the user (known as a vaper). Most e-

liquids contain the organic solvents propylene glycol (PG) and glycerol (GL), along with 

nicotine, flavoring molecules, and/or various other additives.

There are currently four generations of e-cigarettes. The first generation models, e.g., the 

cig-alike devices, bear the greatest physical resemblance to traditional cigarettes. They 
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afford the least amount of user control over heating and other variables, though newer 

models can come with refillable cartridges. Nicotine delivery is not as efficient as compared 

to newer devices. Second generation models are larger, enable voltage adjustment by users 

(ca. 3.0–6.0 V), and have higher-capacity lithium-ion rechargeable batteries. Third 

generation e-cigarettes have larger batteries that are removable and charged externally. The 

tanks contain more e-liquid that is heated at higher temperatures and afford user control over 

both voltage and wattage. Vapers can also modify (rebuild) third generation e-cigarette 

atomizers. These models often contain sub-ohm resistance heating coils that aid users in 

generating relatively large aerosol volumes. Fourth generation e-cigarettes enable control 

over the temperature of the heating coil. Later generation models can be used at much higher 

power levels (e.g., >200 W) as compared to most earlier devices (ca. <15 W).

The brand with the largest e-cigarette US market share (~50% as of 2017 and growing) is 

JUUL (2). JUUL e-cigarettes are notable for their popularity among teens (3). These devices 

do not fall into any of the four generation classifications, but rather are part of a new genre 

called pod-mods (Figure 1). JUULs are like first generation devices in that they do not afford 

control over power levels or customization of device components; users only choose among 

the available flavored liquids. What sets JUULs apart is their relatively small size and sleek, 

striking resemblance to USB flash drives (Figure 1). They deliver higher levels of nicotine 

(as nicotine salt) compared to the vast majority of other brands. One cartridge (a JUUL pod) 

contains 0.7 mL of nicotine, or nearly 60 mg/mL, affording a nicotine dose similar to that of 

a pack of traditional cigarettes (3).

The Harm Reduction Principle and E-Cigarettes

There are approximately 600 ingredients in traditional cigarette tobacco that produce 7,000 

chemicals upon combustion, including numerous toxins. “People smoke for the nicotine but 

die from the tar” was famously stated by Russell in his 1976 manuscript describing the 

rationale for low-and medium-tar cigarettes (4, p. 1431). Since e-cigarettes avoid 

combustion and tar generation, Russell’s statement embodies the primary justification used 

by e-cigarette proponents to market them as harm reduction products. Big tobacco, which is 

currently heavily invested in e-cigarettes, has a documented history of using harm reduction 

as an opportunistic means to influence and undermine tobacco control policies (5).

Known toxins present in e-cigarette aerosols.—Paracelsus, nearly 500 years prior to 

Russell, wrote: “What is there that is not poison? All things are poison and nothing is 

without poison. Solely the dose determines that a thing is not a poison” (6, p. 126). This 

dictum was a precursor to modern dose threshold concepts such as the no-adverse effect 

level (NOAEL), the highest tested dose or concentration of a substance at which no adverse 

effect is found (6).

E-cigarette emission levels of known inhalation toxins such as the carbonyls acrolein, 

acetaldehyde, and formaldehyde, have been reported over relatively wide ranges. According 

to Bhatnagar (7), even at the low end of the reported ranges, toxin levels in e-cigarette 

aerosols can promote cardiovascular harm. Other toxins found in e-cigarette aerosols include 

heavy metals, nanoparticles, plasticizers, and flame retardants (8–10).
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Unknown potential toxins present in e-cigarette aerosols.—E-liquids contain 

solvents and other molecules that are not present in significant amounts, or at all, in 

traditional cigarettes. The Flavor and Extract Manufacturers Association warns that the 

GRAS designation is based on ingestion and that the effects of inhaled e-cigarette flavoring 

chemicals are generally unknown (11). This includes the organic solvents PG and GL, as 

well as most additives. The inhalation exposure route circumvents the first-pass metabolic 

effects of the stomach and liver, thereby enabling more direct delivery of inhaled chemicals 

to circulation.

Korzun et al. (12) have found that newer generation devices designed to deliver larger 

aerosol clouds via enhanced airflow, lower resistance heating coils, and direct-to-lung 

vaping (see sidebar titled Preferred Methods of Vaping), can readily expose users to 

inhalation levels of PG that are in range of the daily GRAS exposure thresholds for PG as a 

food ingredient. In a study of dozens of refill fluids encompassing a broad range of flavors, 

including buttery/creamy, minty, sweet, candy, fruit, tobacco, and cinnamon/spiced, Behar et 

al. (13) found that approximately one-third were cytotoxic to human pulmonary fibroblasts 

and stem cells. Fetterman and coworkers (14) found that e-cigarette flavorings increased 

inflammation and impaired nitric oxide (NO) production in endothelial cells, events that 

have been linked to the development of cardiovascular disease.

Sassano and coworkers (15) developed a high-throughput screen to efficiently determine the 

cytotoxicity of large numbers of e-liquid samples. They found that the PG/GL solvents 

adversely affected cell viability. A larger total number of chemical ingredients in e-liquids 

correlated with enhanced cytotoxicity. Vanillin and cinnamaldehyde were specific flavoring 

molecules associated with relatively high toxicity levels. An additional contribution of this 

study was the creation of an open-access, searchable website resource https://

www.eliquidinfo.org.

E-Cigarette Toxins and Adolescents

Each side of the e-cigarette harm reduction debate is extensively described in articles by 

Glantz & Bareham (16) and Abrams et al. (17) in a recent volume of the Annual Review of 
Public Health. One point of agreement among public health experts is that e-cigarettes 

should not be used by minors. A consequence of the aggressive application of the harm 

reduction principle to date is an environment of relatively easy access to e-cigarette 

products. Advertising, device designs, and flavors that appeal to children and teens are 

prevalent. On September 12, 2018, the commissioner of the US Food and Drug 

Administration, Dr. Scott Gottlieb, declared youth vaping an epidemic (18). Current usage of 

e-cigarettes was reported in 2017 by 11.7% of all US high school students and 3.3% of all 

US middle school students (19).

It is well known that nicotine exposure during adolescence harms the brain and other 

developing organs. The cumulative harm can be significant if addiction and chronic use of 

tobacco products start relatively early in life (20). In a study of chemical toxicant biomarkers 

in adolescents (average age = 16.4 years), Rubinstein and coworkers (21) found that the 

urinary excretion of metabolites of benzene, ethylene oxide, acrylonitrile, acrolein, and 

acrylamide was significantly higher in dual users, compared to e-cigarette-only users. 
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Metabolites of acrylonitrile, acrolein, propylene oxide, acrylamide, and crotonaldehyde were 

also elevated in e-cigarette-only users compared to control groups.

E-cigarettes contain fewer total toxins compared to traditional cigarettes, supporting the 

current case for harm reduction. Although the emphasis to date on comparing the relative 

health effects of e-cigarettes to traditional cigarettes is clearly necessary, downplaying the 

chemistry and health impacts unique to e-cigarettes is not only limiting but also irrelevant to 

the large number of young people who are vaping without having ever smoked a cigarette 

(22). Investigations of e-cigarette chemical constituents and properties clearly show that e-

cigarettes are not harmless. Unbiased research on e-cigarette aerosol chemistry has afforded 

knowledge in contrast to industry marketing claims, such as e-cigarettes produce “harmless 

water vapor” (23, 24).

THE MAJOR CHALLENGES OF E-CIGARETTE ANALYTICAL RESEARCH

It is well known that chemical reactions occur during the heating and aerosolization of e-

liquids and that this consistently leads, for example, to the formation of toxins, including 

formaldehyde, acetaldehyde, and acrolein. The chemistry of GL and PG has been studied by 

chemists for more than a century (see sidebar titled Glycerol, Propylene Glycol, and The 

History of Chemistry).

The main reaction mechanisms are oxidation and dehydration and have been described in 

detail by Jensen et al. (25). This group has published a useful library of the 1H NMR spectra 

of more than a dozen major PG and GL thermal degradation products found in e-cigarette 

aerosol mixtures (25) (Figure 2). The major proposed reaction pathways are shown in 

Figures 3 and 4.

Although the identity of many of the specific aerosol toxins reported has not generally been 

questioned, a major issue in the field is significant interlaboratory variability in the reported 

levels of e-cigarette emissions. For example, results between studies measuring 

formaldehyde levels produced from second generation, top-coil devices have varied over a 

range of five orders of magnitude, from below the detection limit to 97 μg/puff (27).

Amain issue is the lack of validated standardized sampling and analytical methods. For 

example, Eddingsaas and coworkers (28) found that common emission sampling methods 

such as filter pads or impingers, when used in isolation, underestimate levels or do not 

identify specific aerosol compounds. They recommend an investigation of not only filter 

pads and impingers but also thermal desorption tubes and solvent extraction resins in order 

to obtain more complete and robust aerosol profiles. A 2016 review by Bansal & Kim (29) 

highlighted the diversity in sampling and analytical methods used in e-cigarette research, as 

summarized in Figures 5 and 6, respectively

The variability in sampling and analytical protocols across different laboratories is 

exacerbated by additional confounding factors. These include the ever-increasing diversity 

of e-cigarette models and design features and the thousands of e-liquid formulations. The 

following sections focus on recent progress made by researchers in addressing these and 

related challenges.
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The Rapidly Evolving E-Cigarette Landscape

In order to study the increasing heterogeneity of e-cigarettes, Malek and coworkers (30) 

reported a systematic tracking system. They tested it by comparing devices used in 2014 

versus 2016. They used social media and analytics tools such as Alexa for website rankings, 

Google and Yahoo search results, as well as Facebook, Twitter, and YouTube channel 

metrics to rank the popularity of each e-cigarette brand. The researchers purchased products 

from the highest-ranked 10 brands that had the greatest number of website product reviews 

or those that were recommended as starter products. Only 8 of the 23 most popular brands in 

2014 remained as popular in 2016. The devices were disassembled to assess parameters 

including heating coil characteristics, wick lengths, air tube diameters, electrical 

connections, and filling materials. Battery voltage, coil resistance and pressure drop, e-liquid 

pH, nicotine concentration, PG/GL ratio, and water content were monitored. They used their 

own previously validated mathematical model to compute nicotine emissions. A main 

outcome was that devices were found to differ in regard to heating coil dimensions and 

orientation relative to airflow, coil location, pressure drop, and other variables, resulting in 

>50% differences in nicotine emissions for a given power setting and e-liquid (30).

Zhao and colleagues (31, 32) took a different approach to dealing with device heterogeneity 

by creating an exposure generation platform to systematically correlate device variations and 

aerosol properties. Brand type/generation (disposable, prefilled, and refillable tanks), flavor 

additives, user topography, and power levels were investigated. Particle concentrations were 

dependent on device generation. They were in the range of millions of particles/cm3 with a 

peak at approximately 200 nm, similar to traditional cigarettes. Toxins such as benzene and 

toluene were detected and varied according to device type and the other parameters studied. 

For example, compared to tobacco flavor, menthol generated 330% more benzene and 120% 

more toluene. Fruit flavor generated 240% more benzene and 30% less toluene than tobacco 

flavor (31). Zhao and coworkers also found that varying, elevated levels of reactive oxygen 

species could be generated in e-cigarette aerosols as a function of e-cigarette device design, 

power, flavors, and puffing topography (32). Despite their different approaches, the studies 

by the Zhao and Malek groups confirm the influence of evolving device design features as 

well as e-liquid ingredients in modulating aerosol emission levels.

Characterizing the Flavoring Molecules Found in E-Liquid Formulations

There are thousands of e-liquid flavor formulations available. Behar et al. (13) used gas 

chromatography-mass spectrometry (GC-MS) and a ranking strategy to identify the most 

prevalent flavoring molecules in a library of commercial e-liquids. Six compounds were 

found at both relatively high concentrations of > 1 mg/ml and prevalence in 41–80% of the 

products. These included menthone,p-anisaldehyde, menthol, cinnamaldehyde, vanillin, and 

ethyl maltol. Transfer efficiencies from e-liquid to aerosols were high, except in the case of 

ethyl maltol (58–62 %), showing that aerosols can deliver high concentrations of flavoring 

compounds. Most of the refill fluids that exhibited low cytotoxicity had total flavoring 

chemical concentrations of <5 mg/mL, supporting the hypothesis that toxicity is correlated 

with higher concentrations of flavor chemicals (13).
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Heating Coils and Wicking Efficiency

It is well known that higher levels of toxic thermal degradation by-products can form as a 

function of higher temperatures for a given device. Wicking efficiency and heat transfer are 

the main determining factors in levels of degradant production at a given temperature. Poor 

wicking efficiency can lead to a dry coil and overheated e-liquid (dry puff). Not allowing 

sufficient time for cooling between puffs hampers wicking efficiency and promotes the 

thermal degradation of e-liquid components. Other factors inhibiting proper wicking include 

high e-liquid viscosity and aged or poorer quality manufactured coils. For example, Jensen 

and coworkers (25) reported that the use of replacement heating coils of the same design and 

from the same manufacturer, identical in appearance and packaged together, led to wide 

variability in the abundance and profile of aerosol decomposition products.

Gillman et al. (33) found broad variability in toxic carbonyl production while investigating 

various devices. They observed an inverse relationship between the efficiency of e-liquid 

consumption and toxic carbonyl aerosol levels. This is consistent with efficient wicking and 

aerosolization enabling more effective delivery and less thermal degradation and carbonyl 

production. Vreeke and coworkers (34) found that the stability of the wick temperature, as 

one measure of wicking efficiency during aerosolization, could serve as a predictor of the 

degree of PG and GL degradation. Talih et al. (35) determined that heating coil surface area 

was a better predictor of carbonyl emissions than power setting alone. In a recent publication 

that also sheds light on the origins of the variability in reports of e-cigarette carbonyl 

emission levels, Chen and coworkers (27) reported on the association of coil temperature, e-

liquid fill levels, coil resistance, and voltage. Their main findings included the observation 

that temperature, when determined using an infrared camera rather than with a 

thermocouple, is not evenly distributed along the length of a coil (this could lead to localized 

hot spots causing thermal degradation) and, under the most user-relevant wick/coil wetness 

conditions, there are wide variations in coil temperatures that can afford inconsistent 

carbonyl levels.

The influence of conflict-of-interest in e-cigarette publications on the favorable reporting of 

results by industry-supported researchers has been previously studied (36). Some staunch e-

cigarette proponents insist that all published instances of elevated levels of e-cigarette-

derived toxic carbonyls (e.g., above workplace or related threshold exposure values) are 

irrelevant to actual usage. The rationale is that elevated carbonyls occur only under dry puff 

conditions and, thus, vapers would be able to efficiently sensorially detect and self-regulate 

aerosol carbonyl levels when above safe thresholds (37). This claim is based largely on the 

conclusions of three investigations, involving experienced vaper human cohorts consisting of 

just two (both of whom were members of the research team) (38), seven (39), and twenty-six 

users (40). The reader is urged to objectively evaluate these latter studies as well as the 

published concerns about the methods and conclusions expressed therein (41–43). 

Importantly, a recent investigation shows that carbonyl formation can be catalyzed by e-

cigarette metal heating coil materials, enabling carbonyl formation at coil temperatures far 

below those associated with the dry puff phenomenon (44). Chen et al.’s (27) study of coil 

temperature and wicking variables also resulted in the conclusion that concerning levels of 

formaldehyde in frequent e-cigarette users can be produced at relatively low power levels, 
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and within the range of operating temperatures observed by human subjects to afford 

sensorially pleasant conditions, i.e., not under dry-puff conditions.

There have been several methods reported to prevent the dry puff phenomenon during 

aerosol production and analysis in the laboratory. Power levels should be set to within 

manufacturers’ recommended ranges. Determination of the components of aerosols 

generated from a single, iso lated puff are possible using nuclear magnetic resonance (NMR) 

spectroscopy, a nondestructive technique that also enables identification of relatively less 

stable aerosol products (25). Evidence of burnt e-liquid can often be readily observed, for 

example, by wicking material discoloration, coil discoloration, or a burnt sample odor (12).

E-Cigarette Flavoring Molecule Chemistry

E-liquid flavoring molecules have additionally been shown to promote elevated levels of 

toxic carbonyls (generally) (45, 46) or furans (e.g., furfurals from the heating of sugars) 

(47). Vreeke and coworkers (48) showed that not all flavoring molecules break down 

directly into the main byproducts observed. For example, 13C-labeled triacetin was shown 

by NMR to degrade to acetic acid that subsequently catalyzed the degradation of PG and GL 

to acrolein, acetaldehyde, and formaldehyde hemiacetals. Khlystov & Samburova (45) have 

also shown that the addition of flavoring molecules to e-liquids results in elevated levels of 

toxic carbonyls in e-cigarette aerosols. Their findings were challenged by e-cigarette 

proponents (49); however, the researchers followed up their study by finding elevated levels 

of toxic aldehydes in the exhaled breath of a cohort of e-cigarette users (50). Moreover, Qu 

and coworkers (51) found that carbonyl emission factors increased linearly with flavorant 

base content. They calculated a 40-year cancer risk due to formaldehyde (a 70-kg e-cigarette 

user inhaling 5% flavorant base content e-liquid at 120 puffs/day−1) to be ~2.0E-06 (highest) 

compared to ~1.0E-06 for PG and GL solvents alone. Their results confirmed prior findings 

by Khlystov & Samburova (45) and Klager et al. (46) showing that flavoring molecule 

degradation significantly enhances toxic carbonyl formation. Bitzer et al. (52) investigated 

free radical generation from 49 commercial e-liquid flavors. They determined that nearly 

one-half of the flavors modulated free radical production, with most promoting radical 

generation in a concentration-dependent manner.

Gas- and Particle-Phase Toxin Partitioning and Evaluating Nicotine Protonation

An e-cigarette aerosol is a collection of liquid particles suspended in a gas phase. Volatile 

and semivolatile aerosol components partition into each of the phases to varying degrees. 

Understanding the partitioning properties of molecules present in e-cigarette aerosols 

enables one to make informed choices of sampling and analytical methods, depending on 

their suitability for analysis of analytes in the phase(s) of interest. Importantly, it aids 

predictions of deposition patterns of specific aerosol components in the respiratory system.

The gas- and particle-phases of e-cigarette aerosols.—Pankow (53) has applied 

the principles of gas/particle tobacco smoke partitioning to e-cigarette aerosols. He predicted 

particle/gas distributions as a function of the mass concentration of the aerosol droplets 

(μg/m3), the composition of the droplets, temperature, and the vapor pressure of each 

compound. Even at the highest total particulate matter levels for e-cigarette aerosols, 
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formaldehyde as the carbonyl form, CH2O, will partition mainly into the gas phase, whereas 

formaldehyde hemiacetals and methane diol (formaldehyde hydrate) will partition into the 

particulate phase, even at the lowest total particulate matter levels (53).

Particle size distribution.—Aerosol particle size distributions determine the specific 

respiratory tract deposition efficiency and delivery of particle-phase compounds. Oldham et 

al. (54), for example, have recently described the well-known challenges inherent in e-

cigarette particle size measurements that have led to inconsistent interlaboratory 

measurements. Issues include the dynamic nature of e-cigarette aerosols, inconsistent 

dilution volumes, and the limitations inherent in optical and inertial methods. Real-time 

measurements of aerosol size evolution during puff development have been examined using 

a high-resolution aerosol differential mobility spectrometer (55). The e-cigarette aerosol size 

distributions were bimodal, with both submicron particles and nanoparticles found. The 

authors noted that the greater surface area of nanoparticles could render them more bioactive 

than submicron particles with similar chemical properties.

Nicotine.—There have been numerous investigations of e-cigarette nicotine (56, 57). Duell 

and coworkers (58) have developed an accurate NMR-based method to determine the 

fraction of free-base nicotine in e-liquids (Figure 7), without introducing solvents that 

perturb previous measurements.

The rapid emergence of high-nicotine-content JUULs has generated interest in determining 

the protonation state of the nicotine contained in the JUUL pods. Mono-protonated and free-

base nicotine are its major forms in equilibrium. Free-base nicotine can partition into both 

the gas and particle phases, whereas protonated nicotine will be delivered primarily to the 

lungs via the particle phase. Particle-phase, protonated nicotine has been linked to nicotine 

addiction. Not only do JUUL pods contain far greater levels of nicotine than nearly all e-

cigarettes, but they also have an extremely low proportion of free-base to protonated nicotine 

Figure 8.

Importantly, protonated nicotine is not nearly as harsh as free-base nicotine, and is thus a 

likely reason that many teens prefer JUULs and do not realize that JUULs even contain 

nicotine (59). The combination of commercial flavors and extreme levels of nicotine in the 

form with the least harshness embodies a potentially powerful formula for creating and 

sustaining a new generation of addicted customers.

SUMMARY AND CONCLUSION

All smokers should be encouraged to quit and to use e-cigarettes when they are the most 

appropriate choice for one’s situation. Research toward uncovering the risks of e-cigarette 

use is aligned with optimizing harm reduction and with encouraging smoking cessation. 

There has been great recent progress in addressing the challenges inherent in e-cigarette 

chemical and analytical research. This has resulted in heightened understanding of the 

origins of interlaboratory variability in reporting toxin levels. However, much still needs to 

be accomplished. As devices continue to evolve, new trends need to be quickly revealed. For 

example, many newer e-cigarette models can exhibit improved wicking efficiency and 
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airflow, thereby producing relatively fewer thermal degradation products. However, 

improved wicking also leads to higher doses of solvents, flavoring molecules, nicotine, and 

other ingredients. Under the guise of harm reduction, manufacturers are creating high-dose, 

flavored nicotine products of great appeal to children and adolescents. Evidence continues to 

mount, based largely on unbiased investigations of e-cigarette chemistry, that e-cigarettes are 

not nearly as harmless as advertised.
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PREFERRED METHODS OF VAPING

Mouth-to-lung (MTL) and direct lung inhalation (DLI) are terms that describe two of the 

more popular ways to use e-cigarettes. MTL vaping is more similar to cigarette or cigar 

smoking, wherein one initially draws the aerosol into the mouth before inhaling into the 

lungs. DLI involves inhalation directly into the lungs. MTL is associated with lower-

power e-cigarettes, tighter airflow, and smaller aerosol volumes. DLI is associated with 

lower-resistance (sub-ohm) heating coils, higher power, and less restricted airflow. DLI, 

along with higher proportions of GL to PG, is preferred by users that want to produce 

large aerosol clouds. Variations in user topography, such as MTL or DLI vaping, can 

impact the aerosol concentrations of toxic by-products (12).
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GLYCEROL, PROPYLENE GLYCOL, AND THE HISTORY OF CHEMISTRY

The first known synthesis of glycerol was reported by the Swiss chemist Carl Wilhelm 

Scheele in 1779. He found that it was thermally unstable upon simple distillation. By the 

mid-nineteenth century, acrolein and acetic acid had been identified as glycerol 

degradation products. Charles-Adolphe Wurtz synthesized propylene glycol in 1859. 

Much of our current understanding of glycerol and propylene glycol chemistry, as shown 

in Figures 3 and 4, for example, is attributable to the American chemist John Nef. In 

1904 (26), he reported that heating glycerol led to the production of glycidol, 

hydroxyacetone, acetaldehyde, formaldehyde, acrolein, 3-hydroxypropanal, and several 

acetals. Nef also reported the thermal conversion of propylene glycol to propanal (25).
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SUMMARY POINTS

1. The study of e-cigarette chemistry supports the fact that they are not as

harmless as initially claimed. However, this should not encourage continued

smoking.

2. Progress has been made in addressing the wide interlaboratory variability in

reported levels of e-cigarette aerosol toxins. The dynamic nature of the field is

an ongoing source of new challenges.

3. The major components of e-liquid, the organic solvents PG and GL, can

undergo thermal degradation via dehydration and oxidation reactions. This

leads to a variety of toxins at levels that are highly dependent on heat and

wicking efficiency.

4. Flavoring additives can also undergo a variety of chemical reactions during

aerosolization that elevate toxic carbonyl levels in aerosols.

5. Unrealistic experimental conditions do not explain all instances of the

formation of elevated levels of toxins during e-cigarette usage, as claimed by

industry proponents. The evidence shows that users cannot always reliably

self-regulate toxin intake, and that toxic carbonyls can form at temperatures

well below those associated with sensorially detectable dry puffs.

6. Newer generation e-cigarette devices can operate at higher power and with

greater wicking efficiency. This can inhibit thermal degradation reactions but

results in elevated doses of aerosol contents such as solvents, flavorings, and

any impurities.

7. Pod-mod e-cigarettes such as JUULs contain relatively high levels of

protonated nicotine salts that, along with flavorings, render them highly

addictive and sensorially attractive to young people. High levels of protonated

nicotine in JUULs has been confirmed via a new technique that avoids the use

of solvents that disrupt the measurement.
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Figure 1. 
A Juul electronic cigarette, with four pods (one loaded and three next to it). Juul e-cigarette 

usage is prevalent among teens, prompting the US Food and Drug Administration to term 

the situation an epidemic. Adapted fromWikipedia Commons under the terms of the 

Creative Commons Attribution (CC BY-SA) License, https://creativecommons.org/

licenses/by-sa/4.0.
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Figure 2. 
Molecules determined by nuclear magnetic resonance in e-cigarette aerosols. They include 

known risk factors for cardiovascular disease at reported detection levels. The pathways 

leading to their formation are shown in Figures 3 and 4. Adapted from Reference 25 under 

the terms of the Creative Commons Attribution 4.0 International License, http://

creativecommons.org/licenses/by/4.0.
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Figure 3. 
Decomposition pathways of glycerol in e-cigarettes. The most prevalent reaction 

mechanisms involve oxidation and dehydration. Adapted from Reference 25 under the terms 

of the Creative Commons Attribution 4.0 International License, http://creativecommons.org/

licenses/by/4.0.
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Figure 4. 
Decomposition pathways of propylene glycol in e-cigarettes. As in the case of glycerol 

(Figure 3), the most prevalent reaction mechanisms involve oxidation and dehydration. 

Adapted from Reference 25 under the terms of the Creative Commons Attribution 4.0 

International License, http://creativecommons.org/licenses/by/4.0.
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Figure 5. 
Examples of sampling methods for EC analysis. The boxes depict the following: analyte 

class (light green), sample collection (pink), pretreatment (dark green), analytical technique 

(purple), and specific analytes detected (blue). Adapted with permission from Reference 29. 

Copyright 2016, Elsevier. Abbreviations: ANT, anthracene; BAA, benz[a]anthracene; BAP, 

benzo[a]pyrene; BBF, benzo[b]fluoranthene; BKP, benzo[k]fluoranthene; CHY, chrysene; 

CR, cyclotron resonance; DAD, diode array detection; DBA, dibenz[a,b]anthracene; DNPH, 

dinitrophenylhydrazine; EC, electronic cigarette; EDS, energy-dispersive X-ray 

spectroscopy; FID, flame ionization detection; FLR, fluorine; FLT, fluoranthene; FTI, 

Fourier transform ion; GC, gas chromatography; HPLC, high-pressure liquid 

chromatography; HS, head space; ICP-OES, inductively coupled plasma optical emission 

spectrometry; LDI, laser desorption/ionization; LLE, liquid-liquid extraction; MS, mass 

spectrometry; MS/MS, tandem MS; NAB, nitrosoanabasine; NAP, naphthalene; NAT, N′-

nitrosoanatabine; NNK, nicotine-derived nitrosamine ketone; NNN = N-nitrosonornicotine; 

NPD, nitrogen phosphorous detection; PAH, polycyclic aromatic hydrocarbon; PYR, 

pyrene; SEM, scanning electron microscopy; SPE, solid-phase extraction; SPME, solid-

phase microextraction; TD, thermal desorption; TSNA, tobacco-specific nitrosamine; VOC, 

volatile organic compound.
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Figure 6. 
Examples of analytical methods for EC analysis. Adapted with permission from Reference 

29. Copyright 2016, Elsevier. Abbreviations: AMS, aerosol mass spectrometry; CGC,

capillary gas chromatography; DAD, diode array detection; EC, electronic cigarette; FID, 

flame ionization detection; GC, gas chromatography; HPLC, high-pressure liquid 

chromatography; HS, head space; ICP-OES, inductively coupled plasma optical emission 

spectrometry; IT, ion trap; MS, mass spectrometry; MS/MS, tandem MS; NPD, nitrogen 

phosphorous detection; NSD, nitrogen selective detection; PID, photoionization detection; 

SIFT, selected ion flow tube; SIM, selected ion monitoring; SPME, solid-phase 

microextraction; TD, thermal desorption; TSD, thermionic specific detection; UP, 

ultraperformance; VUV, vacuum ultraviolet.
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Figure 7. 
The most abundant protonation states of nicotine. The pKa value corresponds to 25°C in 

H2O. Protonated nicotine is less harsh and can have greater potential for addiction. 

Protonated nicotine is delivered to the lungs in the aerosol particulate phase.
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Figure 8. 
Commercial e-liquid flavors and their nicotine content. The x-axis shows the free-base (fb) 

nicotine fraction. A low ratio of free-base to protonated nicotine dampens aerosol harshness 

and thus may enhance the popularity and addiction potential of e-cigarettes such as Juuls 

with teens and pre-teens. Adapted with permission from Reference 58. Copyright 2018, 

American Chemical Society.
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