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 17 
ABSTRACT Archaeosine (G

+
) is a structurally complex modified nucleoside found quasi-universally in 18 

the tRNA of Archaea and located at position 15 in the dihydrouridine loop, a site not modified in any 19 

tRNA outside of the Archaea. G
+
 is characterized by an unusual 7-deazaguanosine core structure with 20 

a formamidine group at the 7-position. The location of G
+
 at position 15, coupled with its novel 21 

molecular structure, led to a hypothesis that G
+
 stabilizes tRNA tertiary structure through several 22 

distinct mechanisms. To test whether G
+
 contributes to tRNA stability and define the biological role of 23 

G
+
, we investigated the consequences of introducing targeted mutations that disrupt the biosynthesis 24 

of G
+
 into the genome of the hyperthermophilic archaeon Thermococcus kodakarensis and the 25 

mesophilic archaeon Methanosarcina mazei, resulting in modification of the tRNA with the G
+
 26 

precursor 7-cyano-7-deazaguansine (preQ0) (deletion of arcS) or no modification at position 15 27 

(deletion of tgtA). Assays of tRNA stability from in vitro prepared and enzymatically modified tRNA 28 

transcripts, as well as tRNA isolated from the T. kodakarensis mutant strains, demonstrate that G
+
 at 29 

position 15 imparts stability to tRNAs that varies on the overall modification state of the tRNA and the 30 

concentration of magnesium chloride, and that when absent results in profound deficiencies in the 31 

thermophily of T. kodakarensis.  32 

 33 

IMPORTANCE  Archaeosine is ubiquitous in archaeal tRNA where it is located at position 15. Based 34 

on its molecular structure it was proposed to stabilize tRNA, and we show that loss of archaeosine in 35 

Thermococcus kodakarensis results in a strong temperature sensitive phenotype while there is no 36 

detectable phenotype when lost in Methanosarcina mazei. Measurements of tRNA stability show that 37 

archaeosine stabilizes tRNA structure, but that this effect is much greater when present in otherwise 38 

unmodified tRNA transcripts than in the context of fully modified tRNA, suggesting that it may be 39 

especially important during the early stages of tRNA processing and maturation in thermophiles. Our 40 

results demonstrate how small changes in the stability of structural RNAs can be manifested in 41 

significant biological-fitness changes. 42 

 43 

 44 
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 45 

INTRODUCTION 46 

Transfer RNA (tRNA) is notable for harboring a stunning diversity of post-transcriptional 47 

chemical modifications, typically representing ~10-20% of the nucleosides in a particular tRNA (1). To 48 

date, over 130 modified nucleosides have been structurally characterized (2,3), which vary from 49 

simple methylation of the base or ribose to extensive "hypermodification" of the canonical bases, the 50 

latter of which can result in radical structural changes and involve multiple enzymatic steps to 51 

complete. While we are still far from a comprehensive understanding of the roles of tRNA 52 

modification, it has become clear that modified nucleosides are integral to tRNA function at many 53 

levels, influencing translation (4-8), tRNA structure and stability (1,9-13), and regulatory events (14-54 

16).   55 

Among the most complex modifications known to occur in tRNA are the 7-deazaguanosine 56 

nucleosides archaeosine (G
+
) (17) and queuosine (Q) (18) (Figure 1). Although both nucleosides 57 

share the core 7-deazaguanine structure, they are rigorously segregated with respect to phyla and 58 

location in the tRNA. Queuosine is ubiquitous throughout Bacteria and Eukarya (19) where it occurs 59 

specifically at the wobble position (20) in a subset of tRNAs (those coding for Tyr, His, Asp, and Asn). 60 

In contrast, archaeosine is present exclusively in the Archaea, where it is found in virtually all archaeal 61 

tRNAs at position 15 of the dihydrouridine loop (21), a site not modified in any tRNA outside of the 62 

Archaea; in at least a few species, G
+
 is also present at position 13 (22). 63 

Despite the observed phylogenetic segregation, G
+
 and Q share a significant portion of their 64 

biosynthesis, and they remain the only modified nucleosides known for which a portion of the pathway 65 

occurs extrinsic to the tRNA, requiring the initial formation of a modified precursor base (23). All other 66 

modified nucleosides are formed exclusively via modification of a genetically encoded base in the 67 

RNA transcript. The pathway begins (Figure 1) with the conversion of GTP to dihydroneopterin 68 

triphosphate (H2NTP; Bacteria, Archaea) or the cyclic monophosphate (H2NcMP; Archaea) by the 69 

enzyme GCYH-IA in Bacteria (24) or GCYH-IB in Bacteria (25,26) and Archaea (27), steps shared 70 

with the pterin pathways. After hydrolysis of H2NcMP (Archaea) by the enzyme MptB (28) the 71 

dihydroneopterin monophosphate (or triphosphate) is converted to carboxytetrahydropterin (CPH4) 72 

through the action of QueD (29), followed by the QueE catalyzed ring contraction to 7-carboxy-7-73 

deazaguanine (CDG) (30), and the formation of 7-cyano-7-deazaguanine (preQ0) by QueC (31). 74 

PreQ0 is the point of divergence in the bacterial and archaeal pathways, with preQ0 serving as the 75 

substrate for the enzyme tRNA-guanine transglycosylase (aTGT in Archaea, also known as 7-cyano-76 

7-deazaguanine tRNA-ribosyltransferase), which catalyzes the exchange of the genetically encoded 77 

guanine-15 for preQ0 in archaeal tRNA. The preQ0-modified tRNA is converted to G
+
-modified tRNA 78 

by the action of either ArcS (32), QueF-L (33), or GAT-QueC (34), depending on the organism. In 79 

Bacteria preQ0 is first reduced to preQ1 (35) before being inserted into specific bacterial tRNA at 80 

position 34 (the wobble position) by a bacterial tRNA-guanine transglycosylase (bTGT) (23) and 81 

further elaborated to Q-modified tRNA (36-38). Eukarya lack the de novo pathway and instead 82 

scavenge queuine, the free base of queuosine, from the environment, and a eukaryal TGT (eTGT) 83 

inserts queuine directly into the relevant tRNA (39), again at position 34. 84 
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 3 

The location of queuosine in the anticodon of specific bacterial and eukaryotic tRNAs 85 

suggests a role in modulating translational fidelity and efficiency, and studies are consistent with such 86 

a role (40-44). Archaeosine’s location at position 15, in the body of the tRNA, and its novel molecular 87 

structure led to a hypothesis that this modification functions (at least in part) to stabilize the structure 88 

of archaeal tRNA (17) via coulombic interactions of the positively charged formamidine group and the 89 

backbone phosphates in the vicinity. Notably, nucleotides 15 and 48 comprise the Levitt base-pair, a 90 

conserved structural motif in the core of all tRNA that is crucial for the overall structural integrity of 91 

tRNA. Computational studies revealed that the Levitt base-pair H-bonds are stronger in archaeosine-92 

modified tRNA as compared to unmodified tRNA (45) due to the electron withdrawing effect of the 93 

formamidine moiety (45), an effect that mimicked metal ion coordination to N7 of guanine. Thus, two 94 

distinct mechanisms could be relevant to potential structural stabilization by G
+
. 95 

To test the hypothesis that G
+
 serves to stabilize the structure of tRNA we investigated the 96 

role of archaeosine both in vivo and in vitro. If as proposed G
+
 is important to tertiary structural 97 

stability of tRNA, this role would be especially critical in thermophilic organisms, where growth 98 

temperatures approach or exceed those needed to denature isolated tRNA, and G
+
-defective mutants 99 

should exhibit, at minimum, a temperature sensitive phenotype. Therefore, we carried out targeted 100 

gene knockouts of two genes in the G
+
 pathway in the hyperthermophile Thermococcus kodakarensis 101 

and investigated the consequences of these mutations on growth over a range of temperatures. As a 102 

complement we also generated a knockout strain in the mesophile Methanosarcina mazei resulting in 103 

a strain lacking G
+
 and investigated its growth under a wide variety of growth conditions. To directly 104 

probe the structural impact of modification with preQ0 or G
+
 we investigated the thermal stability of 105 

tRNA possessing or lacking these modifications in the context of both fully modified tRNA isolated 106 

from T. kodakarensis strains as well as tRNA produced via in vitro transcription and modified with 107 

either preQ0 or G
+
 but lacking all other modifications. 108 

We discovered  that the genes of the G
+
 pathway are non-essential in both T. kodakarensis 109 

and M. mazei, but deletion strains of T. kodakarensis are temperature sensitive as predicted, 110 

consistent with the results of a recent genome wide transposon mutagenesis screen (46) in which one 111 

of these genes (tgtA) was identified as important to thermophily. Additionally, we found that 112 

modification with G
+
 imparts a modest but measurable stabilizing effect on tRNA that is most apparent 113 

in tRNA transcripts that are otherwise unmodified. 114 

 115 

RESULTS 116 

 117 

T. kodakarensis and M. mazei mutant construction  118 

We targeted two genes encoding archaeosine biosynthetic proteins in the hyperthermophilic 119 

model archaeon Thermococcus kodakarensis for deletion from the genome. TK0760 (tgtA) encodes a 120 

homologue of the archaeal tRNA-guanine transglycosylase (aTGT, UniProt Q5JHC0) while TK2156 121 

(arcS) encodes a homologue of archaeosine synthase (ArcS, UniPrpot Q5JHG7) (Figure 2, panels A 122 

and D, respectively); these enzymes catalyze the final, and only tRNA dependent, steps in the 123 
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 4 

biosynthesis of archaeosine (Figure 1). Beginning with strain TS559, markerless deletion of the entire 124 

coding sequence of tgtA was possible, as was the deletion of most of arcS (to the exclusion of the 23 125 

bp that overlap with the divergent locus, TK2155). Deletion of each locus was confirmed by a series of 126 

diagnostic PCRs with purified genomic DNAs from each strain (Figure 2, panels B and E, 127 

respectively). Further confirmation of each deletion was provided by Southern blots of BspHI and 128 

BstEII digested preparations of genomic DNA from strains T. kodakarensis tgtA and arcS, 129 

respectively (Figure 2, panels C and F). For each locus, probes complementary to the target gene 130 

(probes 2 & 4, Figure 2) were unable to hybridize to any location on the genomes from the deletion 131 

strains, while probes complementary to adjacent sequences (probes 1 & 3, Figure 2) did hybridize to 132 

genomic fragments that were shorter in deletion strains than those derived from strain TS559. In both 133 

instances, the difference in size of the identified DNA fragment was consistent with the size of the 134 

target gene that was deleted. 135 

To investigate the consequences of archaeosine loss in a mesophile, the M. mazei gene 136 

MM1101 (tgtA) encoding aTGT (UniProt Q8PXW5) (47) was disrupted by the insertion of a 137 

puromycin-resistance (pac) cassette by homologous recombination (Figure 3, panel A).  Three 138 

independent puromycin-resistant transformants were isolated and grew at 37 ˚C.  The absence of the 139 

tgtA gene and presence of the puromycin resistance cassette was confirmed by both PCR and 140 

Southern hybridization (Figure 3, panels B and C, respectively).   141 

Nucleoside analysis of bulk tRNA from the T. kodakarensis and M. mazei cell lines 142 

To confirm that tRNAs in the mutant strains were appropriately modified, purified tRNA from 143 

each of the T. kodakarensis and M. mazei strains were subjected to nuclease digestion and 144 

dephosphorylation, followed by HPLC analysis of the resulting nucleosides. The tRNA from the three 145 

T. kodakarensis strains displayed the predicted pattern of modified nucleosides (Figure 4A); preQ0-146 

nucleoside and G
+
 were absent from the T. kodakarensis tgtA strain, and preQ0 was present in the  147 

T. kodakarensis arcS strain, with G
+ 

being present only in the wild-type strain. Similarly, only the 148 

tRNA from the wild-type M. mazei strain contained G
+
 (Supplemental Figure 1). 149 

To further address the modification status of the tRNA and confirm the peak assignments we 150 

analyzed the tRNA from the T. kodakarensis strains by LCMS (Figure 4B-D). Analysis of the 151 

nucleoside digests from the isolated tRNA from the T. kodakarensis cell lines confirmed the initial 152 

HPLC data with one exception; while no G
+
 was detected in the tRNA digests from either the T. 153 

kodakarensis tgtA or arcS strains by HPLC, LCMS analysis was able to detect G
+
 in the T. 154 

kodakarensis arcS samples, which varied from 1.6 – 6.6% of the intensity of that for preQ0-155 

nucleoside (Figure 4D).  156 

Temperature dependent growth of T. kodakarensis strains disrupted in archaeosine 157 

biosynthesis 158 

Deletion strains in T. kodakarensis were constructed at 85 ˚C and we noted that colonies from 159 

strains deleted for tgtA or arcS were slightly smaller than colonies produced by TS559. It was clear 160 

that loss of archaeosine biosynthesis was not lethal, but it appeared that loss of archaeosine 161 

biosynthesis did hinder growth. To more accurately measure growth of each strain, we monitored the 162 
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optical densities of growing cultures, while varying the incubation temperature to identify any potential 163 

role for archaeosine modification at reduced (70 ˚C), optimal (85 ˚C) or elevated (95 ˚C) temperatures 164 

(Figure 5). T. kodakarensis can support two radically different metabolic strategies based on the 165 

availability of elemental sulfur (S˚) in the media, thus we monitored growth in the absence and 166 

presence of sulfur at three different temperatures. 167 

While deletion of tgtA or arcS had minimal or essentially no effect, respectively, on growth of 168 

T. kodakarensis cultures at 70˚C (Figure 5, panels A and D), severe phenotypes were noted at 169 

elevated (95 ˚C) temperatures where neither deletion strain could support robust growth even after 170 

>30 hours incubation (Figure 5, panels C and F). Growth at the optimal temperature of 85 ˚C was 171 

more modestly compromised for strains deleted for arcS or tgtA, with growth more severely affected in 172 

the absence of sulfur (Figure 5, panels B and E), an observation that extended to growth of the arcS 173 

strain at 70 ˚C. 174 

Growth under diverse conditions of M. mazei strains disrupted in archaeosine biosynthesis 175 

We tested three independent M. mazei mutants with insertions in the tgtA gene for growth 176 

under various conditions relative to wild-type M. mazei. Growth was indistinguishable between wild-177 

type and mutants at reduced (25 ˚C), sub-optimal (30 ˚C), and optimal (37 ˚C) growth temperatures 178 

(Supplemental Figure 2). In order to test additional stress conditions the M. mazei strains were grown 179 

under multiple conditions that have previously been determined to induce a stress response (48). 180 

These included the presence of metals (e.g. copper and nickel), high salt, the absence of sulfide, or 181 

the presence of antimicrobials. In each case, no difference in growth between wildtype and mutants 182 

was detected (Supplemental Figure 3).  183 

Thermal denaturation study of in vivo tRNA
Gln

 from T. kodakarensis and in vitro tRNA
Gln

 184 

transcripts 185 

To directly probe for a potential structural role for G
+
 in tRNA we investigated the thermal 186 

denaturation of tRNA extracted from the T. kodakarensis strains by measuring the hyperchromicity at 187 

260 nm upon denaturation. In these experiments the raw melt data was processed to obtain a 188 

differential melting profile (first derivative plot of dAbs/dT vs temperature), which allowed the apparent 189 

melting temperature (Tm) to be easily determined over a range of magnesium chloride concentrations, 190 

from 0 to 10 mM in a buffer of 10 mM sodium cacodylate (pH 7.0) and 100 mM NaCl. Although it was 191 

recently reported that unfractionated tRNA from a T. kodakarensis strain lacking G
+
 exhibited a Tm 2 192 

˚C lower than unfractionated tRNA from the wild-type strain (46), we were unable to observe 193 

discernable differences in the denaturation profiles of unfractionated tRNA from our three strains (data 194 

not shown), so we chose to investigate the behavior of a specific tRNA isolated from these strains, 195 

and selected tRNA
Gln

 for further investigation. 196 

The tRNA
Gln

 isoacceptors were purified from the T. kodakarensis strains utilizing an affinity 197 

approach (49) as detailed in the Materials and Methods.  As with the unfractionated tRNA, the raw 198 

thermal denaturation data (Supplemental Figure 4) from the purified tRNA
Gln

 derived from the three 199 

strains was processed to obtain differential denaturation profiles (Figure 6). Surprisingly, the tRNA
Gln

 200 

from the parental strain (TS559) containing G
+
 at position 15, and the tgtA strain containing G, 201 
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behaved almost identically (Figure 6). In the absence of Mg
2+

 both exhibit a slight shoulder at ~70 C 202 

and a main transition (the TM) at ~83 C (Figure 6A). The TM is similar for tRNA
Gln

 from the T. 203 

kodakarensis arcS strain (containing preQ0), but there is also a distinct shoulder in the latter at ~64 204 

C (Figure 6A). At 100 µM Mg
2+

 the profiles for the tRNA
Gln

 from the TS559 and T. kodakarensis tgtA 205 

strains have lost the shoulder and exhibit a single well-defined TM at 83 C and 82 ˚C, respectively 206 

(Figure 6B). At the same Mg
2+

 concentration the differential plot for the tRNA
Gln

 from the T. 207 

kodakarensis arcS strain has coalesced into a very broad but asymmetric profile with the TM at ~75 208 

C. At 10 mM Mg
2+

 the tRNA
Gln

 from all three strains denature at a temperature beyond the 98 C limit 209 

of the experiment (Figure 6C). 210 

To investigate the potential role of G
+
 in tRNA stability free from the effects of other modified 211 

nucleosides, we carried out thermal denaturation studies on tRNA produced through in vitro 212 

transcription and enzymatically modified to contain preQ0 or G
+
 at position 15. A tRNA transcript 213 

corresponding to T. kodakarensis tRNA
Gln

(CUG) (with the 5’ adenosine substituted for guanosine) 214 

was prepared from a duplex DNA template as described in the Materials and Methods. A portion of 215 

the tRNA
Gln

 transcript was then reacted in vitro with recombinant aTGT (Figure 1) from 216 

Methanocaldococcus jannaschii (50) to replace the genetically encoded G at position 15 with preQ0. A 217 

portion of the preQ0-modified tRNA was then further reacted with recombinant M. jannaschii ArcS (32) 218 

to produce G
+
-modified tRNA (Figure 1). Quantitation of preQ0 incorporation and subsequent 219 

conversion to G
+ 

was carried out as described in the Materials and Methods, and the modification 220 

state of the tRNA confirmed by HPLC (Supplemental Figure 5). 221 

Similar to our observations with tRNA
Gln

 isolated from the T. kodakarensis tgtA mutant, in 222 

the absence of magnesium the unmodified tRNA
Gln

 transcript exhibited a shoulder in the differential 223 

thermal denaturation plot at ~70 ˚C along with a TM of 84 C (Figure 7A). In contrast, the effect of 224 

modification at position 15 on the tRNA
Gln

 transcript was markedly different than that observed for the 225 

in vivo produced tRNA. The preQ0- and G
+
-modified tRNA

Gln
 transcripts both exhibit a TM significantly 226 

above that of the unmodified tRNA
Gln

 at 88 and 89 ˚C, respectively. While both profiles also feature a 227 

shoulder - for the G
+
-modified tRNA

Gln
 transcript it is very distinct – these occur at a lower temperature 228 

(~67 ˚C) than the unmodified transcript. Notably, the TM’s for the modified transcripts are significantly 229 

higher than observed in the fully modified tRNA isolated from T. kodakarensis. In the presence of 100 230 

µM MgCl2 the TM increases to ~86 ˚C for the unmodified transcript and to 90 ˚C for the G
+
-modified 231 

transcript, while the TM remains unchanged at 88 ˚C for the preQ0-modified transcript (Figure 7B). The 232 

shoulder persists in the profiles for all three tRNAs with an increase of 1-2 ˚C. In the presence of 10 233 

mM MgCl2 the denaturation is not complete for any of the tRNAs at 98 ˚C (Figure 7C), the highest 234 

temperature reached in the experiment. 235 

 236 

DISCUSSION 237 

Archaeosine is a structurally complex modified nucleoside found in the tRNA of Archaea, and 238 

recently has been discovered in viral and bacterial DNA (51). The proposals that G
+
 functions to 239 
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stabilize tRNA tertiary structure (17,45) prompted us to investigate this putative role in vivo through 240 

the construction and phenotypic characterization of T. kodakarensis and M. mazei strains that were 241 

disrupted in G
+
 biosynthesis, and in vitro by directly measuring the thermal stability of tRNA in the 242 

presence and absence of G
+
.  243 

Our observation of temperature-sensitivity in T. kodakarensis lacking G
+
 is consistent with a 244 

role in structural stabilization of the tRNA by G
+
, and mirror the results of a recent transposon 245 

mutagenesis study (46) in T. kodakarensis, which reported that disruption of the tgtA gene and loss of 246 

G
+
 modification was accompanied by loss of thermophily. Importantly, because we also observed this 247 

phenotype in the arcS mutant, which possesses preQ0-modified tRNA, the loss of thermophily can 248 

be conclusively attributed to the unique physicochemical properties of G
+
. Interestingly, we observed 249 

no phenotypic differences between the wild-type and G
+
 deficient strains of the mesophile M. mazei 250 

under a range of growth conditions including growth at sub-optimal temperatures, while in Haloferax 251 

volcanii, also a mesophile and the only other organism in which loss of G
+
 has been investigated, loss 252 

of G
+
 was accompanied by cold-sensitivity (52). Although both hot and cold tolerances can be 253 

rationalized by tRNA structural effects, the nature of these effects are typically in opposition to one 254 

another, with heat tolerance being associated with increasing structural rigidity and cold tolerance on 255 

relaxing structural rigidity, so the observation of both phenotypes accompanying loss of G
+
 is 256 

intriguing, and may be due to the significant differences in the in vivo environments, most notably the 257 

very high salt concentrations in halophilic species. 258 

While the presence or absence of G
+
 in tRNA

Gln
 isolated from T. kodakarensis had minimal 259 

impact on the overall stability of the otherwise fully modified tRNA, its presence had a significant 260 

effect on the stability of the tRNA transcripts, with the stabilizing effect manifested in a 4-5 ˚C increase 261 

in the Tm depending on the concentration of MgCl2. The magnitude of the observed change in Tm is of 262 

the order of other modifications that have been characterized as structurally important (13), and 263 

approaches that for ribothymidine at position 54 of E. coli tRNA
Met

 (53), which contributes 6 ˚C to the 264 

Tm of the tRNA. The fact that the effect is most pronounced for in vitro transcribed tRNA, which is 265 

devoid of other modifications, suggests that this role may be most important in the early stages of 266 

folding and processing the nascent transcript. This interpretation is consistent with kinetic studies of 267 

aTGT, which revealed that the best substrates for the enzyme are unstructured RNAs (54,55). While 268 

disruption of tRNA folding and/or processing due to the absence of G
+
 can easily account for the 269 

growth defects observed at higher temperatures for both T. kodakarensis mutants, we cannot rule out 270 

the possibility that otherwise fully modified tRNAs respond differentially to the presence or absence of 271 

G
+
, and some tRNA (other than tRNA

Gln
) may exhibit more significant decreases in thermal stability in 272 

the absence of G
+
. 273 

Surprisingly, deletion of arcS in T. kodakarensis did not completely abolish G
+
 biosynthesis, 274 

with the knockout strain displaying small amounts of G
+
 up to 6.6% that of preQ0-nucleoside. While 275 

this low level of G
+
 was not significant in terms of the growth or thermal denaturation experiments, it 276 

does lead to the question of how G
+
 is formed in this mutant. The formation of G

+
 from preQ0-modified 277 

tRNA is the only step in the G
+
 pathway in which multiple non-homologous enzymes have been 278 
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discovered that catalyze the same transformation (Figure 1); in addition to ArcS, the enzymes QueF-L 279 

(33,34) and GAT-QueC (34) have also been shown to catalyze the formation of G
+
 from preQ0-280 

modified tRNA. While a number of organisms possess more than one of these enzymes (34), neither 281 

QueF-L or GAT-QueC is present in T. kodakarensis (34). However, a number of organisms that 282 

possess genes encoding the rest of the G
+ 

pathway lack genes encoding any of the three known 283 

enzymes that form G
+
 (reference (34) and Supplementary Table 1), so it is likely that there exists at 284 

least one more enzyme responsible for G
+
 formation, and it may be present in T. kodakarensis. 285 

Overall, both the in vivo results with T. kodakarensis and the in vitro biophysical studies (ours 286 

and those of Orita et al. (46)), support the original proposal that G
+
 is important for thermostability of 287 

archaeal tRNA (17), and demonstrate how small changes in the stability of structural RNAs can be 288 

manifested in significant biological-fitness changes. Nevertheless, the near ubiquity of G
+
 in the 289 

Archaea (it is absent only in Haloquadratum walsbyi), the majority of which are not thermophiles, 290 

argues for a more fundamental and universal role, but the absence of any distinct phenotypes in the 291 

M. mazei tgtA mutant suggest that this role is a subtle one. 292 

  293 

MATERIAL AND METHODS 294 

General 295 

Buffers and salts of the highest grade available were purchased from Sigma-Aldrich unless 296 

otherwise noted.  DEPC (diethylpyrocarbonate) treated water was used for all solutions used for RNA 297 

related assays (56).  All buffers and solutions were otherwise prepared with Millipore MQ grade water. 298 

Dithiothreitol (DTT), isopropyl-β-D-thiogalacto-pyranoside (IPTG), kanamycin sulfate, DEPC and 299 

ampicillin were purchased from RPI Corporation.  [8-
14

C]-guanine was purchased from PerkinElmer.  300 

Adenosine, guanosine, ATP, GTP, UTP, CTP were all purchased from Sigma-Aldrich. Nickel-nitrile 301 

tetraacetic acid (Ni
2+

-NTA) was purchased from Qiagen and Sigma-Aldrich.  Whatman GF-B filter 302 

disks were purchased from Fisher Scientific. Amicon centrifugal concentrators were from 303 

MilliporeSigma.  Dialysis tubing was obtained from ThermoFisher Scientific.  Plasmid Mini-Kits were 304 

from Fermentas and Qiagen. Oligonucleotides were obtained from IDT or Operon. All reagents for 305 

SDS-PAGE were purchased from BioRad. SDS-PAGE analysis was carried out using 12% (29:1 306 

Acrylamide:Bisacrylamide) gels and visualized with Coomassie Brilliant Blue.  DNA sequencing was 307 

carried out by the OHSU core facility in the Department of Molecular Microbiology and Immunology. 308 

The substrate preQ0 was synthesized as described previously (57) and purified by reverse phase 309 

HPLC and stored at room temperature in DMSO. The recombinant aTGT (50) and ArcS (32) from M. 310 

jannaschii were over-overproduced and purified as previously described. An expression plasmid of a 311 

His6-tagged construct of the 172-73 mutant of T7 RNA polymerase (58) was provided by Dr. John 312 

Perona. 313 

Instrumentation 314 

Analytical HPLC was performed on an Agilent 1100 series HPLC (G1312A binary pump, 315 

G1315A diode array detector). Preparative scale separation was achieved using a Hitachi HPLC (L-316 
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6200 pump and L-4000 single wavelength detector). UV-Vis spectroscopy was carried out on a Varian 317 

Cary 100 Bio spectrophotometer fitted with a thermostat-controlled multi-cell holder. 318 

T. kodakarensis strain construction 319 

T. kodakarensis strains markerlessly deleted for TGTa  and ArcS = were constructed 320 

essentially as described (59) using TS559 as the parental strain.  Briefly, non-replicative plasmids 321 

were temporarily integrated into the TS559 genome adjacent to the target locus, then excised through 322 

homologous recombination between direct repeats flanking the target gene. Markerless deletion of 323 

tgtA and the non-overlapping sequences of arcS were confirmed by diagnostic PCRs using purified 324 

genomic DNA as templates (Figure 2, panels B and E, respectively). The exact endpoints of the 325 

deletions were confirmed by sequencing amplicons generated from each locus generated with 326 

primers that bind to locations adjacent to each locus (primers A and B for tgtA; primers E and H for 327 

arcS). To confirm that neither tgtA nor arcS was relocated within the T. kodakarensis genome, total 328 

genomic DNA was purified, digested with either BstEII or BspHI, resolved and transferred for 329 

Southern blotting as previously described (60). Two Southern blots probes were employed to confirm 330 

the deletion of tgtA (probes 1 and 2), and two additional probes (probes 3 and 4) were used to confirm 331 

the deletion of arcS. Probe 1 was complementary to sequences within TK0759 that were located on 332 

the same BspH1 fragment as tgtA, while Probe 2 was complementary to tgtA sequences. Probe 3 333 

was complementary to sequences within TK2152 and TK2153 that were located on the same BstEII 334 

fragment as arcS, while Probe 4 was complementary to arcS sequences. Information on the 335 

construction of probes 1-4 is given below. 336 

Probe #1 was generated with the following primer pair: 337 
Name: S.B. 760extF 338 
Sequence: 5’-AGCAAGGGCGTGAACATCGAGTGGG-3’ 339 
Name: S.B. 760extR 340 
Sequence: 5’-GCCCTCTTCAAGGATTCTCTGCACG-3’ 341 
 342 
Probe #2 was generated with the following primer pair: 343 
Name: S.B. 760intF 344 
Sequence: 5’-AAGGTAGCGAGGTGCTTGCCCTTGG-3’ 345 
Name: S.B. 760intR 346 
Sequence: 5’-TGAAACCATCAGCCACCCGATCTTC-3’ 347 
 348 
Probe #3 was generated with the following primer pair: 349 
Name: 001-2153 350 
Sequence = 5’-CACCTTGAGGATATTAGTGATTGGC-3’ 351 
Name: 002-2151 352 
Sequence = 5’-CGTCTATTGAATACTGAGGTTTTCC-3’ 353 
 354 
Probe #4 was generated with the following primer pair: 355 
Name: S.B. 2156intF 356 
Sequence: 5’-TAGCGATAAGTCCTGTCCTCCTTTG-3’ 357 
Name: 002-2155 358 
Sequence: 5’-GGCCAAGTATGACATAGTAGTCACC-3’ 359 
 360 

Growth of Thermococcus kodakarensis for tRNA isolation 361 

Media preparation: Growth media contained (per liter) yeast extract (2.5 g), tryptone (2.5 g), 362 

NaCl (10.2 g), MgCl2.6H2O (2.4 g), MgSO4 (0.8 g), CaCl2.2H2O (0.4 g), KCl (0.3 g), sodium pyruvate 363 
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(2.5 g), agmatine sulfate (0.6 g), 2 mL of a 500x vitamin stock solution (8 µM biotin, 5 µM folic acid, 50 364 

µM pyridoxine, 15 µM thiamine, 15 µM riboflavin, 40 µM nicotinic acid, 20 µM Ca-pantothenate, 7 µM 365 

p-aminobenzoic acid and 75 nM B12) and 2 mL of a 500x trace mineral stock solution (50 µM FeCl3, 5 366 

µM MnCl2, 18.5 µM CoCl2, 7 µM CaCl2, 7.5 µM ZnCl2, 1.5 µM CuCl2, 1.6 µM H3BO3, 1 µM 367 

(NH4)2MoO4, 5 µM NiCl2, 850 nM NaSeO4, 2 µM AlCl3). The media was prepared under N2 to remove 368 

all dissolved O2 (resazurin added to 1 mg/L) and autoclaved to sterilize. Before inoculation the head 369 

gas was exchanged for 80:20 N2/CO2 to 10 psi.  To ensure fully anaerobic conditions, the growth 370 

media was spiked with additional Na2S (from a 2.5% w/v stock) until resazurin remained colorless. 371 

Cell growth: Starter cultures of T. kodakarensis [TS559 (wild-type), TK0760 (tgtA) and 372 

TK1256 (arcS)] were grown at 60°C overnight in 10 mL cultures in Huntgate tubes with a 1 mL 373 

inoculation from stock culture. The cells were then grown in 1 L culture volumes. The media and 374 

starter culture were brought to target growth temperature before the entire starter culture was 375 

transferred to the larger flask and cells allowed to grow for at least 16 hours. The cells were then 376 

pelleted by centrifugation and frozen at -80 ˚C until used. 377 

Comparative growth profiles of T. kodakarensis strains 378 

T. kodakarensis strains TS559, TK0760 and TK2156 were grown in sealed, 15 mL 379 

anaerobic tubes containing 10 mL ASW-YT media (0.8x artificial seawater (ASW), 5g/L yeast extract 380 

and 5g/L tryptone) with a headspace gas composition of 95% N2/5% H2 at one atmosphere of 381 

pressure. Media was supplemented with vitamins and agmatine (as above), and either with 5 g/L 382 

pyruvate (- Sulfur), or 2 g/L flowers of sulfur (+ Sulfur). Starter cultures were grown at 85 ˚C, and the 383 

optical densities of cultures were monitored at 600 nm during subsequent growth at 70˚, 85˚, and 384 

95˚C, respectively. The results reported are the average values of minimally three independent 385 

experiments with triplicate biological replicates in each experiment. 386 

Construction of M. mazei tgtA (MM1101) insertion mutants  387 

Methanosarcina mazei (DSM no. 3647) gene MM1101 (tgtA) encoding tRNA-guanine 388 

transglycosylase (aTGT) was disrupted by insertion of a puromycin resistance cassette in a manner 389 

similar to the disruption of the glnK gene (48).  Briefly, ~1000 bp flanking the 5’- and 3’-regions (Figure 390 

3A) of tgtA were amplified from M. mazei genomic DNA. The primers for the 5’-flanking region, 391 

MM1101ko5primeF: AAAAAAGGTACCaaagcaatccataagtgaagc (KpnI) and MM1101ko5primeRL: 392 

AAAAAGAATTCgccgcggttatagatgc (EcoRI) (sequences in the M. mazei genome in lower case, 393 

restriction sites italicized) introduced KpnI and EcoRI restriction endonuclease cutting sites at the end 394 

of the primers, while the primers for the 3’-flanking region, Mm1101ko3primeF: 395 

AAAAAGAattcggaccttcccg (EcoRI) and Mm1101ko3primeR: ttcaggatccctgccg (BamHI) (sequences in 396 

the M. mazei genome in lower case, restriction sites italicized) introduced an EcoRI site (a naturally 397 

occurring BamHI site was used for the reverse primer). Both PCR products were gel purified and 398 

introduced into pBluescript by cutting the plasmid and PCR products with EcoRI, KpnI and BamHI, 399 

followed by ligation.  The resulting plasmid, pKMSK1, was cut with EcoRI and ligated to EcoRI-cut 400 

puromycin-resistance cassette (pac cassette) (48), generating plasmid pKMSK2.  Plasmid constructs 401 

were verified by DNA sequencing across ligation junctions. Plasmid pKMSK2 was cut with ScaI to 402 
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generate a linear DNA with the pac cassette with ca. 1000 bp of sequence flanking MM1101.  This 403 

DNA was transformed into M. mazei with DOTAP liposome-mediated transformation (48).  404 

Transformants were grown in the presence of puromycin three independent isolates, M. mazei 405 

tgtA1, tgtA2, tgtA3 were selected as single clones on plates containing puromycin.  Insertion 406 

mutations were confirmed by PCR (Figure 3B), with mutants containing the pac gene and lacking the 407 

tgtA gene and Southern Blots using flanking probes or pac probes. The flanking probe was made by 408 

PCR using primers (Mma_attP_5’Flank): 5’-GGCTTACTCCCGCTTTCTCT-3’ and 409 

(Mma_attP_3’Flank): 5’-TTGAGTTCCTCGCTTTCGAT-3’ and DIG nucleotide mix (Roche).  The pac 410 

probe was made by PCR using (KMSPacR (Mm1101_5’R_rc) 5’-GCATCTATAACCGCGGC-3’ and 411 

KMSPacF (Mm1101_3’F_rc) 5’-CGGGAAGGTCCCGAAT-3’ and DIG nucleotide mix (Roche).   412 

Growth of M. mazei and mutants 413 

For growth at different temperatures M. mazei cells were grown essentially as described (48).  414 

Cells were grown anaerobically in closed 5 mL culture tubes with 25 mM trimethylamine reduced with 415 

2 mM cysteine and 1 mM sodium sulfide and an overpressure of N2/CO2. Cultures were 416 

supplemented with 100 g/mL ampicillin or 100 g/mL kanamycin to prevent bacterial growth.  417 

Mutants were selected with 2.5 g/mL puromycin.  Growth was monitored by measuring the optical 418 

density at 600 nm.  For screening for growth changes of mutant strains under different conditions a 419 

microtiter plate assay modified for growth in anaerobic conditions was used (61). Reduction was 420 

performed only with cysteine and not with sodium sulfide.  Growth was monitored until stationary 421 

phase was reached.  422 

tRNA extraction from T. kodakarensis and M. mazei 423 

T. kodakarensis or M. mazei cells were suspended at 250 mg/mL in 100 mM ammonium 424 

acetate (pH 6.5) with 10 mM MgSO4 and 0.1 mM EDTA. An equal volume of saturated phenol mix 425 

(phenol:choloroform:isoamyl alcohol (25:24:1)) was added to lyse the cells, and after centrifugation to 426 

separate the phases the bulk RNA was precipitated from the aqueous phase by adding 1/10
th
 volume 427 

of 8.0 M ammonium acetate and two volumes of ethanol and cooling to -20 °C for two hours. The 428 

precipitated RNA was pelleted by centrifugation at 20,000xg for 25 minutes at 4 °C. The pellet was 429 

resuspended in 100 mM ammonium acetate (pH 6.5) with 10 mM MgSO4 and 0.1 mM EDTA, an 430 

equal volume of 8.0 M LiCl was added, and the mix cooled at 4 °C overnight. Precipitated rRNA 431 

species were removed by centrifugation (20,000xg), followed by precipitation of the tRNA remaining in 432 

the supernatant with the addition of ammonium acetate/ethanol as above. 433 

To determine the modification state of the tRNA from each strain the purified unfractionated 434 

tRNA samples were enzymatically digested and dephosphorylated as described preciously (62), 435 

followed by HPLC analysis on large (250 x 4.6 mm) or small (30 x 4.6 mm) Gemini columns 436 

(Phenomenex, 5 m C18). The mobile phase consisted of a variable gradient from 100% 25 mM 437 

ammonium acetate (pH 6.0) (solvent A) to a 60:40 mix of solvent A and solvent B (acetonitrile) over 438 

the course of 20-25 minutes. 439 

Isolation of tRNA from T. kodakarensis for mass spectrometric analysis 440 
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Total RNA was extracted as above, however to prepare total tRNA for MS analysis solid 441 

phase extraction was employed to reduce the counter ion species present. Nucleobond RNA/DNA 442 

400 columns (Macherey-Nagel) were employed to separate high mass RNA molecules and total 443 

tRNA. Pelleted total tRNA was suspended in the appropriate buffer according to the manufacturer’s 444 

guidelines, and fractionation utilized a step gradient of salt concentration with tRNA eluting in 0.65 M 445 

KCl and higher mass molecules eluting in 1.15M KCl. The RNA population in sub-fractions were 446 

confirmed by urea PAGE. The isolated tRNA was precipitated in 800 mM ammonium acetate/ethanol. 447 

This was repeated three times to substitute the K
+
 with ammonium ions. The sample was then dried 448 

for subsequent LCMS analysis. 449 

The purified unfractionated tRNA samples were enzymatically digested and dephosphorylated 450 

as described preciously (62). Separation was accomplished by reversed phase chromatography using 451 

an Acquity UPLC HSS T3 column (1.8 µm, 1 mm X 100 mm; Waters, Milford, MA) on a Vanquish Flex 452 

Quaternary UHPLC system (Thermo Fisher Scientific, San Jose, CA). The mobile phase A consisted 453 

of 5.3 mM ammonium acetate (pH 5.3) in LC-MS grade water (Alfa Aesar, Haverhill, MA). Mobile 454 

phase B consisted of a 60:40 mixture of 5.3 mM ammonium acetate (pH 5.3) and acetonitrile 455 

(Honeywell Burdick & Jackson, Morris Plains, NJ) with a gradient of 0% B (from 0 to 1.8 min), 2% B at 456 

3 to 3.5 min, 3% B at 4.1 min, 5% B at 7 min, 25% B at 9 min, 35% B at 15 min, 99% B at 15.5 min 457 

(hold for 4.5 min), 99% B at 20 min then returning to 0% B at 25.5 min at a flow rate of 100 µL min
-1

. 458 

The column temperature was set at 40 °C. 459 

High-resolution accurate mass analyses of nucleosides were performed on an Orbitrap 460 

Fusion Lumos Tribrid mass spectrometer (Thermo Fisher Scientific) interfaced with an H-ESI 461 

electrospray source in positive polarity mode. Full scan data was acquired at a resolution of 120,000, 462 

mass range 220-900 m/z, AGC 7.5e4, and IT 100 ms.  Data-dependent top speed MS/MS spectra (1 463 

s cycle, CID 42%) were acquired in the ion trap at a resolution of 15,000, AGC 1.0e4, and IT 150 ms. 464 

The other instrumental conditions were the following: quadrupole isolation of 1 m/z; RF 35%; sheath 465 

gas, auxiliary gas, and sweep gas of 30, 10 and 0 arbitrary units, respectively; ion transfer tube 466 

temperature of 289 °C; vaporizer temperature of 92 °C; and spray voltage of 3500 V. Data was 467 

analyzed using Xcalibur 4.0, Compound Discoverer 3.0 and MzVault 2.1 (Thermo Fisher Scientific). 468 

Isolation of isoacceptor tRNA from T. kodakarensis 469 

To purify tRNA
Gln

 from the T. kodakarensis strains we opted to employ an affinity approach 470 

based on hybridization with a DNA oligo complementary to a portion of the target tRNA (49). The area 471 

most distinct for Gln sequences among all T. kodakarensis tRNA sequences is from the ASL leading 472 

to the 3’ end of the molecule. However, since both isoacceptors for the Gln encoding tRNA are 473 

identical except for a single position in the anticodon, it was not possible to isolate the CUG or UUG 474 

isoacceptor free of the other. Nevertheless, we reasoned that a single nucleotide difference in the 475 

sequence of the ACL should be of no consequence to the overall stability of the tRNA, so the isolation 476 

of a mixture containing both isoacceptors would not compromise the experiment.  477 

Potential DNA affinity oligos were designed by walking along the length of the tRNA in 3 nt 478 

steps beginning at position 26 (Supplemental Figure 6A). By first investigating the ability of each oligo 479 
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to hybridize with an in vitro synthesized tRNA
Gln

 transcript corresponding to T. kodakarensis 480 

tRNA
Gln

(CUG) via native PAGE we identified Aff3 as the best candidate for forming a stable hybrid 481 

with the in vivo tRNA
Gln 

from T. kodakarensis (Supplemental Figure 6B). 482 

The streptavidin agarose (Thermo Scientific) resin was activated by binding the Aff3 483 

biotinylated oligo to the streptavidin (oligo at 15 µM in 10 mM Tris-HCl (7.5), 100 mM NaCl). For 484 

annealing of the tRNA to the immobilized DNA, the total tRNA was dissolved in annealing buffer (10 485 

mM Tris-HCl (7.5), 900 mM NaCl, 1mM EDTA) and heated to 95°C for 5 minutes. After cooling to 486 

85°C the resin (pre-equilibrated in annealing buffer) was added and the slurry allowed to fully cool to 487 

room temperature with occasional mixing. The resin was pelleted by centrifugation (5,000xg) and the 488 

unbound RNA was removed with the supernatant. Annealing buffer was added to wash the resin 489 

followed by heating to 45 ˚C for 5 minutes to remove non-specifically bound tRNA, centrifugation, and 490 

removal of the supernatant. This process was repeated until the OD260 of the supernatant was below 491 

0.01 AU/mL. Elution of the tRNA
Gln

 was achieved by re-suspending the resin in 0.5 mL of elution 492 

buffer (10 mM Tris-HCl (7.5), 100 mM NaCl), heating the solution to 75 °C for 5 minutes, and 493 

centrifuging to collect the unbound tRNA
Gln

 (Supplemental Figure 7). The isolated tRNA was shown to 494 

be homogenous in both denaturing (Urea TBE) and native (TB, 100 mM NaCl) PAGE (Supplemental 495 

Figure 8). 496 

Production of tRNA transcripts in vitro  497 

Double stranded template DNA was designed based on the sequence of tRNA
Gln

(CUG) from 498 

T. kodakarensis (below), with the exception that the native gene sequence was modified by changing 499 

the 5’ adenosine nucleotide to a guanosine (double underline) for enhanced transcription yield (63). 500 

5’GGCCCCGUGGUGUAGCGGCCAAGCAUGCGGGACUCUGGAUCCCGCGACCGGGGUUCGAAUCCCCGCG501 
GGGCUACCA3’ 502 

The template DNA was prepared from two DNA oligos (below) that were designed with a ten base 503 

pair overlap at the center of the target sequence (underlined), and which contained 2’-O-methyl 504 

modifications on the two terminal 5-residues of the template strand (63) and the standard T7 promoter 505 

at the 5’ end of the non-template strand (bold).  506 

5’TAATACGACTCACTATAGGCCCCGTGGTGTAGCGGCCAAGCATGCGGGA3’ 507 
5’mUmGGTAGCCCCGCGGGGATTCGAACCCCGGTCGCGGGATCCAGAGTCCCGCATGC3 508 

The complete template was generated by primer extension using the Klenow fragment (Fermentas) to 509 

create two fully complementary strands. The two oligos were mixed to a final concentration of 4 µM 510 

each, in the presence of dNTPs (600 µM each) and using the manufacturers reaction conditions. The 511 

primers were extended by cycling 25 times between 37 C and 10 C in 30 second pulses (Applied 512 

Biosystems 2720 thermal cycler). The DNA was then isolated by organic extraction (equal volume of 513 

25:24:1 phenol:chloroform:isoamyl alcohol vortexed and then centrifuged at 20,000g for 5 minutes) 514 

and ethanol precipitation of the aqueous phase. The template was then resuspended in water at 10 515 

µM. 516 
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RNA was transcribed from 1 µM DNA template in 30 mM Tris-HCl (pH 8.0), 40 mM MgCl2, 10 517 

mM DTT, 0.1% Triton X-100, 100 µM spermidine, 2.5 mM NTP (individual nucleotides obtained from 518 

Sigma, stock made up in DEPC water and stored at -80 C), 50 µg/mL of the 172-73 mutant of T7 519 

RNA polymerase (58) and 1 U/mL of inorganic pyrophosphatase (Sigma). The reactions were run for 520 

4 hrs at 37 C and quenched by ethanol precipitation. The recovered pellet was solubilized in DEPC 521 

water and then mixed with an equal volume of formamide/5 mM EDTA. The reaction products were 522 

denatured at 95C and then separated by denaturing urea PAGE (7 M urea, 10% acrylamide, 1x TBE, 523 

gel run at 18W). The full-length product band was excised from the gel and the RNA extracted by 524 

overnight crush and soak in 800 mM ammonium acetate. The purified RNA was then precipitated with 525 

the addition of ethanol and the pellet resuspended in 1.0 mM sodium citrate (pH 6.3) and stored at -526 

80C. 527 

Preparation of preQ0 and G
+
 modified tRNA 528 

The tRNA
Gln

(CUG) transcript was modified by incorporation of preQ0 base at position 15 by 529 

the action of M. jannaschii aTGT. The activity of the enzyme was determined by substituting [8-
14

C]-530 

guanine in place of preQ0 in a standard reaction assay (50), which established the conditions for 531 

quantitative incorporation of preQ0. Reaction conditions were 50 mM succinate (pH 5.5), 20 mM 532 

MgCl2, 100 mM KCl, 2 mM DTT, 100 µM tRNA and 1 mM preQ0. The reaction solution containing 533 

tRNA was heated at 80°C for 3 minutes before the addition of aTGT to a final concentration of 10 µM 534 

and incubation at 80 ˚C for 1 hour. The reaction was repeated for two more rounds of incorporation to 535 

ensure complete substitution with preQ0 base. The reaction was terminated by the addition of 1/10
th
 536 

volume of 8M ammonium acetate. Reaction components were removed by phenol/chloroform 537 

extraction, and the tRNA isolated by ethanol precipitation of the aqueous phase. The tRNA pellet was 538 

resuspended in 1.0 mM sodium citrate (pH 6.3) and stored at -80C. 539 

To produce G
+
-modified tRNA a sample of preQ0-modified tRNA was suspended (50 µM) in 540 

100 mM HEPES (pH 7.0), 0.5 M NaCl, 20 mM MgCl2, 5.0 mM glutamine, 1.0 mM DTT and 10 µM M. 541 

jannaschii ArcS. The sample was reacted for 1 hour at 40°C. The modified RNA was isolated as 542 

described above. Samples of both preQ0- and G
+
-modified tRNA were digested, dephosphorylated, 543 

and analyzed by HPLC as described above to confirm the modification status (Supplementary Figure 544 

5).  545 

UV thermal denaturation studies 546 

All thermal denaturation studies were performed on a Cary 100 Bio UV-Vis 547 

spectrophotometer. Single wavelength absorbance at 260 nm was used to record the unfolding of the 548 

tRNA species being studied. Temperature was maintained by a thermostat-controlled cell block 549 

holder. The thermal melt cycle was controlled by the Thermal program in the Cary Win UV software 550 

suite. Samples were prepared in 10 mM sodium cacodylate (pH 7.0) and 100 mM NaCl. This was 551 

supplemented with either EDTA or MgCl2 for experiments lacking or containing MgCl2, respectively. 552 

RNA was heated in buffer to 98 ˚C and slow cooled to 55°C, at which point EDTA or MgCl2 was 553 

added and the sample allowed to cool to room temperature. During analysis, the sample volume 554 

(120µL) was covered with mineral oil to prevent evaporation. The raw absorbance vs temperature 555 

 on M
arch 18, 2020 at P

O
R

T
LA

N
D

 S
T

A
T

E
 U

N
IV

http://jb.asm
.org/

D
ow

nloaded from
 

http://jb.asm.org/


 15 

data was converted to a differential profile (dAbs260/dT vs temperature) and the Tm determined from 556 

these plots. 557 
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 753 

FIGURE LEGENDS 754 

 755 

Figure 1. The biosynthetic pathways to archaeosine (G
+
) and queuosine (Q). 756 

Figure 2.  T. kodakarensis strains markerlessly deleted for TK0760 (7-cyano-7-deazaguanine tRNA-757 
ribosyltransferase) and TK2156 (archaeosine synthase).  Panels A & B. Map of the T. kodakarensis 758 
genome surrounding TK0760 (panel A) and TK2156 (panel D) in the parental strain TS559 759 
highlighting the binding positions of oligonucleotides that were used in diagnostic PCRs (panel B and 760 
E, respectively) and Southern blots (panels C and F, respectively). Panels B & E. PCRs with primer 761 
sets listed above each lane generate amplicons from genomic DNA purified from strains TS559, 762 
TK0760 and TK2156. The external primer pairs (A/B for TK0760; E/H for TK2156) generate smaller 763 
amplicons from TK0760 and TK2156 genomic DNAs, respectively, reflecting the loss of TK0760 or 764 
TK2156 coding sequences. Amplicons generated using one primer complementary to the target locus 765 
and one primer complementary to flanking sequences are only generated from TS559 genomic DNA, 766 
consistent with deletion of the TK0760 or TK2156 coding sequences, respectively. M = DNA 767 
standards in Kbp. Panels C & F. Southern blots of digested total genomic DNA from strains TS559, 768 
TK0760 and TK2156 demonstrate deletion of TK0760 or TK2156, respectively. Blots developed 769 
with an amplicon complementary to the TK0760 coding sequences (probe 2) reveal a complementary 770 
target only from TS559 DNA, while an amplicon probe complementary to adjacent sequences (probe 771 
1) within the same BspH1 fragment reveals a smaller target, consistent with deletion of TK0760 772 
coding sequences. Blots developed with an amplicon complementary to the TK2156 coding 773 
sequences (probe 4) reveal a complementary target only from TS559 DNA, while an amplicon probe 774 
complementary to adjacent sequences (probe 3) within the same BstEII fragment reveals a smaller 775 
target, consistent with deletion of TK2156 coding sequences. 776 
 777 
Figure 3. M. mazei strains deleted for MM1101 (7-cyano-7-deazaguanidine tRNA ribosyltransferase). 778 
A. Map of the M. mazei genome surrounding MM1101 (tgtA) in the parental strain M. mazei 779 
highlighting the binding positions of oligonucleotides that were used in diagnostic PCRs (Panel B) and 780 
Southern Blots (Panel C).  B. PCR with primer sets listed above each lane generate amplicons from 781 
genomic DNA purified from wild-type and mutant (M. mazei tgtA) strains. Amplicons generated by 782 
primers specific for the tgtA gene demonstrate the presence of tgtA in the wild-type and loss of tgtA in 783 
M. mazei tgtA. By contrast, amplicons generated from the puromycin (pac) cassette indicate that it is 784 
present in M. mazei tgtA and absent in the wild-type strain. C. Southern Blots of PstI digested total 785 
genomic DNA from wild-type and M. mazei tgtA demonstrate loss of tgtA in M. mazei tgtA. Blots 786 
developed with an amplicon complementary to sequences adjacent to tgtA (probe 1) reveal a smaller 787 
target, consistent with the deletion of tgtA and insertion of the pac cassette. Blots developed with an 788 
amplicon complementary to the pac cassette reveal a complementary target only in M. mazei tgtA, 789 
consistent with a pac cassette insertion into the M. mazei tgtA strain. 790 

Figure 4. Analysis of modification status of tRNA isolated from T. kodakarensis strains. A. HPLC 791 
analysis of nucleoside digests of tRNA from T. kodakarensis TS559 (bottom trace), the arcS strain 792 
(middle trace), and the tgt strain (top trace). B. LCMS analysis of nucleoside digests of tRNA from T. 793 
kodakarensis TS559: Extracted ion chromatograms of archaeosine m/z: 325.1257 (top) and preQ0-794 
nucleoside m/z: 308.0994 (bottom). XICs relative abundances were scaled to largest peak 795 
(archaeosine) at 10

6
. Signal for preQ0-nucleoside was detected at background levels 10

3
. C. LCMS 796 

analysis of nucleoside digests of tRNA from the T. kodakarensis tgt strain: Extracted ion 797 
chromatograms of archaeosine m/z: 325.1257 (top) and preQ0-nucleoside m/z: 308.0994 (bottom). 798 
Neither archaeosine nor preQ0 were detected at any appreciable levels. Chromatograms scaled 10

3
. 799 

D. LCMS analysis of nucleoside digests of tRNA from the T. kodakarensis arcS strain: Extracted ion 800 
chromatograms of archaeosine m/z: 325.1257 (top) and preQ0-nucleoside m/z: 308.0994 (bottom). 801 
For this run G

+
 was detected at 1.6% that of preQ0-nucleoside. Asterisk denotes the adduction of 802 

ammonium onto the preQ0-nucleoside during the electrospray process. Chromatograms scaled 10
6
. 803 

Analyses were carried out in triplicate for each of two independent preparations of tRNA. 804 

Figure 5. T. kodakarensis strains lacking tgtA or arcS are temperature sensitive. Culture growth was 805 
monitored by changes in optical density at 600 nm for cultures incubated at 70˚C (panels A & D), 806 
85˚C (panels B & E), or 95˚C (panels C & F). The results reported are the average values of minimally 807 
three independent experiments with triplicate biological replicates in each experiment. Cultures in 808 
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panels A-C were provided 2 g/l sufur, while cultures in panels D-F received 5 g/l pyruvate instead. 809 
Filled, black squares, TS559; filled, dark grey triangles,tgtA; filled, light grey circles, arcS. 810 

Figure 6. Thermal denaturation profiles (1
st
 derivative) of in vivo T. kodakarensis tRNA

Gln
. The purified 811 

isoacceptor tRNAs from the ∆tgt (light gray), ∆arcS (dark gray), and TS559 (black) strains were 812 
denatured in a background of 100mM NaCl with A) No MgCL2, B) 100 µM MgCl2, and C) 10 mM 813 
MgCl2. 814 

Figure 7. Thermal denaturation profiles (1
st
 derivative) of in vitro produced T. kodakarensis 815 

tRNA
Gln

(CUG). The data correspond to the unmodified tRNA transcript possessing G at position 15 816 
(light grey), the modified transcript possessing preQ0 (dark gray), and the modified transcript 817 
possessing G

+
 (black). The denaturing profiles were recorded in a background of 100mM NaCl with 818 

A) no MgCl2, B) 100 µM MgCl2, and C) 10 mM MgC12.  819 
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