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ABSTRACT

Oxidation reactions of a series of organosulfur compounds by chlorite are excitable, autocatalytic, and exothermic and generate a lateral insta-
bility upon being triggered by the autocatalyst. This article reports on the convective instabilities derived from the reaction of chlorite and
thiourea in a Hele-Shaw cell. Reagent concentrations used for the development of convective instabilities delivered a temperature jump at the
wave front of 2.1 K. The reaction zone was 2mm and due to normal cooling after the wave front, this induced a spike rather than the standard
well-studied front propagation. Localized spatiotemporal patterns develop around the wave front. This exothermic autocatalytic reaction has
solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change
in the reaction. The competition between these e�ects generates thermal plumes. The fascinating feature of this system is the coexistence of
plumes and �ngering in the same solution as the front propagates through the Hele-Shaw cell. Wave velocities of descending and ascending
fronts are oscillatory. Fingers and plumes are generated in alternating frequency as the front propagates. This generates hot and cold spots
within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small 1T at the wave front generated thermocapillary con-
vection which competed e�ectively with thermogravitational forces at low Eötvös numbers. A simpli�ed reaction-di�usion-convection model
was derived for the system. Plume formation is heavily dependent on boundary e�ects from the cell dimensions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5092137

This article reports of self-organization derived from the dissi-
pation of chemical energy. The unique aspect of this article is
as follows: generally, addition of convection to reaction-di�usion
mechanisms destroys most coherence and self-organization. It is
not so, as reported in this article. The delicate balance between
thermogravitational, thermocapillary di�usion e�ects can deliver
remarkable self-organization in ungelled environments.

INTRODUCTION

Pure reaction-di�usion structures and propagation have been
extensively studied and are well-known from the basis of a Turing
instability.1,2 The presence of a reaction front is also a well-known
feature in many physical, biological, and chemical processes. For
example, a simple chemical reaction type process of A+B→C will
exhibit a front, a spatially-localized region where production of C
can be achieved, provided di�using reagents are initially separated

in space.3 Even if A and B are initially not separated, a lateral insta-
bility can still emerge if the prevailing reaction is excitable, e.g.,
autocatalytic.4 When a spatially extended system becomes unstable,
the resulting dynamics have sensitive dependence on whether the
system is convectively unstable, in which case perturbations grow
in time but convected away fast enough that they die at each �xed
position in the lab frame considered, or absolutely unstable, in which
there arises a perturbation and a location where this perturbation
does not decay.With an autocatalytic reaction system, a perturbation
using an autocatalyst does not decay and will grow until di�usion or
convection-limited. The �rst stage in understanding pattern forma-
tion in such reactive �ows is to understand the description and calcu-
lation of the properties of the reaction zone. This involves answering
the question of where and at what rate does the reaction product
appear. This problem has been studied with respect to Liesegang-
ring band formation inwhich simpli�ed theories have predicted band
formation solely from properties of the front and phenomenological
theories of di�usion-limited aggregation.5,6The width of the reaction
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zone determines gradients of several physical and physicochemical
parameters and hence the relevant driving forces of wave and pattern
generation. Simple bimolecular kinetics have been used for reaction
dynamics, which is too simpli�ed a model and is incorrect for auto-
catalytic exothermic fronts.7 Numerical simulations have, thus, not
been accurate in predicting the structure, especially in the wake of
the propagating front.

Convective �ows due to thermocapillary Marangoni-type con-
vection coupled to Rayleigh-Taylor, Rayleigh-Benard, or double-
di�usive types of hydrodynamics �ows can be triggered by spatial
gradients of concentrations and temperature.8,9 Such behavior has
been observed in real-life phenomena in engineering systems, geo-
logical formations, supernovae dynamics, CO2 sequestration, earth
mantle convection, and atmospheric and ocean layering convective
motions.10

This article assesses the active role that chemical reactions can
have on parameters of �ow dynamics in chemical reactive �ows. We
have, previously, been able to detail the mechanism of the “drive”
reaction that drives the hydrodynamic instabilities reported here.11–13

The reaction used is the autocatalytic chlorite-thiourea reaction.11,14

Autocatalytic reactions coupled to di�usion can generate traveling
fronts of constant speed whereby products of the reaction invade and
progressively consume reactants in space and time.15 In the absence of
a gelled environment, convection can deform such fronts due to den-
sity di�erences between reactants and products. Density di�erences
can result in di�erences in molar volumes of products and reactants.
This is especially so in the chlorite-thiourea reaction where products
such as sulfate and chloride are dense ionic products while reac-
tants are lighter organic reagents. The exothermicity of the reaction,
however, can temporarily “�ip” this density relationship until ther-
mal equilibrium is attained.16 Thus, convective motions will appear
around descending fronts since we have a dense solution overlying
a lighter one (reactants). This is an unstable front since any defor-
mity of the surface will tend to grow. A Rayleigh-Taylor instability
(RTI) in which denser solution sinks into the rising less dense reac-
tant solutionwill deform the interface into density �ngering since the
density gradient points opposite to the body force. This is due to the
buoyancy-induced convective deformation of a reaction-di�usion
front. The combination of convection to a reaction-di�usion front
results in reaction-di�usion-convection dynamics. Our preliminary
experiments have shown that addition of heat and, subsequently, con-
vection (bothMarangoni and Rayleigh-type) has not producedmore
complexity, but more cooperativity.17–19 This is counterintuitive to
what we would have expected.20 This fascinating cooperativity has
resulted in hitherto previously unobserved spatiotemporal inhomo-
geneities, Rayleigh-Taylor21 and Richtmeyer-Meshkov instabilities,22

highly ordered and periodic thermal plumes,19 Turing-like concen-
tric patterning, and an independent series of convective tori with
well-de�ned wavelengths, all derived from a single batch reaction.18

CHEMISTRY: KINETICS AND MECHANISMS OF THE

CHLORITE-THIOUREA REACTION

Chlorite-based oxidation reactions show the greatest com-
plexities due to, among others, interfacial e�ects which can intro-
duce stochasticities.23 Universally, after an induction period, all
thiocarbamide-oxyhalogen systems produce a large pH change (as

H+ ions are rapidly produced) as well as large heat generation. The
initial oxidation of the S(-II) species to S(0) (e.g., sulfenic acids)
has a negative acid feedback loop, but subsequent oxidations all
the way to S(VI) produce a positive acid feedback loop.12 The only
prerequisite for the observations of the full range of exotic dynam-
ics is that the oxidant (chlorite) should be in stoichiometric excess
over the reductant.11 The advantage, then, is that since [H+] is
allowed to vary and is determined by the reaction’s stoichiome-
try, then an acid propagation wave can be observed and used to
follow the lateral instability through an acid-base indicator. This
approach has also been utilized in following waves generated in the
chlorite-tetrathionate (CT) reaction.24–26 The stoichiometry of the
ClO2

−-thiourea reaction is11,12,27

2ClO2
− + SC(NH2)2 +H2O → SO4

2− +OC(NH2)2 + 2Cl− + 2H+.
(R1)

Propagating species: ClO2(aq), SO4
2−, H+, Q (heat)

We have derived a general mechanism to account for most
chlorite-based oxidations of sulfur compounds, and it appears the
chlorite-thiourea reaction can be explained, in general terms by this
model. Reaction (R2) is a general stoichiometric equation for the
oxidation of thiocarbamide compounds by chlorite.11 The oxidation
products are sulfate and a urea-type residue, R1R2C=O,

R1R2C=S+ 2ClO2
− + H2O → SO4

2− +R1R2 C=O + pH+ + 2Cl−.
(R2)

These reactions show common clock reaction characteristics in
which initially there is a quiescent period with no activity in the reac-
tion indicators. At the end of the induction period, there is a sudden
production of sulfate, SO4

2−, chlorine dioxide, ClO2, and acid, H+.
The acid and sulfate are formed simultaneously from the oxidation
of the sulfonic acid intermediate, R1R2

′ CSO3H,

R1R2
′ CSO3H + 2H2O → SO4

2− + R1R2C=O + 4H+ + 2e−.
(R3)

Chlorine dioxide is formed by an extraneous reaction between
the excess chlorite, ClO2

−, and left-over autocatalyst: hypochlorous
acid, HOCl,23

2ClO2
− + HOCl + H+ → 2ClO2(aq, Yellow) + Cl− + H2O.

(R4)

HOCl, being the autocatalytic species, controls the rates of
reaction and wave propagation under isothermal conditions. The
mechanism for autocatalysis involves the reactive intermediate Cl2O2

leading to quadratic autocatalysis28

ClO2
− + HOCl + H+ → Cl2O2 + H2O (R5)

followed by

Cl2O2 + 2e− + 2H+ → 2HOCl. (R6)

So, for almost all our modeling studies, the rate of reaction
can be simpli�ed into Rate= k[A][B] for a standard A+B reaction
where B represents the autocatalyst.

Apart from H+, SO4
2−, and ClO2, the most important prod-

uct parameter in terms of wave propagation dynamics is a large
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FIG. 1. Experimentally-determined temperature profile of the reaction front with
initial concentrations of 4.00 mM chlorite and 1.00 mM thioureas. Solution was not
buffered and was initiated within 15 s of mixing with 20µl of HOCl solution.

and almost instantaneous heat evolution. The heat generated is very
high, such that the reaction of thiourea and chlorite has a reaction
enthalpy in excess of –1170 kJmol−1.14,29 The transformation from
purely organic reagents tomostly inorganic products; sulfate, H+, Cl–

results in high energies of solvation and an increased solution density.
By adjusting initial reagent concentrations, temperature jump for our
reaction system could be maintained between 1T= 2.2–3.8 K. This
is the range that produced the most exotic wave and front dynam-
ics. The unreacted solution far ahead of the wave front maintained
the room temperature while the leading edge of the wave front could
be 2.2–3.8° above this temperature. The reaction zone is a thin sliver
of approximately 2mm.30 The experimentally-determined reaction
zone and temperature pro�le are shown in Figs. 1 and 2. This was
obtained using thermocouples lined along the wave front.

FIG. 2. Sketch of the modified Hele-Shaw cell used for this study. Solution depth
was kept at 20 mm for all experiments. The vessel was machined from plexiglass.
Wave initiation was through the addition of autocatalyst either from the side or the
center of the vessel.

INDICATORS

There are several physical parameters that can be utilized to fol-
low the development of patterns and/orwaves in this reaction system.
Apart from neutral density polystyrene beads, there are four pos-
sible indicators that can be used to follow the traveling wave and
the subsequent spatiotemporal patterns: acid-base, BaCl2, ClO2 color,
and freshly-prepared starch. Each has a speci�c role that the oth-
ers cannot duplicate. BaCl2 gives a white precipitate of BaSO4 in
the presence of sulfate, which is produced in reaction (R3).31 This
article dwells only on the use of acid-base indicators. This method
is pro�led below: in unbu�ered solutions, protons produced by the
reaction can lead to large changes in pH of the solution. Typical
pH values are in the range of approximately 5.5 in reactant solu-
tions and 1.5–3.5 in product solutions [initial reactant concentrations
determine the amount of H+ ions formed, see stoichiometry (R2)].
Acid-base indicators are best suited for the study of front propagation
and spatiotemporal patterns due to their vivid color at lowmicromo-
lar concentrations. Acid-base indicators are also very good at being
able to characterize the reaction zone of the wave front: intensity and
degree of color change with indicators methyl red and bromophenol
blue is indicative of the extent of reaction. This gives a very good esti-
mate of the reaction front (which we have so far estimated at about
2–3mm;18 exact values for conditions utilized for our experiments
were obtained in this study, see Fig. 1). Acid-base indicators are not
e�ective in aiding in the observation of hydrodynamic patterns since
they form a homogeneous solution with a reaction solution.

EXPERIMENTAL SECTION

Materials

The following analytical grade reagents were used without fur-
ther puri�cation: thiourea (Aldrich); perchloric acid 70%–72%, bro-
mophenol blue, methyl red, and methyl orange (Fisher). The struc-
tures of these three dyes used are shown below. Sodium chlorite is
sold in its technical grade form (about 80%).A single recrystallization
(ethanol-water mixture) brought the assay to >98%. The analysis
of sodium chlorite was performed iodometrically by adding excess
acidi�ed iodide and titrating the liberated iodine against standard
thiosulfate with freshly-prepared starch as indicator.32
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Stock solutions of sodium chlorite were prepared fresh for each
set of experiments and stabilized with 0.001M sodium hydroxide if
the experiments were going to be run in high acid environments.
The sodium chlorite solutions were also stored in dark Winchester
vessels wrapped in aluminum foil to reduce decomposition by light.
The observation vessel used was a modi�ed Hele-Shaw cell 260mm
long and a thickness of either 5 or 10mm machined out of plexi-
glass.Quartz vessels gave stochastic triggering and thus quartz vessels
were not utilized. The total depth of the vessel was 30mm, but reac-
tion solutions were �lled to not more than 20mm in depth, leaving
a 10mm head. This decreased the degree of possible evaporative
cooling that could a�ect thermocapillary convection.

Methods

The chlorite, thiourea, acid, and/or indicator were thoroughly
mixed before being poured into the reaction vessel. Chlorite was
added last by a rapid delivery pipet. The wave could self-initiate,
but the induction times for clocking were stochastic. The time taken
before clocking was very important in determining wave dynamics,
especially velocity and shape. For example, solutions that clocked
early gave a faster-moving wave front from the point in initial per-
turbation. After solutions were thoroughly mixed, they were allowed
to settle until all physical ripples disappeared and were triggered by
the addition of a 0.025ml micropipette drop of a solution contain-
ing HOCl. Due to autocatalytic acid generation at the wave front,
pH indicators are ideally suited to study the wave front dynamics
and speci�cally the reaction zone of the wave front. The vivid color
change of these indicators can be easily enhanced and quanti�ed
using MATLAB. This also allows for very precise measurements to
be made regarding the width and velocity of the wave front. By uti-
lizing a unique combination of indicators, methyl orange (pKa= 3.4)
and bromophenol blue (pKa= 3.8), we are able to visualize the

exotic structures that are generated from the interaction of ther-
mocapillary and thermogravitational forces as well as the standard
reaction-di�usion propagation mechanisms.

REACTION ENERGETICS AND DYNAMICS

Previously, we had established that, in shallow layers, 1.7mm<d
< 2.3mm, wave front propagation is proportional to the temperature
jump at the wave front,1T. The temperature jump is proportional to
the heat production by the reaction Q. Q, in turn, is a function of the
extent of the reaction, ξ ,

Q = f (1HR, ξ , ci0). (1)

1HR is the enthalpy change of the reaction and ci0 represents
initial concentrations subject to stoichiometric constraints that the
ratio of oxidant to reductant is greater than 2. Thus, at constant initial
concentrations, the variable which controls amount of heat generated
within the reaction zone is the extent of reaction, ξ . ξ varies from
zero just in front of the wave to 1.0 at the end of the reaction zone.
The maximum value of 1T can be derived from the heat capacity
of the reaction solution in the limit of extent of reaction approach-
ing unity. The highest temperature is recorded just behind the wave
front, and, subsequently, a drop in temperature is recorded based on
Newton’s law of cooling. In shallow layers, the wave accelerates until
it attains a constant lateral velocity. Since the Marangoni e�ect dom-
inates in shallow layers, the wave velocity is, thus, determined by the
rate of reaction and thus reaction kinetics. This bistable autocatalytic
chlorite-thiourea reaction has the extent of reaction that is a nonlin-
ear function of the instantaneous chemical reactant concentrations.
The autocatalysis termwill dominate the kinetics of the reaction; this
is the R5+R6 sequence. The reaction that delivers acid that deter-
mines the position of the front is the oxidation of the sulfonic acid in
reaction (R3),

R1R2
′CSO3H + HOCl+H2O → SO4

2− +R1R2C=O+ 3H+ +Cl−.
(R7)

Thus, the rate of formation of acid is dependent on the rate of
formation of HOCl. The R5+R6 can be summarized as

A + B → 2B, with B = HOCl. (R8)

The rate of formation of HOCl is

Rate = k[A][B], initialconcentrations a0 ;b0. (2)

Equation (2) can be integrated as an initial value problem, giving
the concentration of HOCl at any time as

[HOCl](t) =
(a0 + b0)

1 +

(

b0
a0

)

e−k(a0+b0)t
. (3)

Equation (3) is a sigmoidal trace which is limited by the di�u-
sion of reactants in the reaction zone and the depletion of the sub-
strate. Thus, we expect an ever-increasing rate of reaction which tails
o� when thiourea is depleted. These kinetics aremuchmore complex
than those expected from the standard A+B→ products, which has
been the staple of most previous studies of chemical reactive �ows.3
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WAVE FRONT DYNAMICS

Our studies have three di�erent waves in one wave front. The
leading front is the acid wave, determined by the change in pH indi-
cator. This is derived from reaction (R3). The second wave can be
visually observed by barium sulfate precipitation in reaction solu-
tions spiked with barium chloride. This is also derived from reac-
tion (R3), but the proton’s di�usion coe�cient means that the BaSO4
wave trails behind the reaction front. The thirdwave is of yellow chlo-
rine dioxide, derived from reaction (R4). The chlorine dioxide wave
could be enhanced by the addition of freshly-prepared starch indica-
tor preserved with HgI2. The acid front, determined by the acid-base
indicator, was then annihilated by bleaching from chlorine dioxide.
Thus, a colorless solution emerges way behind the leadingwave front.

EXPERIMENTAL MEASUREMENTS

There are several parameters that are important in determining
observed spatial inhomogeneities, most important being the ini-
tial reagent concentrations as they determine the amount of heat
produced which will fuel wave propagation. Our initial studies of
wave propagation had involved the following initial concentrations:
[NaClO2]0= 4.00× 10−3M; [CS(NH2]0 = 2.00× 10−4M. Upon trig-
gering the reaction, the temperature increases, with 1T= 3.3 K.
This was also collaborated through calculations from the expected
heat of reaction, heat capacity of the vessel, and assuming reac-
tion solution has the same speci�c heat as water. The solution
depth was varied from 1.7mm to 3.5mm. Depths shallower than
1.1mm could not deliver a completely �at surface due to the sur-
face tension between the plexiglass and the reaction solution. Depths
of 1.3mm <d< 2.1mm delivered a lateral instability of an acid
with no structure. Wave velocity commenced with a rapid accel-
eration followed by a steady wave velocity as would be predicted
by the rate of formation of HOCl in Eq. (3). The isothermal den-
sity change was measured as 1ρ = 2.8× 10−3 g cm−3. The change
in surface tension with temperature, as measured by the capillary
rise method, ∂σ /∂T=−9.5× 10−5 Nm−1 K−1. A negative value for
∂σ /∂T is expected formost liquids. ∂σ /∂Twasmeasured only for the
product solution. The expansion coe�cient for the product solution,
∂ρ/∂T, was determined experimentally as −0.4 kgm−3 K−1.

VIDEO IMAGING TECHNIQUES

In previous work performed in our laboratory, the pH value
of solution varied from 5.5 to approximately 2.6. Such a range was
amenable to the observation of acid front by the use of methyl orange
and methyl red indicators. In the reported experiments in this arti-
cle, the �nal pH varied between 2.6 and 3.8.Whilemethyl orange/red
could catch the lowest parts of the pH range, they were not as e�ec-
tive in the higher ranges. Thus, a mixture of the indicators, methyl
orange and bromophenol blue, was used to determine not only the
wave front but also the extent of the reaction in the reaction zone
before bleaching by chlorine dioxide occurred. Based on the mix-
ture of pH indicators used, the unreacted solution had a bluish-green
color, the wave front is red, and it varies in reddish intensity based on
the extent of reaction. Chlorine dioxide formation in the wake of the
acid front, asmentioned previously, bleaches the indicators to a white
color.

EXPERIMENTAL RESULTS

All experiments reported here were run with the follow-
ing initial reagent concentrations: [CS(NH2)2]0 = 1.68× 10−4 M,
[ClO−

2 ]0 = 4.00× 10−3M for an oxidant to reductant ratio of 24:1.
This ensured the total consumption of the thiourea. Product solu-
tions contained chlorite (excess), chloride, chlorine dioxide, sulfate,
and acid. These experiments were not bu�ered so that acid variations
could be used to determine reaction front and rate. Initiation was
solely through the addition of autocatalyst at the edge of the Hele-
Shaw cell. Same wave dynamics were observed from electrochemical
initiation when a platinum electrode is placed on one end of the ves-
sel and a voltage of 3.0 V is passed through. The autocatalyst, HOCl,
was added in the form of a basic solution of chlorine water through
a micropipette.

Added at the edge of the Hele-Shaw cell, the autocatalyst imme-
diately commenced the reaction, and this was observed through the
immediate acid formation [reaction (R3)] and yellow chlorine diox-
ide [reaction (R4)]. Due to the positive isothermal density change,
the acid wave descended down the cell to the bottom of the cell. The
proximity to the edge of the vessel ensured e�cient heat exchange
of the warm front with the ambient temperature. The e�cient heat
exchange with the unreacted cold solution ensured its rapid �nger-
ing down the cell. This was the initiation of the rest of the wave
front dynamics reported in this article. Figure 4 shows a sketch of all
the relevant and expected forces in this reacting-di�using-convecting
medium. Our previous studies had shown a dominant Marangoni
e�ect at the surface in shallow layers.

The surface tension gradient on the free surface will induce a
top layer which has to be materially balanced by a return back �ow
at the bottom of the �uid. Villiers and Platten33,34 modeled this �ow
for high Prandtl number �uids, Pr≥ 4, and evaluated a horizontal
velocity pro�le of

Vx = h(h − 2/3); 0 ≤ h ≤ 1, (4)

where Vx is the horizontal velocity and h is the normalized solution
depth. The sketch of this �ow is shown in Fig. 3 for depths between

FIG. 3. Calculated z-axis velocity profile for a Benard-Marangoni instability with
lateral heating but with no reaction. It is a single-component system (acetone), and
calculated for Pr= 4.24. The lower back flow is necessary for material balance.
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FIG. 4. Schematic sketch of all the flows observed in this study. Wave initiation is
from the top left hand corner of the vessel. Fingering, from the edge of the vessel,
is rapid due to the efficient establishment of thermal equilibrium between products
and the cold bulk reagents. Flow at the top aided by thermocapillary convection,
and at the bottom, pure reaction-diffusion-convection propagation.

1.7mm and 3.3mm. These shallow layers had a dominance of ther-
mocapillary e�ects. Figure 4 shows �uid �owwith a reaction solution
with reagent concentrations that gave a front temperature jump of
3.3 K. The thin sliver of product solution pulled forward due to ther-
mocapillary e�ects is brought to thermal equilibriumwith unreacted
bulk solution resulting in �ngering regime of double-di�usive con-
vection. As the �nger proceeds down the bulk unreacted solution,
it is swept backward in accordance to expected �uid �ow depic-
tion in Fig. 3. Depths and values of 1T could be adjusted to deliver
various patterns and �uid �ow dynamics. These patterns include
thermal plumes and convective tori with entrainment of �uid �ow
in concentric circular patterns.

Self-organization in 20mm depth Hele-Shaw cells

This article reports mainly of �uid �ow patterns generated from
20mm depths of a 260mm long Hele-Shaw cell. The reaction solu-
tion used, coupled with the heat capacity of the apparatus, gave a
traveling wavewith amaximum temperature jump after the complete
reaction, of 2.1 K. This value of 1T is lower than the temperature
jump for solutions that gave convective tori and thermal plumes.
Thus, these experiments were performed at higher Eötvös numbers
than those previously reported,

E0 = 1ρgd2/σ . (5)

FIG. 5. Experimental data. The 4 consecutive series of pictures show the devel-
opment of a finger from an initial Marangoni instability. This is repeated several
times to give a series of convective tori in slightly shallower depths than one
depicted in this figure. Temperature jump at the wave front for these series of
experiments is much higher than in the experiments reported in this article.
Adapted from Martincigh et al.17

This Eötvös number is e�ectively a ratio of thermogravita-
tional and thermocapillary forces. The lower reduced Marangoni
e�ect delivered hitherto unobserved patterns of self-organization:
spatiotemporal inhomogeneities and Rayleigh-Taylor instabilities.
Figure 6 shows the �rst waves generated after the initial initiation of
the wave and full descent of the initial �nger on the side of the con-
tainer, x= 0. Finger A (faint) originates from the top of the solution
and immediately �ngers down the bulk of the solution. As opposed
to Fig. 5, the initial wave at the top of the solution immediately
starts to sink into the bulk solution without extensive movement in
the x-direction. Finger A’s forward velocity stalls at 0.858mmmin−1

as the mass of products behind the wave front cools and increase
their speci�c gravity relative to the unreacted bulk solution. The
descending wave velocity is oscillatory as it descends through the 4
images [Figs. 6(a)–6(d)]. It commences at 3.78mmmin−1, acceler-
ates to 3.87mmmin−1, and �nally decelerates to 3.83mmmin−1 as
it approaches the bottom of the vessel. This deceleration is due to
the proximity of the other hot region at the bottom of the vessel, and,
thus, heat loss and subsequent decrease in speci�c gravity of the prod-
uct solution is reduced. The wave at the bottom of the vessel proceeds
in the x-direction at a constant velocity of 4.02mmmin−1. The rising
plume is derived from the increase in temperature due to the auto-
catalytic reaction, causing the hot products to rise rapidly through
the reagent solution as a volcanic plume. The plume rises through
at 3.05mmmin−1 in Fig. 6(b) and slows down to 1.54mmmin−1

in Fig. 6(d) when it spreads horizontally back into �nger A. From

(a) (b)

(c) (d)

FIG. 6. (a)–(d) The first observed finger and plume series. Development of finger
A can be tracked from Figs. 6(a) to 6(d). It accelerates initially and then slows
down, mainly due to the influence of the wave at the bottom of the vessel which
reduces the thermal gradient, and hence thermogravitational effects. Plume also
starts fast and slows down due to thermal equilibrium.
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(a) (b)

(c) (d)

FIG. 7. (a)–(d) Another iteration of the finger development. As opposed to Fig. 5,
the lower thermocapillary convection reduces the vx velocity and subsequently
back-flow velocity. The finger, thus, proceeds effectively vertically down the vessel.
The wave then bifurcates at the bottom of the vessel to the right and the left.

the expected dynamics of the wave front, we expect the descending
�nger to be unstable (any defect at the wave front will be magni�ed)
and the ascending plume to be stable (any deformities at the interface
will be suppressed).

Figures 7(a)–7(d) show the further development of patterning
from Fig. 6. Here, we concentrate on the development of a new
�nger. For a short period, wave moves with vx = 2.83mmmin−1.
Again, due to the lower 1T at the wave front, the leading front of
the wave quickly dips below the surface of the liquid and is pro-
pelled more by reaction-di�usion-convection mechanisms and not
as much from the Marangoni instability. The formation of the �n-
gering regime e�ectively halts the horizontal lateral instability of the
e�ectively hydrothermal wave. Once a minor defect is created at the
wave front interface, the denser products overcome the Marangoni
convection and cause a rapid descent as the products force the wave
front downward. This initial descent commences at 12.1mm/min in
the �rst one third of the reaction depth. Following this rapid descent,
the wave front begins to curl back to the wave front at 1.16mm/min
due to availability of reagents and expected back �ow, though not as
pronounced as would have been expected from Fig. 4. After reaching
the bottom of the container the wave front begins to rapidly propa-
gate in both x-directions moving to the left at 4.70mm/min and to
the right at 2.93mm/min. Propagation to the left is through a com-
bination of RDC mechanisms and expected back �ow (see Fig. 4),
while propagation in the positive x-direction is solely through RDC
mechanisms.

Figure 8 shows further progression of the hydrodynamical
instabilities from Figs. 6 and 7. This is after three iterations of

FIG. 8. Third iteration of finger and plume as the wave propagates along the
x-axis. The systems become more complex as generations of plume and finger
become incommensurate. As the lateral instability moves further in the x-direction,
boundary effects become relevant. Plume H effectively stalls before it reaches the
top of the solution and bifurcates, just as plume C.

�ngering and plume. The patterning changes in chemical wave-
length, wave front speeds, and velocities of the plumes and �ngers.
There are two reactions proceeding in the reaction mixture: the cat-
alyzed and noncatalyzed reactions. Thus, the chemical composition
of reactants keeps changing with time. Figure 8 shows the usual ini-
tial lateral forward movement near the top of the solution, labeled
as “A.” The �nger “B” slants in the positive x-direction because of
interaction with the plumemovement just below it. Thus, the contin-
uation of the plume in “C” has to proceed in the positive x-direction.
Near the top of the solution, plume “C” bifurcates into “D” in the
negative x-direction and “E” in the positive x-direction. The veloc-
ity of lateral instability “D” is much less than that of its positive
counterpart “E.” D is slower because of the lower thermal gradient
due to incoming instability A. Separation of A and D is maintained
for extended periods. Instead of coalescing, they, instead, both �nger
into the unreacted region created by B and C resulting in very exotic
heterogeneities in acid, sulfate, chlorine dioxide, and heat. After lat-
eral instability denoted as “E,” the general sequence shown in Figs. 6
and 7 is repeated of �nger and plume alternating. Our observation
vessel is 260mm long and thus not too many of these sequences
are observed. Also, as wave approaches the end of the Hele-Shaw
cell, boundary and eddy e�ects from the other wall begin to a�ect
wave movement. In general, wave movement, propagation, and spa-
tiotemporal organization are heavily dependent on vessel size and
geometry. Figures 7 and 8 show entrainment of unreacted reagents,
surrounded by zones of reacted products, speci�cally the separation
of �ngers A and D in Fig. 8 and the isolated reagents in Fig. 6(d).
If observed along the z-axis; the system will display spatiotemporal
inhomogeneities in the x-axis. If the reaction vessel is wide enough,
these spatiotemporal inhomogeneities will cover the x-y plane.

Overall system description

Chemical waves generated in an exothermic or endothermic
reaction produce density inhomogeneities in the reaction medium.
In considering double-di�usive �ow between two parallel plates
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that are perpendicular to the direction of gravity, the Oberbeck-
Boussinesq approximation is used in which �uid density is assumed
to depend linearly on two scalar �elds, namely, the temperature,
T, and the respective concentration of the di�erent solution con-
stituents, ci. In our nonlinear reaction system, the density will, thus,
vary depending upon the extent of reaction and the temperature. The
density, ρ, can then be derived from

ρ = ρ0

(

1 − α(T − T0) +
∑

βi(c − co)
)

, (6)

where

α = −(1/r)δρ/δT; and β = (1/ρ)δρ/δci, (7)

with subscripts “0” denoting initial conditions. α is the thermal
expansion coe�cient and β is the solutal expansion coe�cient. The
�rst term in Eq. (6) represents the temperature dependence of den-
sity and the second term the concentration dependence. These two
terms, in the system under study, deliver opposing e�ects, which give
rise to the observed multicomponent convection (�ngering regime).
At isothermal conditions, the �rst term vanishes, leaving only the sec-
ond termwhich gives, in this reaction system, ρ > ρ0. This inequality
will dictate the e�ect of buoyancy at thermal equilibrium. How-
ever, for both reactants and products, the buoyancy factors can be
estimated by the Grashof number,

Gr = −(δρ/δT)g1Td3/ρκν = α g1Td3/κν, (8)

where d is the depth of the solution, κ is the thermal di�usivity,
and ν the kinematic viscosity. Since in our experiments we evaluated
δρ/δT= −0.4 kgm−3 K−1, thenwhen T>T0, the �rst term in Eq. (4)
will pull the value of density, ρ, to lighter values. With d raised to the
third power, buoyancy factors are much more pronounced in deeper
�uid solutions.

MARANGONI CONVECTION

At isothermal conditions, the product solution has a slightly
lower surface tension than the reactant solution. Thus, both reaction-
di�usion and thermocapillary convection act in the same direction
with respect to wave propagation,

Surface tension, σ = σ0(9) − τ(T − T0) with τ = (δσ/δT)P,c. (9)

Surface tension, in general, decreases with temperature, and our
reaction solutions gave τ = −9.5× 10−5 Nm−1 K−1. Thermocapil-
lary forces can be estimated from the Marangoni number, Ma[18],

Ma = −τ1TL/ρνκ, (10)

where L is the length of the free surface. Although 1T changes over
a reaction zone of about 2mm (see Fig. 1), a reasonable Marangoni
number can be calculated from our experimental data. The Eötvös
number is e�ectively the ratio of thermogravitational and thermo-
capillary forces,

Eötvös number, E0 = Ra/Ma, (11)

where Ra, the Rayleigh number=Gr · ν/κ is a better measure of
the relative strengths of the forces responsible for the formation of
the convective torus. In general, we calculate that the Eötvös num-
ber has a temperature-independent value of 0.40 for the same vessel

and same conditions.34 This means that, for the same temperature
gradient, the Marangoni e�ect should be 2.5 times larger than the
thermogravitational-based Rayleigh e�ects. We expect, theoretically,
a strong dominance of thermocapillary e�ects, with 1T, over ther-
mogravitational e�ects, and this was also observed experimentally
in a previous publication from our laboratories. It is, thus, easy to
investigate our pseudo-two-dimensional thermocapillary-buoyancy
�ows. Numerical analysis of the strongly-convective thermocapillary
�ows has shown that a �nite temperature gradient remains over the
entire free surface, leading to a global �ow structure. Theoretical
work by Smith and Davis also concluded that thermocapillary con-
vection dominates in such cavity problems in the limit of �xed E0 and
as Ma→ in�nity.

Overall formulation of the problem

Our system is a modi�ed form of a Benard-Marangoni (BM)
instability with internal heat generation. Convective instabilities
driven by either buoyancy or thermocapillary e�ects have been the
subject of numerous theoretical and experimental studies since the
initial studies of Lord Rayleigh and Pearson. Considerably less work
has been done on the more general and relevant case in which both
mechanisms are acting simultaneously. Pioneering theoretical work
on this BM instability was performed by Villiers and Platten in which
they used acetone with lateral heating.33 They obtained qualitative
agreement with experimental data with respect to the various con-
vective regimes: steady or oscillatory. Velocity pro�les were those
calculated and shown in Fig. 9. Prandtl number for acetone was �xed
at 4.24, and the major bifurcation parameter was the temperature
jump imposed at the wave front. They modeled transient convection
in a �nite rectangular enclosure by using the stream function vor-
ticity formulation of the two-dimensional Navier-Stokes and energy
equations and assuming the Boussinesq approximation. By utilizing
the relation

∂σ

∂x
=

∂σ

∂T
·
∂T

∂x
(12)

and the Marangoni number [Eq. (10)] and the force for a non-
deformable �at surface, they could utilize the no-slip adherence
boundary condition and the Levich boundary condition

ρ0ν
∂Vx

∂z
=

∂σ

∂T
·
∂T

∂x
(13)

to determine the commencement and nature of the lateral instabil-
ity. Our reaction-di�usion-convection system requires several other
parameters that come into play. Speci�cally, for a full modeling of
the system, one needs evaluation and determination of the following
parameters: Atwood number, Lewis number, Damköhler number,
Schmidt number, Peclet number, the Nusselt number, and the Soret
e�ect.35 Many phenomena and parameters like the Atwood numbers
and Soret e�ect can be evaluated for our system.36–38 We determined
an Atwood number, At, of 1.4× 10−3. In Rayleigh-Taylor instabil-
ity (RTI), the penetration distance of heavy �uid bubbles into the
light �uid is a function of acceleration time scale, Agt,2 where g is
the gravitational acceleration and t is the time.36 In our system, both
natural and buoyant convections are important [see Eq. (4)]. There
is no absolute cut-o� value, but, generally, with At < 0.1, we can
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FIG. 9. Images were converted to a HSV (hue/saturation/value) image, and HSV is used extensively in computer vision and image analysis for feature detection. The
saturation channel of the HSV image was extracted and filtered. This is presented as a grayscale image, highlighting specifically the wave front. In subimage 1, the wave
front is thickest at the top of the wave (A) at 4.30 mm, thinnest at (B) at 0.90 mm, and has an average thickness of 1.74 mm. Between subimages wave (A) moves laterally
at an average rate of 7.32 mmmin–1 and (B) moves at 2.71 mmmin–1. In subimage 2, the thickest part of the wave front has moved to the bottom, and this can be attributed
to the lower forward velocity and measures 2.57mm. The central portion of the wave front shows no forward momentum and becomes the thinnest portion at 1.04 mm as
thermocapillary convection draws more of the reacting front to the top of the wave, seen in arrow (C), and reaction-diffusion-convection causes an accumulation along (D).

assume that the velocity �eld is solenoidal and thus use the Boussi-
nesq approximation.39At small Atwoodnumbers, the development of
Rayleigh-Taylor instabilities proceeds initially through an exponen-
tial growth of in�nitesimal perturbations that correspond to linear
stability analysis. At amplitudes of about half of the wavelengths, the
RTI saturates, and longer wavelengths take over. There will �nally be
nonlinear mode interactions for �nal successive wavelength satura-
tion. We can de�ne changes in temperature and concentration at the
front as

1c = c1 − c0;1T = T1 − T0 = −1Hrxn · 1c/ρ0Cp. (14)

T1 is calculated from the extent of reaction and assumption that
there are no heat losses. The Soret e�ect quanti�es the fact that a �ux
can be generated solely by a temperature di�erence.40,41 This e�ect
does not exist in pure �uids, and thus we can de�ne a factor DT for
c0(1 – c0). DT remains temperature dependent exactly as the original
D, before the temperature jump. Total �ux is the standard Fick’s term,
combined with a mass separation due to the temperature gradient.
These two terms are of opposite signs, and when we are in steady
state conditions, the terms will be equal with zero total �ux, implying

∂c

∂x
= −

DT

D
c0(1 − c0)

∂T

∂x
. (15)

We de�ne the Soret coe�cient as

ST = DT/D. (16)

This e�ect can be positive or negative, depending on the sign
of DT. We have attempted, initially, to estimate our Soret coe�cient.

The reaction commences with mainly organic compounds and has
inorganic ionic products. We expect an absolute Soret coe�cient for
organics of approximately 1.00× 10−3 to 10−2 K−1. In our system,
with a 1T of 1.5–2.5 K, we expect a negligible Soret e�ect since this
will normally approximate to the extent of reaction within the linear
region of temperature jump at reaction front. The Soret e�ect would
be sizable, however, in �uid physics of crude oil reservoirs. We also
expect thermal conductivity and kinetics constants to be essentially
invariant after the temperature jump.

Approaches toward a reasonable model

We assumed no convection in the y-axis and accepted a 2D
model as plausible for this system with the incompressible veloc-
ity �eld u= (ux, uz). The system has length Lx and height/width
Lz. Gravity points along the z-axis. We then apply Darcy’s law
[Eq. (17)] and continuity equation [Eq. (18)] and combine this with
the reaction-di�usion-convection evolution equations for the auto-
catalytic production of the product species, c, and for the elevation of
the temperature, T, derived from the exothermic reaction [Eqs. (19)
and (20)]

∇p = −
µ

κ
u + ρ(c, T)g, (17)

∇ · u = 0, (18)

∂c

∂t
+ u · ∇c = D∇2c + f (c), (19)
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ρ0cp

[

∂T

∂t
+ u · ∇T

]

= κT∇
2T + |1Hrxn|f (c) − α(T − T0). (20)

InDarcy’s law, density depends on concentrations and tempera-
ture as quanti�ed inEq. (6). “D” in Eq. (15) is the di�usion coe�cient.
In Eq. (20), α is the Newton heat loss coe�cient. Since we worked
only in the reaction front, this last term in Eq. (20) was ignored. We
need to obtain dimensionless equations and parameters. We proceed
to de�ne the following:

The Lewis number is the ratio of thermal di�usivity to mass
di�usivity. Le= λ/ρDCp; and it is also a ratio of the Schmidt to the
Prandtl number. Equations (17), (19), and (20) can then be modi�ed
to nondimensional forms after removing the primes. Of note are the
two forms of Rayleigh numbers, one for solutal buoyancy, RS, and the
other for thermal buoyancy, RT,

RT =
iκgαT1T

νU
; RS =

iκgαS1c

νU
. (21)

In Eq. (21), sign of i depends on whether wave motion is buoy-
antly stable or not. Most of the relevant parameters for our system
can be calculated and/or evaluated. We assumed the same solution
viscosity as that of pure water of 1.00 centiPoise. We evaluated an
approximate RT value of 28.5 (dimensionless). Our limited model
managed to model the initial lateral instability velocity. It also pre-
dicted �ngering instabilities. This is, e�ectively, the �ows shown
in Fig. 4. For plumes, boundary conditions were di�cult to deter-
mine. Several parameters could not be accessed in our system. The
experimental procedures involved an initiation at a point source, thus
precluding the RTI instabilities that have been observed in other
autocatalytic systems such as the chlorite-tetrathionate system. We
were interested in the development of a lateral instability as well
as the �ngering and pluming regimes. Nonlinear chemical kinetics
and the limited Hele-Shaw dimensions quickly introduced boundary
conditions. By assuming Dirichlet boundary conditions, where the
trajectory of the plume is assumed at the bottom of the vessel, the
oscillatory nature of the plume speed could be qualitatively but not
quantitatively modeled.

CONCLUSION

The remarkable aspect of our studies is the similarity they may
have in stellar evolution.42 The understanding of the structure and
evolution of stars is a long-standing problem in astrophysics. The
central theme is the description of stellar turbulent convection and
how it transports heat and energy.

In massive stars, there exists a semiconvection zone, a chem-
ically inhomogeneous zone between the convective core and the
radiative envelope.43 The governing equations mirror the equations
we have derived here in this article. As the star evolves, a gradient of
chemical composition develops at the outer border of the convective
core. The atmosphere is convectively stable if the Ledoux criterion
is met and unstable if the Schwarzschild criterion is met.42,43 More
explicitly, in order for convection to occur, the adiabatic temperature
gradient should be smaller than the actual temperature gradient of
the surrounding gas (Schwarzschild), which is given by the radia-
tive temperature gradient if convection does not occur (Ledoux).
We have examined the development of plumes as analogous to the
overshooting observed in Schwarzschild-type instabilities.
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