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USING THE MAXIMUM A POSTERIORI ADAPTIVE 
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Abstract 
Biomedical signals are often rhythmical and their morphologies change 
slowly over time. Arterial blood pressure and electrocardiogram signals 
are good examples with such property. It is of great interest to extract 
clinically useful information such as the instantaneous frequency (i.e. 
heart rate) and morphological changes (e.g. pulse pressure variation) 
from these signals. Conventional filtering methods such as the Kalman 
filter are not suitable for estimating the instantaneous frequency of quasi-
periodic signals due to the non-Gaussian multi-modal property of its 
posterior distribution. One possible alternative is particle filters that are 
increasingly used for nonlinear systems and non-Gaussian posterior 
state distributions. However, canonical particle filters suffer from the 
problems of sample degeneracy and sample impoverishment and are 
not well suited to non-Gaussian multi-modal distributions. This paper 
describes two new algorithms that integrate the marginalized particle 
filter and maximum a-posterior particle filter and demonstrates 
challenging cases where the proposed algorithms outperform the 
conventional marginalized particle filter using both synthetic and real 
electrocardiogram signals. 

http://www.bjhim-online.org/
http://creativecommons.org/licenses/by/3.0
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1 INTRODUCTION 

Biomedical signals contain quasi-periodic rhythms with slowly changing 
morphologies. Given arterial blood pressure (ABP) and electrocardiogram 
(ECG) signals, for example, extracting clinically useful information such as the 
instantaneous frequency (i.e. heart rate) and morphological changes (e.g. 
pulse pressure variation) is of great interest to medical doctors and 
researchers [16]. Previously, we have proposed the Kalman filter based 
approach to tracking the rhythmicity of various biomedical signals such as 
ABP, ECG, and microelectrode recording (MER) [17, 18, 19]. As Sivia pointed 
out, however, the Kalman filter based methods are not suitable for estimating 
the instantaneous frequency of quasi-periodic signals [26]. The reason is that 
the posterior distribution of the instantaneous frequency of quasi-periodic 
signals exhibits the non-Gaussian multi-modal property, which imposes a 
challenge for the Kalman filter based methods since they rely on local 
linearization of the posterior distribution. This multimodal property of the 
frequency’s posterior distribution not only raises a theoretical issue for the 
Kalman filter based methods, but does cause real problems for them in a way 
that once they lose the track of the instantaneous frequency, they can hardly 
regain it [19]. 

Monte Carlo methods are a possible alternative [21]. They can be used 
to estimate the point statistics of an unknown or analytically unsolvable 
posterior distribution, 𝑝(𝒙0:𝑛|𝒚0:𝑛), up to a normalizing constant based on a 
sequence of sufficient random samples drawn from the distribution, where the 

vector, 𝒚0:𝑛, represents a sequence of observations, {𝑦0, …, 𝑦𝑛}. Gordon et al. 
proposed a sequential version of Monte Carlo methods, which is better known 
as particle filters (PFs) [11]. PFs have been applied to various applications 
such as fault detection [1], harmonic tracking for audio signals [7], computer 
vision [25], speech recognition [28], and target localization [30]. In general, a 
large number of particles yield more accurate approximation results since the 
approximation of PFs converges to the true value asymptotically as the 
number of particles, 𝑁𝑝, becomes large enough. However, this is problematic 

since PFs are plagued by two curses of dimensionality: the number of 
particles, 𝑁𝑝, needed for reasonable approximations scales with both the state 

dimension, ℓ, and the duration of the observation sequence, 𝑛. 

 The marginalized particle filter (MPF) in [3, 6, 14, 20] can partly overcome 
the first curse, in special cases, where the state space can be partitioned into 
a high-dimensional linear portion and a low-dimensional nonlinear portion. 
The Kalman filter can handle the high-dimensional linear portion of the state 
space efficiently, which eases the overall computational burden. The 
marginalization of the state space, however, does not solve the second curse 
of dimensionality; the number of particles required to accurately estimate an 
expected value of the distribution still increases exponentially with the duration 
of the observations n at the time the estimate is needed. Practically this 
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causes a phenomenon called sample degeneracy. Resampling schemes 
have been proposed to address this problem, which essentially use a 
bootstrap approach to sample the posterior distribution with replacement. 
However, this approach causes a sample impoverishment problem referring 
to a phenomenon where many particles of only the most probable state 
trajectory are duplicated and the coverage of all possible state trajectories 
lessens. If the true posterior distribution makes an abrupt change or develops 
a new prominent mode in a region not covered by the particle population, a 
typical PF may be slow to adapt to the abrupt change or fail to lock on to the 
new prominent mode. This issue can be well addressed with by incorporating 
maximum a posteriori (MAP) estimation into particle filtering recursions. MAP-
PFs produce an estimate of the most likely state trajectory instead of the mean 
state trajectory, which maximizes the posterior distribution, 

 

 𝒙0:𝑛 ≈ argmax𝒙0:𝑛
{𝑝(𝒙0:𝑛|𝒚0:𝑛)}. (1) 

 

MAP estimation is suitable for multi-modal posterior distributions because it 
essentially selects the state estimates corresponding to the tallest mode of the 
distribution. MAP estimates minimize the most probable error, whereas mean 
estimates minimize mean square error (MSE). 

Several research groups have used the term “marginal MAP estimation” 
to describe algorithms for various applications such as fault diagnosis for 
autonomously operating systems [12], state estimation of jump Markov linear 
systems [5], tempo tracking and rhythm quantization in music [4], and 
detection for Orthogonal Frequency Division Modulation (OFDM) systems 
[29]. Doucet et al. describe an algorithm that obtains the marginal MAP 
estimate of the state of a Jump Markov Linear System based on Markov chain 
Monte Carlo (MCMC) methods [5]. Cemgil et al. discussed the possibility of 
computing the MAP trajectory after integrating out (Rao-Blackwellizing) the 
hidden variables based on the SMC methods [4]. However, they were aware 
that Rao-Blackwellization causes coupling between all possible particle 
trajectories, and that the Viterbi algorithm does not find the actual MAP 
trajectory in this case. In simple words, combining the MPF and MAP-PF 
methods introduces new problems that are not encountered in using those 
two methods independently.  

The objectives of this paper are to introduce an optimal algorithm and a 
fast approximate algorithm for combining the advantages of marginalized 
particle filters (MPF) and MAP particle filters (MAP-PF) and to demonstrate 
challenging cases where the conventional marginalized particle filters (MPF) 
fail to track the instantaneous frequency while the proposed methods succeed 
using synthetic and real ECG signals. It should be noted that the present work 
is a part of our continuous effort to develop robust tracking methods that can 
be applied to quasiperiodic multi-harmonic biomedical signals and readers are 
encouraged to refer to our previous works as necessary [17, 18]. 
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2 METHODOLOGY 

2.1 Notation 

We have adopted the notation used in [2] with minor modifications. We 
use boldface to denote random processes, normal face for deterministic 
parameters and functions, upper case letters for matrices, lower case letters 
for vectors and scalars, superscripts in parenthesis for particle indices, 
uppercase superscripts for nonlinear/linear indication, and subscripts for time 

indices. For example, the nonlinear portion of the state vector for the 𝑖th state 

trajectory (i.e., particle) is denoted as 𝒙𝑛
N,(𝑖)

 where 𝑛 represents the discrete 

time index and (𝑖) denotes the 𝑖th particle. The unnormalized particle weights 

are denoted as 𝑤̃(𝑖) and the normalized particle weights as 𝑤(𝑖).  The state 

trajectories before resampling are denoted as 𝒙̃𝑛
(𝑖)

 and as 𝒙𝑛
(𝑖)

 after resampling. 

2.2 Recursions for typical particle filtering methods 

2.2.1 Standard resampling particle filter (PF) 

The standard PF algorithm incorporates the stratified resampling scheme 
in which resampling is performed when the estimated number of effective 

particles drops below a user-defined threshold, 𝑁𝑡 [13]. The number of 
effective particles is given by 

 

 
𝑵̂e =

1

∑ (𝒘𝑛
(𝑖)

)
2𝑁p

𝑖=1

 (2) 

 

where 𝒘𝑛
(𝑖)

 is a normalized importance weight of the 𝑖th particle and 𝑁p is the 

number of particles. The normalized importance weights 𝒘𝑛 are calculated at 

each time index from the unnormalized importance weights 𝒘̃𝑛, which are 
themselves derived from the normalized importance weights from the previous 
time index. We assume that the importance density has been chosen such 
that it can be factored as follows, 

 

 𝑞(𝒙0:𝑛|𝒚0:𝑛) = 𝑞𝑛(𝒙𝑛|𝒙0:𝑛−1, 𝒚0:𝑛)𝑞(𝒙0:𝑛−1|𝒚0:𝑛−1) (3) 

 

so that the particle weights can be calculated recursively.  

Then, the weight update recursion can be written as,  

 

 

𝑤̃𝑛
(𝑖)

= 𝑤̃𝑛−1
(𝑖)

𝑝(𝒚𝑛|𝒙𝑛
(𝑖)

)𝑝(𝒙𝑛
(𝑖)

|𝒙𝑛−1
(𝑖)

)

𝑞𝑛(𝒙𝑛
(𝑖)

|𝒙𝑛−1
(𝑖)

, 𝒚0:𝑛)
 (4) 
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where 𝑤̃𝑛
(𝑖)

 represents an unnormalized importance weight at time 𝑛 and 𝑤̃𝑛−1
(𝑖)

 

a normalized importance weight at time 𝑛 − 1. The most common choice for 
the marginal importance density is the prior probability given by the process 
model,  

 

 𝑞𝑛(𝒙𝑛|𝒙𝑛−1, 𝒚0:𝑛) = 𝑝(𝒙𝑛|𝒙𝑛−1) (5) 

 

 

The weight update recursion, then, is simplified as follows, 

 

 

𝑤̃𝑛
(𝑖)

= 𝑤̃𝑛−1
(𝑖)

𝑝(𝒚𝑛|𝒙𝑛
(𝑖)

)𝑝(𝒙𝑛
(𝑖)

|𝒙𝑛−1
(𝑖)

)

𝑞𝑛(𝒙𝑛
(𝑖)

|𝒙𝑛−1
(𝑖)

, 𝒚0:𝑛)
= 𝑤̃𝑛−1

(𝑖)
𝑝(𝒚𝑛|𝒙𝑛

(𝑖)
) (6) 

 

where the current weight is the previous weight multiplied by the likelihood 

function, 𝑝(𝒚𝑛|𝑥𝑛
(𝑖)

).  

 

2.2.2 Maximum a posteriori particle filter (MAP-PF) 

The MAP-PF approach based on the Viterbi algorithm provides a MAP 
estimate that avoids the sample degeneracy and sample impoverishment 
problems of the standard PF [2, 9, 27]. The algorithm is memory-efficient 

because at each sample time the Viterbi algorithm discards (𝑁p
2 − 𝑁p) possible 

trajectories and only retains the Np most probable ones. Unlike the standard 
particle filter (PF), the MAP-PF does not calculate or track importance weights 
for each particle. These are unnecessary because the MAP-PF does not 
estimate the mean or other moments of the state posterior distribution. Instead 
the MAP-PF simply tracks the posterior probability of each state trajectory. 

These are represented by the coefficients 𝜶𝑛
(𝑖)

, which are computed 

recursively for each particle instead of the importance weights. 

2.2.3 The marginalized particle filter (MPF) 

The marginalized particle filter (MPF) can be applied to special state 
space models in which a portion of the state space is nonlinear and the other 
portion can be modelled as a linear process if the nonlinear portion of the state 
vector is known. When this partition can be performed, the linear portion of 
the state can be sequentially estimated using the Kalman filter, and particle 
filtering can be used to estimate the nonlinear portion of the state vector. The 
MPF reduces the variance of the posterior distribution estimation by providing 
optimal estimates for the linear portion of the state space while reducing the 
dimensionality of the nonlinear portion of the state that is estimated with a 
particle filter. 
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2.3 Optimal MAP adaptive marginalized particle filter (Optimal MAM-
PF) 

One can apply the Viterbi algorithm to obtain the MAP state trajectory 
within the canonical particle filter framework [2, 9]. However, the Viterbi 
algorithm does not guarantee the true MAP state trajectory when the state is 
marginalized [4]. Estimation of the MAP state trajectory with the marginalized 
state has not been previously described. 

The MAM-PF is a hybrid particle filtering method which leverages the 
advantages of the MAP-PF and MPF algorithms. The MAP-PF portion of the 

algorithm requires that the likelihood function 𝑝(𝒚𝑛|𝒚0:𝑛−1, 𝑥𝑛
N,(𝑖)

) be evaluated 

for particles  𝑥𝑛
N,(𝑖)

, whose values may be far away from probable values. In 

this case some of the variation in 𝒚𝑛 caused by the true underlying state would 
not be accounted for and the residual variance 𝒚𝑛 − 𝒚̃𝑛|0:𝑛−1 will be much 

larger than the measurement noise 𝑅𝒗,𝑛 or the prediction or the prediction error 

𝑅𝒆,𝑛 provided by the Kalman filter recursions. This underestimation of the 

prediction error causes the likelihood function to have a distribution that is too 
narrow, which ultimately leads to suboptimal particle selection. This is a critical 
problem that has not been addressed previously and only occurs when 
attempting to use both marginalization and MAP estimation with the Viterbi 
algorithm. 

One elegant solution to this problem is to continuously estimate the 
prediction error covariance from the residuals for each particle. We have 
adopted and modified the adaptive covariance estimation method proposed 
in [23]. To ensure that the estimated covariance matrix is positive semi-
definite, we propose using an eigenvalue decomposition of the covariance 
matrix and eliminating all non-positive eigenvalues. We denote this operation 

as [𝑹]+.  

A second critical issue that occurs in merging marginalization and MAP 

estimation is that the likelihood function 𝑝(𝒚𝑛|𝒚0:𝑛−1, 𝑥𝑛
N,(𝑖)

) must be handled 

carefully because it is only conditioned on the nonlinear portion of the state 
vector. This distribution can be obtained from the Kalman filter recursions, as 
was done for the MPF  

 

 𝑝(𝒚𝑛|𝒚0:𝑛−1, 𝑥𝑛
N,(𝑖)

) = 𝑝 (𝒚𝑛|𝒙̂𝑛|0:𝑛−1
L,(𝑖)

, 𝒙𝑛
N,(𝑖)

) ~𝓝(𝒚̂
𝑛|0:𝑛−1

(𝑖)
, 𝑹𝑒,𝑛

(𝒊) ) (7) 

 

However, during the maximization over all past trajectories, it is crucial to 

recognize that this includes the linear portion of the state space, 𝒙̂𝑛|0:𝑛−1
L,(𝑖)

, 

unlike the MAP-PF. 

The following algorithm gives a complete account of the Optimal MAMPF 

recursions. The covariance coefficient 𝛽 is a user-specified parameter that 
controls the memory of the recursion for first order recursive estimation of the 
adaptive signal prediction error covariance, 𝑹𝒆,𝑛. The algorithm is as follows: 
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Initialization 

for 𝑖 = 1, … , 𝑁𝑝 do 

Sample 𝒙0
N,(𝑖)

~𝜋0(𝒙0
N) & 𝒙0:−1

L,(𝑖)
= E[𝒙0

L,(𝑖)
|𝒙0

N,(𝑖)
] 

end for 

for 𝑖 = 1, … , 𝑁𝑝 do 

𝛼0
(𝑖)

= 𝜋0(𝒙0
N,(𝑖)

)𝑝(𝒚0|𝒙0
N,(𝑖)

, 𝒙0
L,(𝑖)

) & 𝒛0
(𝑖)

= 𝒙0
(𝑖)

 

end for 

𝑖∗ = argmax𝑖𝛼0
(𝑖)

 & 𝒙0 = 𝒙0
𝑖∗

 

for 𝑖 = 1, … , 𝑁T do  

 for 𝑖 = 1, … , 𝑁p do 

  Particle Propagation 

  𝒙𝑛
N,(𝑖)

~𝑞𝑛(𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑖)

, 𝒚𝑛) 

  Marginalized Sequential Estimation 

  for 𝑖 = 1, … , 𝑁p do 

𝒚̂𝑛|0:𝑛−1 = 𝐻𝑛(𝒙𝑛
N,(𝑖)

)𝒙̂𝑛|0:𝑛−1
L,(𝑘)

 & 𝒆𝑛 = 𝒚𝑛 − 𝒚̂𝑛|0:𝑛−1 

    𝑹𝒗,𝑛 = [𝒆𝑛𝒆𝑛
T − 𝐻𝑛(𝒙𝑛

N,(𝑖)
)𝑪𝑛|0:𝑛−1

(𝑘)
𝐻𝑛(𝒙𝑛

N,(𝑖)
)

𝑇

]
+

 

    𝑹̂𝑣,𝑛
(𝑖,𝑘)

= 𝛽𝑹̂𝑣,𝑛−1
(𝑘)

+ (1 − 𝛽)𝑹𝑣,𝑛 

    𝑹𝑒,𝑛
(𝑘)

= 𝐻𝑛(𝒙𝑛
N,(𝑖)

)𝑪𝑛|0:𝑛−1
(𝑘)

𝐻𝑛(𝒙𝑛
N,(𝑖)

) + 𝑹̂𝑣,𝑛
(𝑘)

 

    𝑲𝑛
(𝑘)

= 𝑪𝑛|0:𝑛−1
(𝑘)

𝐻𝑛(𝒙𝑛
N,(𝑖)

)(𝑹𝑒,𝑛
(𝑘)

)
−1

 & 𝒙̂𝑛|0:𝑛
L,(𝑖)

=  

     𝒙̂𝑛|0:𝑛
L,(𝑖)

+ 𝑲𝑛
(𝑘)

[𝒚𝑛 − 𝒚̂𝑛|0:𝑛−1
(𝑘)

] 

    𝑪𝑛|0:𝑛
(𝑘)

= [𝐼 − 𝑲𝑛
(𝑘)

𝐻𝑛(𝒙𝑛
N,(𝑖)

)] 𝑪𝑛|0:𝑛−1
(𝑘)

 

    𝒙̂𝑛+1|0:𝑛
L,(𝑖,𝑘)

= 𝐹𝑛(𝒙𝑛
N,(𝑖)

)𝒙̂𝑛|0:𝑛
L,(𝑘)

 & 𝑪𝑛+1|0:𝑛
(𝑖,𝑘)

= 

     𝐹𝑛(𝒙𝑛
N,(𝑖)

)𝑪𝑛|0:𝑛
(𝑘)

𝐹𝑛(𝒙𝑛
N,(𝑖)

) + 𝑸𝑢
L  

   end for 

   MAP Estimation 

   𝑘∗ = argmax𝑘𝛼𝑛−1
(𝑘)

𝑝 (𝒚𝑛|𝒙𝑛
N,(𝑖)

, 𝒙̂𝑛|0:𝑛
L,(𝑘)

) 𝑝(𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑘)

) 

   𝛼𝑛
(𝑖)

= 𝛼𝑛−1
(𝑘∗)

𝑝 (𝒚𝑛|𝒙𝑛
N,(𝑖)

, 𝒙̂𝑛|0:𝑛
L,(𝑘∗)

) 𝑝 (𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑘∗)

) 

   𝑪𝑛+1|0:𝑛
(𝑖)

= 𝑪𝑛+1|0:𝑛
(𝑖,𝑘∗)

 & 𝑹̂𝑣,𝑛
(𝑖)

= 𝑹̂𝑣,𝑛
(𝑖,𝑘∗)

 

   𝒙̂𝑛+1|0:𝑛
L,(𝑖)

= 𝒙̂𝑛+1|0:𝑛
L,(𝑖,𝑘∗)

 & 𝒙̂𝑛
(𝑖)

= [𝒙̂𝑛|0:𝑛
L,(𝑖,𝑘∗)

, 𝒙𝑛
N,(𝑖)

]
T

 & 
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 𝒛0:𝑛
(𝑖)

= [𝒛0:𝑛−1
(𝑘∗)

, 𝒙̂𝑛
(𝑖)

] 

 

  end for  

  𝑖∗ = argmax𝑖𝛼𝑛
(𝑖)

 & 𝒙̂0:𝑛 = 𝒛0:𝑛
𝑖∗

 

 end for 

 

2.4 Fast MAP adaptive marginalized particle filter (Fast MAM-PF) 

A key computational disadvantage of the Optimal MAMPF algorithm is 
that the linear Kalman filter recursions must be applied 𝑁p times for each 

particle, which results in 𝑁𝑝
2 Kalman filter recursions for each time update of 

the state estimate. This ensures that the maximization over all possible 
previous trajectories correctly accounts for the effect of the linear state 

estimates on the likelihood function, which is given by 𝑝 (𝒚𝑛|𝒙𝑛
N,(𝑖)

, 𝒙̂𝑛|0:𝑛−1
L,(𝑘)

) for 

the 𝑖𝑡ℎ particle. In most cases the likelihood function does not strongly affect 
the selection of the previous trajectory and this term can be eliminated from 
the MAP estimation step. Specifically, 

 

 𝑘∗ = argmax𝑘𝛼𝑛−1
(𝑘)

𝑝 (𝒚𝑛|𝒙𝑛
N,(𝑖)

, 𝒙̂𝑛|0:𝑛−1
L,(𝑘)

) 𝑝(𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑘)

) (8) 

    ≈ argmax𝑘𝛼𝑛−1
(𝑘)

𝑝 (𝒚𝑛|𝒙𝑛
N,(𝑖)

, 𝒙̂𝑛|0:𝑛−1
L,(𝑖)

) 𝑝(𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑘)

) (9) 

                 = argmax𝑘𝛼𝑛−1
(𝑘)

𝑝(𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑘)

). (10) 

   

This approximation sacrifices the asymptotic optimality of the Optimal 
MAM-PF, but substantially reduces the computational burden because the 
selection of the best past trajectory for a particle no longer requires the linear 
state estimates or Kalman filter recursions for each possible past trajectory. 
Rather, the best past trajectory can be determined before the Kalman filter 
recursions. These recursions can then be calculated once per particle instead 
of 𝑁p times per particle. A complete description of the Fast MAM-PF algorithm 

is as follows: 

 

Initialization 

for 𝑖 = 1, … , 𝑁𝑝 do 

Sample 𝒙0
N,(𝑖)

~𝜋0(𝒙0
N) & 𝒙0:−1

L,(𝑖)
= E[𝒙0

L,(𝑖)
|𝒙0

N,(𝑖)
] 

end for 

for 𝑖 = 1, … , 𝑁𝑝 do 

𝛼0
(𝑖)

= 𝜋0(𝒙0
N,(𝑖)

)𝑝(𝒚0|𝒙0
N,(𝑖)

, 𝒙0
L,(𝑖)

) & 𝒛0
(𝑖)

= 𝒙0
(𝑖)

 

end for 
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𝑖∗ = argmax𝑖𝛼0
(𝑖)

 & 𝒙0 = 𝒙0
𝑖∗

 

for 𝑖 = 1, … , 𝑁T do  

for 𝑖 = 1, … , 𝑁p do 

  Particle Propagation 

  𝒙𝑛
N,(𝑖)

~𝑞𝑛(𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑖)

, 𝒚𝑛) 

   MAP Estimation 

   𝒌∗ = argmax𝑘𝛼𝑛−1
(𝑘)

𝑝(𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑘)

) 

   Marginalized Sequential Estimation 

   𝒚̂𝑛|𝑛−1 = 𝐻𝑛(𝒙𝑛
N,(𝑖)

)𝒙̂𝑛|0:𝑛−1
L,(𝑘∗)

 & 𝒆𝑛 = 𝒚𝑛 − 𝒚̂𝑛|0:𝑛−1 

   𝑹𝒗,𝑛 = [𝒆𝑛𝒆𝑛
T − 𝐻𝑛(𝒙𝑛

N,(𝑖)
)𝑪𝑛|0:𝑛−1

(𝑘∗)
𝐻𝑛(𝒙𝑛

N,(𝑖)
)

𝑇

]
+

  

   𝑹̂𝒗,𝑛 =  𝛽𝑹̂𝑣,𝑛−1
(𝑘∗)

+ (1 − 𝛽)𝑹𝑣,𝑛 

   𝑹𝒆,𝑛 = 𝐻𝑛(𝒙𝑛
N,(𝑖)

)𝑪𝑛|0:𝑛−1
(𝑘∗)

𝐻𝑛(𝒙𝑛
N,(𝑖)

)
𝑇

+ 𝑹̂𝑣,𝑛
  

   𝑲𝑛
(𝑘)

= 𝑪𝑛|0:𝑛−1
(𝑘∗)

𝐻𝑛(𝒙𝑛
N,(𝑖)

)
𝑇

(𝑹𝑒,𝑛
(𝑘)

)
−1

  

 𝒙̂𝑛|0:𝑛
L,(𝑖)

=  𝒙̂𝑛|0:𝑛−1
L,(𝑘∗)

+ 𝑲𝑛𝒆𝑛 

   𝑪𝑛|0:𝑛
(𝑘)

= [𝐼 − 𝑲𝑛
 𝐻𝑛(𝒙𝑛

N,(𝑖)
)] 𝑪𝑛|0:𝑛−1

(𝑘∗)
 

   𝑹̂𝑣,𝑛
(𝑖)

= 𝑹̂𝒗,𝑛 & 𝒙̂𝑛+1|0:𝑛
L,(𝑖)

= 𝐹𝑛(𝒙𝑛
N,(𝑖)

)
𝑇

+ 𝑸𝑢
L  

   𝛼𝑛
(𝑖)

= 𝛼𝑛−1
(𝑘∗)

𝑝 (𝒚𝑛|𝒙𝑛
N,(𝑖)

, 𝒙̂𝑛|0:𝑛−1
L,(𝑘∗)

) 𝑝 (𝒙𝑛
N,(𝑖)

|𝒙𝑛−1
N,(𝑘∗)

) 

   𝒙̂𝑛
(𝑖)

= [𝒙𝑛|0:𝑛
L , 𝒙𝑛

N,(𝑖)
]

T

 & 𝒛0:𝑛
(𝑖)

= [𝒛0:𝑛−1
(𝑘∗)

, 𝒙̂𝑛
(𝑖)

] 

  end for 

  𝑖∗ = argmax𝑖𝛼𝑛
(𝑖)

 & 𝒙̂0:𝑛 = 𝒛0:𝑛
𝑖∗

 

end for 

 

2.5 State-space model for multi-harmonic tracking 

2.5.1 State space model 

Many natural signals contain nearly periodic rhythms with slowly varying 
morphologies. In order to model such type of signals, we assumed that those 
signals are generated by a sum of harmonically-related time-varying 
components with independent amplitudes and phase relationships. Then, we 
used the so-called rectangular model proposed in [24], 
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𝒚𝑛 = ℎ(𝒙𝑛) + 𝒗𝑛 = [∑ 𝒂𝑘,𝑛cos(𝑘𝜽𝑛) + 𝒃𝑘,𝑛sin(𝑘𝜽𝑛)

𝑁ℎ

𝑘=1

] + 𝒚̅𝑛 + 𝒗𝑛 (11) 

 

where 𝑁ℎ is the number of harmonics (assumed known), 𝜽𝑛 is the 

instantaneous phase of the fundamental frequency, 𝒚̅𝑛 is the signal mean, 
𝒂𝑘,𝑛 and 𝒃𝑘,𝑛 are the sinusoidal coefficients, and 𝒗𝑛 is white Gaussian noise 

with variance 𝑟𝒗. The variations in the state variables over time are modelled 
as follows: 

 

 𝜽𝑛+1 = 𝜽𝑛 + 2𝜋𝑇𝑠𝒇𝑛, (12) 

 𝒇̅𝑛+1 = 𝑔[𝒇̅𝑛 + 𝒖𝒇̅,𝑛], (13) 

 𝒇𝑛+1 = 𝒇̅𝑛 + 𝛼(𝒇𝑛 − 𝒇̅𝑛) + 𝒖𝒇,𝑛, (14) 

 𝒂𝑘,𝑛+1 = 𝒂𝑘,𝑛 + 𝒖𝒂,𝑛, (15) 

 𝒃𝑘,𝑛+1 = 𝒃𝑘,𝑛 + 𝒖𝒃,𝑛, (16) 

 𝒚̅𝑛+1 = 𝒚̅𝑛 + 𝒖𝒚̅,𝑛 (17) 

 

where 𝒇𝑛 is the fundamental frequency, 𝒇̅𝑛 is the mean fundamental 

frequency, 𝑇𝑠 =
1

𝑓𝑠
 is the sampling interval, 𝛼 is an autoregressive (AR) process 

coefficient for the instantaneous frequency model, and 𝒖∙,𝑛 are mutually 

uncorrelated white noise processes. A value of 𝛼 = 1 results in a random walk 
model and 𝛼 = 0 results in a white noise model. The variance of 𝒖𝑛 
determines how quickly the parameters are expected to change over time. 

Unlike previous frequency tracking models, in this model the mean 

frequency 𝒇̅𝑛 is modelled as a state variable that is distinct from the 

instantaneous frequency 𝒇𝑛. In the particle filter framework this permits the 
model to account for many possible mean frequencies with relatively small 
amplitude fluctuations about their means, though at an expense of increasing 
the dimension of the nonlinear portion of the state space. 

In many applications the range of the possible mean frequencies is known 
from domain knowledge. For example, in an application to track the heart rate 
of an adult, the range of typical adult heart rates is known. We model this by 

designing the state model such that 𝒇̅𝑛 has a uniform distribution 

𝑓~̅𝒰(𝑓min, 𝑓max). This is achieved by selecting a uniform distribution for the 

random step 𝒒𝒇̅,𝑛~𝒰(−𝛿𝒇̅, 𝛿𝒇̅) and using a nonlinear reflecting function to 

account for boundary effects 

 

 

𝑔[𝑓] = {

𝑓max − (𝑓 − 𝑓max) 𝑓max < 𝑓              
𝑓                               𝑓min < 𝑓 ≤ 𝑓max

𝑓min + (𝑓min − 𝑓) 𝑓 ≤ 𝑓min                    

. (18) 
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This essentially causes the mean frequency 𝒇̅𝑛 to bounce elastically from 

the boundaries at 𝑓max and 𝑓min, which in turn ensures that at any given time 
𝑛 the mean frequency is uniformly distributed within this range. 

2.5.2 Multi-modal posterior 

To demonstrate that the posterior distribution of instantaneous 
fundamental frequencies is multi-modal, it is useful to first consider a simplified 
case in which the posterior distribution can be analytically computed. In 
general it is difficult to solve for the posterior distribution exactly, even if a state 
space model of the process is known. However, if we use the simplifying 
assumptions that the sinusoidal coefficients and fundamental frequency are 
not changing over time, have uniform prior distributions, and the measurement 
noise is Gaussian, then we can solve for the posterior distribution with a least 
squares approach. In this case the observation model is 

 

 

𝒚𝑛 = [∑ 𝒂𝑘cos(𝑘𝝎𝑛) + 𝒃𝑘sin(𝑘𝝎𝑛)

𝑁ℎ

𝑘=1

] + 𝒚̅ + 𝒗𝑛 (19) 

 

where 𝝎 is the fixed fundamental frequency in radians, 𝒚̅ is the fixed signal 
mean, 𝒂𝑘 and 𝒃𝑘 are the fixed sinusoidal coefficients. If the fundamental 
frequency and measurement noise are known, this model is a linear function 
of the signal mean and sinusoidal coefficients. 

If we collect the unknown parameters into a single state vector 

 

 𝒙 = [𝒚̅ 𝒂1   …  𝒂𝑘 𝒃1  …  𝒃𝑘 𝝎] (20) 

 

then the posterior distribution is given by 

 

 
𝑝(𝒙|𝒚0:𝑛; 𝑟𝒗) =

𝑝(𝒚0:𝑛|𝒙; 𝑟𝒗)𝑝(𝒙)

𝑝(𝒚0:𝑛; 𝑟𝒗)
. (21) 

 

Since we have assumed a uniform prior, 𝑝(𝒙) = 𝑐 for some constant 𝑐, 
the posterior distribution is proportional to the likelihood function. For a 
specified value of the fundamental frequency, the remaining parameters can 
be estimated by linear least squares, or, equivalently, maximum likelihood. An 

unbiased estimate of the measurement noise variance 𝑟𝒗 is then given by  

 

 

𝑟̂𝒗 =
1

𝑁T − 1 − 2𝑁ℎ
∑(𝒚𝑛 − 𝒚̂𝑛)2

𝑁T

𝑛=1

 (22) 

 

and the marginal posterior is then 
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 𝑝(𝝎|𝒚0:𝑛) = max𝒚̅,𝒂𝑘,𝒃𝑘
𝑝(𝒚0:𝑛|𝒙; 𝑟̂𝒗). (23) 

 

This estimated posterior distribution evaluated as a function of frequency for 

a signal with 𝑁T = 500 samples, 𝑁h = 5 harmonics, and a signal-to-noise ratio 
(SNR) of 3 dB is shown in Figure 1. This demonstrates that the marginal 
posterior distribution contains many modes, which limits the accuracy of state 
space methods such as the extended Kalman filter (EKF) and unscented 
Kalman filter (UKF) that characterize the posterior by the mean and 
covariance alone. 

 

 

Figure 1   Logarithmic posterior PDF of fundamental frequencies for a multi-
harmonic signal with 10 harmonics. 

 

2.6 Performance measure 

There are several performance measures for the harmonic tracking 
problem such as normalized mean-squared-error (NMSE) of the predicted 
signal, frequency mean-squared-error (FMSE), and mean-time-to-lock (MTL) 
for the frequency estimate [8]. Among them, we chose two measures: the 
NMSE of the predicted signal and the FMSE of the fundamental frequency. 
FMSE measures the accuracy of the fundamental frequency estimation alone 
while NMSE represents how accurately the state estimates describe the 
original signal. For real signals only NMSE can be computed since other 
measures require knowledge of the true state, which is not known. 
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FMSE is an important measure when the main goal of tracking is accurate 
estimation of the fundamental frequency. It can be written as follows, 

 

 

 
FMSE =

∑ (𝒇𝑛 − 𝒇̂𝑛)
2𝑁T

𝑛=1

𝑁T
 (24) 

 

 

whose unit is Hz2. We will report √FMSE in Hz. 

 

NMSE of signal estimation ranges from 0 to ∞. When its value is below 
1, the tracker does a better job than a simple mean estimator. If its value is 
greater than 1, the tracker performs worse than estimating the signal to be 
equal to the signal mean. The normalized mean-square-error (NMSE) can be 
calculated as follows, 

 

 

 
NMSE =

∑ (𝒚𝑛 − 𝒚̂𝑛)2𝑁T
𝑛=1

∑ (𝒚𝑛 − 𝒚̅𝑛)2𝑁T
𝑛=1

. (25) 

 
 

3 RESULTS 

In subsequent sections we apply three particle filters (MPF, Optimal 
MAM-PF, and Fast MAM-PF) to synthetic and real signals, where the 
fundamental frequency’s marginal posterior distribution is non-Gaussian and 
multi-modal. 

3.1 Multi-harmonic tracker comparison 

Given the same number of particles, each of the trackers requires 
different computational load and yields different performance results. In order 
to compare the computational load and performance of each tracker, we 
generated synthetic signals mimicking realistic multi-harmonic signals. The 
sampling frequency was 40 Hz and the signal duration was 5 min. The mean 

of the fundamental frequency (𝒇̅) was 1.5 Hz. The synthetic signal was 

generated with Formula 11 with a signal mean of 𝒚̅𝑛 = 0 and constant 

coefficients 𝒂𝑘 and 𝒃𝑘. An example of a synthetic signal’s spectrogram is 
illustrated in Figure 2. The higher harmonic components of the signal have 
more power than the lower harmonic components, which is common in real 
multi-harmonic signals such as electrocardiograms. The parameters used to 
generate the synthetic signals are listed in Table 1. 
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Figure 2   Spectrogram of a synthetic multi-harmonic signal whose 

fundamental frequency is centred at 1.5 Hz. 

 

Table 1. Realistic synthetic signal generation parameters. 

Name Symbol Value 

Number of particles 𝑁p 100 

Number of harmonics 𝑁h 10 

Sampling frequency 𝑓s 40 Hz 

Signal duration 𝑙 5 min 

Number of samples 𝑁T 12,000 

Signal-to-noise ratio SNR 10 dB 

Fundamental mean frequency 𝜔̅ 3𝜋 

Frequency coefficient 𝛼 0.99 

 

The two plots in Figure 3 depict the √FMSE and NMSE versus relative 
simulation times of the three multi-harmonic trackers. The Optimal MAM-PF 

substantially outperformed the MPF in terms of both √FMSE and NMSE. The 

main reason why the MPF has a larger √FMSE than the Optimal MAM-PF is 
that the MPF loses track of the true fundamental frequency occasionally and 
tracks one of the subharmonics, which are local maxima in the posterior 
distribution. The Optimal MAM-PF has less chance to erroneously track the 
subharmonics than the MPF since the particles of the Optimal MAM-PF are 
distributed throughout the entire possible fundamental frequency range of the 
signal and do not suffer from sample degeneracy. The erroneous frequency 
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tracking of the MPF causes it to have a very large NMSE, which is slightly 
greater than 1. 

 

 

Figure 3   (a) √FMSE versus simulation time. (b) NMSE versus simulation 
time. The horizontal lines represent the mean values while the vertical bars 

the one-standard-deviation ranges around the means. 

 

As shown in Figure 3, the simulation time required to obtain the Optimal 
MAM-PF state estimates was approximately 125 times greater than the MPF. 
However, the performance of the Fast MAM-PF was comparable to that of the 
Optimal MAM-PF, while the computation duration was only 1:6 times greater 
than the MPF’s. This result is in line with the fact that the computational 
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burdens of the MPF and MAM-PF are proportional to 𝒪(𝑁p) and 𝒪(𝑁p
2), 

respectively, where the total number of particles 𝑁p was 100 in this simulation 

study. Since the Fast MAM-PF is nearly as accurate as the Optimal MAM-PF, 
but requires substantially less computation, we limit the remaining 
performance analysis to the MAM-PF and Fast MAM-PF trackers. 

3.2 Equalizing computational load 

The Fast MAM-PF requires more computation than the MPF due to the 
Viterbi search for the most probable past path of each particle. In order to 
make a fair comparison between these two filters, we first ran the Fast MAM-
PF with 150 particles and measured the simulation duration. Then, we ran the 
MPF with various numbers of particles to find the number of particles with 
which the MPF uses the same simulation duration. With 180 particles the 
simulation time of the MPF was equal to that of the Fast MAM-PF. This 
process approximately equalizes the processing time required for each filter 
for the frequency tracking applications discussed in the following sections. 

3.3 Adaptation ability of MPF and Fast MAM-PF 

The spectrogram of a synthetic multiharmonic signal with an abrupt jump 
in the fundamental frequency from 2 Hz to 4 Hz after 60 s is shown in 
Figure 4(a). We applied both the Fast MAM-PF and the MPF harmonic 
trackers to this signal to compare their tracking ability. We hypothesized that 
the Fast MAM-PF harmonic tracker would be able to detect abrupt changes 
to the posterior distribution of fundamental frequencies and regain track, while 
the MPF would fail to regain track. Table 2 summarizes the further details of 
the synthetic signal generator. The user-specified parameters of the filters are 
listed in Table 3.  

 

Table 2. Frequency shifting synthetic signal generation parameters. 

Name Symbol Value 

Number of harmonics 𝑁h 5 

Sampling frequency 𝑓s 50 Hz 

Signal duration 𝑙 5 min 

Number of samples 𝑁T 1.5e4 

Signal-to-noise ratio SNR 10 dB 

Fundamental frequency 𝜔 4𝜋 & 8𝜋 

 

The estimated fundamental frequencies for the trackers in dark and light 
grey lines are shown in Figure 4(b). The advantage of the Fast MAM-PF 
approach is demonstrated by the response to the abrupt shift in frequency. 
Although it takes time for the Fast MAM-PF tracker to regain track after the 
sudden shift, it eventually locks on to the true frequency. It is able to make this 
transition, even though it is inconsistent with the underlying statistical model, 
because shortly after the frequency jump those particles at high frequencies 
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become more probable than the particles at low frequencies. The MPF, 
however, continues to estimate the fundamental frequency around 2 Hz 
because all of the particles are clustered about this frequency. Thus, the poor 
performance of the MPF is due to sample impoverishment. 

 

 

 
Figure 4   (a) Spectrogram of a synthetic multi-harmonic signal. (b) 

Estimated fundamental frequencies (Fast MAM-PF: black line, MPF: grey 
line). 
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Table 3. User-specified parameters for the filters (Fast MAM-PF/MPF). 

Name Symbol Value 

Number of particles 𝑁p 150/180 

Resampling threshold 𝑁t 𝑁p/100 

Number of harmonics 𝑁h 5 

Frequency coefficient 𝛼 0.999 

Covariance coefficient 𝛽 0.98 

Frequency slew rate 𝛿𝒇̅ 1/𝑓𝑠Hz 

Max. mean frequency range 𝑓max 5 Hz 

Min. mean frequency range 𝑓min 1 Hz 

Phase initial 𝜃0 0 

Frequency initial 𝑓0 2 Hz 

Frequency mean initial 𝑓0̅ 2 Hz 

Amplitudes initial 𝑎0 & 𝑏0 0.01 

Signal mean initial 𝑦̅0 0 

Frequency variance 𝑅𝑞𝑓
 1e-4 

Mean Frequency variance 𝑅𝑞𝑓̅
 1e-6 

Amplitudes variance 𝑅𝑞𝑎
 & 𝑅𝑞𝑏

 var(y)/10 

Signal mean variance 𝑅𝑞𝑓̅
 1e-2 

Measurement variance 𝑅𝑣 var(y)/10 

 

 

Figure 5   Distributions of particles (𝛼) of the Fast MAM-PF and those (𝑤) of 
the MPF. (a) 𝛼 versus frequency at 60 s. (b) 𝛼 versus frequency at 300 s. (c) 

𝑤 versus frequency at 60 s. (d) 𝑤 versus frequency at 300 s. 
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It is illustrated in Figure 5 how the particles of the Fast MAM-PF and MPF 
are distributed at 60 s and 300 s. The true fundamental frequency value was 
2 Hz up to 60 s and 4 Hz thereafter. Plot (d) in Figure 5 shows that the particles 
of the MPF were clustered about 2 Hz although the true fundamental 
frequency value was 4 Hz. This is a good example of the particles of the MPF 
locking onto one of the subharmonics of the fundamental frequency.  

3.4 Real signal example 

We applied both harmonic trackers to a real electrocardiogram (ECG) 
signal sampled at 500 Hz containing a high level of noise. The goal of this 
experiment is to compare the ability of the trackers to retain track on a noisy 
signal amid realistic signal artifacts such as signal dropouts and medical 
interventions. The ECG signal chosen here is one of the noisiest signals in the 
MIMIC database [22] on PhysioNet [10]. The estimated frequencies are the 
results of averaging the results of 100 simulations. 

 

 
Figure 6   (a) Spectrogram of a real ECG signal. (b) Estimated fundamental 

frequencies (MAM-PF: dark grey line, MPF: light grey line). 
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The spectrogram of a real ECG signal (a) and the estimated fundamental 
frequencies using the two trackers (b) are depicted in Figure 6. The Fast MAM-
PF does not lose track of the fundamental frequency during the entire duration 
of the signal, including the noisy segment from 9 to 16 min. In contrast, on 
average the MPF loses track of the fundamental frequency starting from 
around 9 min and never locks on to the true fundamental frequency again. 

 

 
Figure 7   (a) Spectrogram of residuals after applying the MAM-PF. (b) 

Spectrogram of residuals after applying the MPF. 

 

The spectrograms of the signal estimation errors of the Fast MAM-PF (a) 
and MPF (b) trackers are illustrated in Figure 7. The Fast MAM-PF removes 
the fundamental frequency component and its harmonic components 
successfully. The MPF, however, fails to remove the harmonic components in 
the ECG signal approximately from 11 min. The residual spectrogram of the 
MPF shows very low power (white area) around 1.2 Hz after 11 min because 
the MPF removed one of the subharmonics of the fundamental frequency, 
which was at approximately 1.5 Hz. 

4 DISCUSSION AND SUMMARY 

We introduced two new algorithms that integrate marginalization and 
MAP estimation for Sequential Monte Carlo methods. Both algorithms 
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overcome two critical issues that arise when marginalization and MAP 
estimation are integrated, and that do not occur when these methods are used 
separately. We used a multi-harmonic frequency tracking problem as an 
example application to demonstrate the benefits of the new algorithm (MAM-
PF) over a traditional marginalized particle filter (MPF). The new algorithms 
can find the correct mode more often and regain track after sudden shifts in 
the state more quickly than the MPF. They are also more immune to signal 
drop-outs and severe noise than the MPF. 

The MAM-PF tracker can be applied to various quasiperiodic biomedical 
signals such as ECG, ABP, MER, and EEG signals. For example, the 
proposed algorithm (Fast MAMPF) has led to the development of a novel 
pulse pressure variation tracking method for ABP signals [15, 16]. 

In the previous work, we conducted a thorough simulation study to 
compare the performance of two tracking algorithms, which were based on 
the extended and sigma-point Kalman filters [19]. From the simulation study 
we learned that losing the track of the instantaneous frequency of a given 
signal is the main factor causing the performance difference between two 
tracking algorithms. That is the reason why the present work is focused on 
demonstrating the superior tracking ability of the MAM-PFs in extreme cases 
such as a sudden frequency shift and low signal-to-noise ratio. A thorough 
simulation study may be of value to compare the tracking performance of the 
MAM-PFs and MPF. However, the results from such study will be in line with 
what is shown in Figure 3 and Figure 6.  
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