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Scales of Connectivity within Stream Temperature
Networks of the Clackamas River Basin, Oregon

Michael Krochta and Heejun Chang

Department of Geography, Portland State University, USA

Water quality varies along the stream network; thus, considering the directional, dendritic nature of stream

networks with surrounding landscape variables is essential in explaining spatial variations of water quality.

Using a spatially extensive stream temperature monitoring effort in the Clackamas River Basin in the

United States, we first compare spatial scales of analysis of atmospheric, landscape, and in-stream

explanatory variables through their correlation with summer stream temperatures. We then derive a

predictive stream temperature model with factors representing the spatial variation of local climate, recent

wildfire effects, and discharge. Finally, we compare nonspatial multiple linear regression to a spatial stream

network (SSN) model to assess the combined importance of the spatial scale of analysis and flow-connected

stream distance in explaining total variation in stream temperatures. Most explanatory variables show the

most highly significant relationships to stream temperature when derived as a percentage of the total

upstream area above observation sites. Elevation and vegetation cover, however, were most significantly

correlated to stream temperature at the riparian buffer area scale and the local reach contributing area scale,

respectively. Multiple regression analysis using total upstream burned area, total upstream area with

underlying High Cascades geology, and the elevation within the 100-m-wide riparian area explained 81

percent of variation in stream temperature. SSN outperformed this nonspatial statistical model, however, in

explaining the total variation in stream temperature. These comparisons of scaled data sets demonstrate both

the local and cumulative upstream effects on stream temperature, providing a spatial network-informed

framework to those prioritizing watershed restoration and wildfire recovery activities. Key Words: scale,
spatial stream network, stream temperature, water quality.

S
tream temperature is a barometer of water qual-

ity of great influence to the overall health of

aquatic ecosystems (Poole and Berman 2001).

The temperature of water determines rates of both

physical and biochemical processes in streams, set-

ting the geographic distribution of native fish and

other aquatic organisms adapted to a specific range

of temperatures (Richter and Kolmes 2005; Caissie

2006; McCullough et al. 2009). In particular, sum-

mer stream temperatures are highly important for

cold-water fisheries in the Pacific Northwest of

North America. Cold-water salmonid species have

cultural importance to native tribes who have relied

on these fish species for food and spiritual rituals.

Warming trends due to climate change are threaten-

ing the viability of cold-water salmonid species’

habitats and efforts to conserve them in many

areas (Isaak et al. 2012; Chang, Watson, and

Strecker 2018).

An understanding of water temperature fluxes

within a stream requires consideration of stream

energy processes as well as the variables on the

landscape that influence these processes. Stream

temperature changes occur in direct proportion to

heat gained or lost through (1) water surface

energy exchanges related to solar and long-wave

radiation, sensible and latent heat (Brown 1969);

(2) streambed exchanges related to streambed con-

duction, hyporheic exchange, and friction (Caissie

and Luce 2017); and (3) advective exchanges

through hydrologic processes such as surface and

groundwater inflows, and in-channel flows (Leach

et al. 2023). These processes vary in their relative

influence based on a stream’s position on the

landscape and its surroundings, with small headwa-

ter streams’ temperatures likely associated with

advection from subsurface inflows, whereas large
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rivers’ temperatures are more likely associated with

incoming solar radiation (Webb and Zhang 1997;

Leach et al. 2023).
Although many researchers have investigated the

various influences on stream heat dynamics and

subsequent temperature fluctuations, quantifying

influential variables still poses challenges to those

seeking to understand their relative importance

from location to location (Webb et al. 2008;

Ficklin, Stewart, and Maurer 2013; Booth, Kraseski,

and Jackson 2014). Influences on stream tempera-

tures are closely related to the energy fluxes dis-

cussed earlier and have generally been divided into

four groups: (1) atmospheric (e.g., air temperature,

precipitation), (2) topography (e.g., shade from veg-

etation, geology, elevation), (3) discharge (e.g.,

groundwater input), and (4) streambed related (e.g.,

slope) (Caissie 2006). These variables work

together but ostensibly at different spatial scales,

confounding efforts to understand how modifying

them might influence future stream temperatures

from place to place. For example, previous studies

indicate that near-stream conditions (e.g., riparian

vegetation) could influence stream temperatures

more than cumulative upstream land-cover condi-

tions, but this effect varies by the riparian buffer

size, stream channel width, aspect, upland topogra-

phy, and distance from the monitoring station

(Isaak et al. 2010; Janisch, Wondzell, and Ehinger

2012; Zhou, Wu, and Peng 2012; Chang and Psaris

2013; Chen and Chang 2021; Leach et al. 2023).

Thus, landscape variables vary in importance

depending on the location and spatial scale used

for analysis.
Several innovative methods have been used to

relate landscape variables to stream temperature

across space (Mainali, Chang, and Chun 2019). A

promising geostatistical approach to deriving

explanatory variables and predicting stream temper-

atures at large scales is spatial stream network

(SSN) modeling. SSNs draw on the concept of spa-

tial autocorrelation (which assumes greater similar-

ity between objects close together compared to

further apart) based on flow-connected hydrologic

distances within stream networks, accounting for

spatial effects beyond the explanatory variables

alone (Ver Hoef, Peterson, and Theobald 2006;

Ver Hoef and Peterson 2010; Isaak et al. 2014).

Indeed, SSNs incorporate the flow directionality,

distance, and accumulation inherent in the

dendritic network structure of rivers to make pre-

dictions throughout stream networks (Isaak et al.

2017).

SSN models typically integrate explanatory varia-

bles calculated at a mix of spatial scales (e.g., a

land-cover percentage of the total upstream area vs.

immediately adjacent to the stream), based on the

study hypotheses, data type, and availability (Steel,

Sowder, and Peterson 2016; Isaak et al. 2017;

Gendaszek et al. 2020). Past modeling efforts,

though, rarely provide an explicit comparison

between spatial units of analysis used to derive

explanatory variable data sets. To fill this gap, this

study uses data from a large stream temperature

monitoring effort in the Clackamas River Basin

(CRB) in Oregon, United States, to (1) compare

scales of analysis related to calculating a novel pool

of explanatory data sets through their correlation

with observed stream temperatures; (2) derive a pre-

dictive stream temperature model with factors repre-

senting the spatial variation of local climate, recent

wildfire effects, and stream discharge; and (3) com-

pare nonspatial multiple linear regression (MLR)

analysis to an SSN model to assess the combined

importance of the spatial scale of analysis and flow-

connected stream distance in explaining total varia-

tion in stream temperatures.

Data and Methods

Study Area

With a contributing drainage of 2,435 km2, the

Clackamas River in Oregon flows 133 km from its

headwaters to its confluence with the Willamette

River. The basin consists of approximately 5 percent

developed area, 10 percent agricultural lands, and 85

percent forested and shrub lands (Dewitz and U.S.

Geological Survey 2021; Figure 1). Urban develop-

ment and agricultural lands are concentrated in the

lower watershed, with primarily forested lands in the

middle and upper watershed. Approximately 72 per-

cent of the CRB is managed by the Mt. Hood

National Forest, with an additional 25 percent pri-

vately owned and 3 percent tribally managed. Forest

management practices to protect aquatic resources

vary across land ownerships, with federal lands man-

aged under the Mt. Hood National Forest Land and

Resource Management Plan (U.S. Forest Service

[USFS] 1990) having the most protective regulations

2 Krochta and Chang



Figure 1. Clackamas River Basin study area with observed site locations and corresponding maximum seven-day average daily maximum

temperature (Max7DADMs). Also shown are land-cover types and locations of subwatersheds (numbered) within the basin. Wildfire

boundaries includes areas burned between 2020 and 2021. Shrub/grass includes areas of both high-severity burns and openings created by

past forest management.

Scales of Connectivity within Stream Temperature Networks 3



for streams (e.g., relatively large no-harvest riparian

buffers of over 70 m in total width for streams with

listed fish habitat; USFS 2020), and private lands

managed under the Oregon Forest Practices Act

having the least protective regulations for streams

(Lorensen, Andrus, and Runyon 1994). Notably, in

2020 and 2021, wildfires collectively burned 23 per-

cent of the CRB, resulting in 55,785 ha burned with

20,900 ha (9 percent of the total watershed; Figure

1) burning at high severity. The 2020 wildfires were

not found to have substantial impacts on peak flows,

though (Long and Chang 2022).

The CRB has a Mediterranean climate, character-

ized by cool, wet winters and warm, dry summers

(Oregon Climate Service 2005). Mean annual air

temperature varies spatially from 5.5 �C to 12.3 �C.
The average precipitation from 1991 to 2020 across

the basin varies spatially from 1,109 to 3,041mm

(PRISM 2021), with most of this precipitation

occurring during the winter months. In general, rela-

tively cooler temperatures and larger amounts of pre-

cipitation occur annually at higher elevations within

the basin (PRISM 2021). Elevation in the basin

ranges from 3 m to 2,200 m, with a mean elevation

of 828 m. With rising temperatures, 1 April snow

water equivalent, which has a substantial impact on

summer low flows, has declined in recent decades

and this trend is projected to continue throughout

the twenty-first century (Chen and Chang 2023).

The hydrology of the CRB is tightly coupled with

its underlying geology. The geology of the basin is

primarily Western Cascades volcanics, with the

lower watershed including Willamette Valley allu-

vium deposits, and the upper watershed including

High Cascades geology. Geologically young High

Cascades volcanic terrains in high elevations (Figure

1) have relatively high amounts of cold groundwater

inputs compared to the Western Cascades, where

older geology in low elevations has lower permeabil-

ity and greater runoff relative to base flows (Tague

et al. 2007).
There are four major CRB hydropower projects,

including one tributary and three main stem devel-

opments, regulated under the Federal Clean Water

Act with total maximum daily load (TMDL) for

stream temperature. Due to a combination of large

inflows of groundwater surrounding the tributary

development, deep water release downstream of

dams, and minimal water residence times and strati-

fication at reservoirs, the projects are believed to

have minor influence on changes water temperatures

downstream of the dams (Oregon Department of

Environmental Quality [ODEQ] 2009; Portland

General Electric Company [PGE] 2013).
The CRB supports significant runs of cold-water-

dependent anadromous salmon. Being home to the

last run of wild late winter Coho in the Columbia

Basin, the CRB also includes one of only two

remaining runs of spring Chinook in the Willamette

Basin. In addition, it supports a significant popula-

tion of winter steelhead (Clackamas River Basin

Council) 2005), and a recent bull trout reintroduc-

tion project has taken place in the Upper Clackamas

subwatershed (Starcevich 2021). Four stream seg-

ments in the basin have been included on the

Oregon 303(d) list for temperature, however (lower

Clackamas River, Eagle Creek, Fish Creek, and Cow

Creek; ODEQ 2006).

Stream Temperature Data Collection

Stream temperature data were collected for

eighty-one sample sites distributed across the CRB.

The sampling occurred between June and October

2021 with all sites having complete temperature data

for August. In-stream temperature probes were

deployed by the USFS, U.S. Geological Survey

(USGS), U.S. Fish and Wildlife Service, Oregon

Department of Fish and Wildlife, PGE, Clackamas

Water Environmental Services, and one individual

landowner. The vast majority of sensors were Onset

HOBO or TidbiT data loggers, with the remainder

being YSI Sonde loggers. Monitoring sites were cho-

sen to minimize any human and natural disturban-

ces, such as vandalism or major fluctuations of water

levels. To safeguard data loggers in the field, they

were encased in protective housings, which were

then secured to immobile objects (e.g., submerged

rocks or large wood) in the stream. Each site loca-

tion was recorded with a Global Positioning System

to ensure the logger could be found at a later date.

All stream temperature data collection by the indi-

vidual landowner followed a rigorous deployment

and retrieval protocol though an ODEQ approved

sampling and analysis plan (Bugni 2021), and data

collection by public entities followed their individual

agency’s stream temperature data quality standards.

All temperature sensors used were found to be accu-

rate to ± 0.5 �C.

4 Krochta and Chang



Following data collection, a data quality assurance

process was undertaken to ensure no erroneous data

were analyzed (Dunham 2005; Wagner et al. 2006;

Sowder and Steel 2012; Stamp et al. 2014).

Examples of data cleaning included removing data

suspected to be collected during dewatering events

(based on comparisons to interpolated local air tem-

perature; PRISM 2021). Stream temperature was

then summarized at each site by deriving the maxi-

mum seven-day average daily maximum temperature

(Max7DADM; Figure 1), a metric used by the U.S.

Environmental Protection Agency and the ODEQ

for setting protective thermal criteria (including

TMDL) for salmonids during the summer under the

Federal Clean Water Act (U.S. Environmental

Protection Agency 2003; PGE 2013). Max7DADM

describes the maximum temperatures in a stream

that fish are exposed to without being overly influ-

enced by temperatures on individual days. Thus,

although this metric does not capture acute effects,

it does account for cumulative thermal exposure

experienced by fish over a course of a week (U.S.

Environmental Protection Agency 2003).

Building the Landscape Network

Much of the process for creating the spatial archi-

tecture required for SSN analysis was carried out

using the Spatial Tools for Analysis of River

Systems (STARS) tool set, Version 2.0.7, for

ArcMap (Peterson and Ver Hoef 2014). A total of

eighty-one stream temperature observations, along

with a total of 17,274 prediction points spaced 100

m apart that would later include modeled stream

temperature estimates, were created and added to a

network consisting of stream segments and corre-

sponding relationship tables containing its distance

to the watershed outlet. Reach contributing areas

(RCAs) and 100-m-wide buffer polygons were cre-

ated for each stream reach, so that explanatory vari-

ables could be calculated as areal means or

proportions within them. Table 1 summarizes the

data sources, rationales, and supporting literature for

the variables initially chosen. These included land

cover, topography, local atmospheric data (i.e., pre-

cipitation and air temperature), geology, and recent

wildfire burn perimeters. Although some of the data

sets were assumed to be related, one purpose of this

exercise was to assess the relative influences of these

variables, which were each intentionally selected

based on a review of the literature, on stream tem-

perature. As a basic requirement, all data sets we

included spanned the entire basin with values that

could be associated with every stream reach. In gen-

eral, land cover and condition variables fell into

three spatial categories, depending on how they were

calculated, using either (1) the 100-m-wide riparian

buffer scale, (2) stream catchment (i.e., RCA) scale,

or (3) total upstream watershed area scale (see

Figure 2). The buffer width of 100 m was chosen

due to the comparatively large mean size of RCAs

in the CRB (2.4 km2), and because most previous

studies have found significant relationships between

explanatory variables within riparian buffer areas and

stream temperature (Isaak et al. 2010; Janisch,

Wondzell, and Ehinger 2012; Zhou, Wu, and Peng

2012; Chang and Psaris 2013). In-stream variables

were collected and assigned at the stream reach

scale, including base flow index (BFI; the component

of streamflow that can be attributed to groundwater

discharge into streams) and stream channel slope.

Nonspatial Correlation and Multiple Linear
Regression Models

To assess individual variables’ scales of influence on

stream temperatures, nonparametric Spearman’s rank

correlation coefficients were calculated for each of the

explanatory variables included in Table 1 by using val-

ues derived for each of the eighty-one observation

sites. To analyze the combined effects of variables asso-

ciated with local climate (e.g., precipitation, air tem-

perature), increased natural disturbance (e.g., wildfire),

and discharge (e.g., groundwater inputs) on stream

temperatures basin-wide, MLR analysis was run using

elevation, percentage of high-severity burn area, and

percentage of High Cascades variables at scales found

to be most correlated with the observed stream tem-

peratures. In addition to drawing on Spearman’s rank

correlation coefficients of these three variables, we

tested for nonspatial multicollinearity among them

through calculations of variance inflation factors in an

ordinary least squares regression analysis (Belsley, Kuh,

and Welsch 2005).

SSN Model Fitting

A stream distance matrix was created using R’s

SSN package (Ver Hoef and Peterson 2020) using

flow-connected distance, which is measured between

Scales of Connectivity within Stream Temperature Networks 5



points with an upstream-to-downstream connection
(Isaak et al. 2014; Peterson and Ver Hoef 2014).
SSN models based on hydrologic distance include

several variations of structures that allow for auto-
correlation based on flow-connected or flow-uncon-
nected observations (Ver Hoef et al. 2014). The

Table 1. Summary of explanatory data sets used for this study

Variables Scales Data source Expected relationship References

Atmospheric variables

Maximum air

temperature

RCA PRISM (2021) Positive Gendaszek et al. (2020),

Luce et al. (2014)

Mean summer air

temperature

RCA PRISM (2021) Positive Gendaszek et al. (2020),

Luce et al. (2014)

Mean monthly

maximum air

temperature

RCA PRISM (2021) Positive Gendaszek et al. (2020),

Luce et al. (2014)

Annual precipitation RCA PRISM (2021) Negative Chang and Psaris (2013)

Summer precipitation RCA PRISM (2021) Negative Chang and Psaris (2013)

Wet season precipitation RCA PRISM (2021) Negative Chang and Psaris (2013)

In-stream variables

Base flow index Stream reach U.S. Geological Survey

(2012)

Negative Mayer (2012)

Slope Stream reach U.S. Geological Survey

(2012)

Negative Grabowski, Watson, and

Chang (2016), Mayer

(2012)

Landscape variables

Percentage canopy cover Buffer; RCA; Total

upstream

LANDFIRE (2021) Negative Caissie (2006), Isaak

et al. (2017)

Vegetation height Buffer; RCA; Total

upstream

LANDFIRE (2021) Negative Caissie (2006), Isaak

et al. (2017)

Percent burn area Buffer; RCA; Total

upstream

U.S. Geological Survey,

U.S. Forest Service,

and Nelson (2022)

Positive Chen and Chang (2021)

Percent agriculture area Buffer; RCA; Total

upstream

Dewitz and U.S.

Geological Survey

(2021)

Positive Chang and Psaris (2013)

Percent developed area Buffer; RCA; Total

upstream

Dewitz and U.S.

Geological Survey

(2021)

Positive Watson and Chang

(2018)

Percent wetlands area Buffer; RCA; Total

upstream

U.S. Fish and Wildlife

Service (2021)

Positive Isaak et al. (2017),

Chang and Psaris

(2013)

Percent open water area Buffer; RCA; Total

upstream

U.S. Fish and Wildlife

Service (2021)

Positive Isaak et al. (2017)

Percent High Cascades

area

Buffer; RCA; Total

upstream

Oregon Department of

Geology and Mineral

Industries (2020)

Negative Tague et al. (2007)

Road density Buffer; RCA; Total

upstream

Clackamas County

(2021)

Positive Watson and Chang

(2018)

Elevation Buffer; RCA; Total

upstream

Oregon Department of

Geology and Mineral

Industries (2020)

Positive Chang and Psaris

(2013), Grabowski,

Watson, and Chang

(2016)

Other landscape variables

Total upstream area Total upstream Derived using ArcGIS Positive Isaak et al. (2014),

Peterson and Ver

Hoef (2014)

Note: Buffer¼ area within 100-m buffer surrounding each stream reach; RCA¼ reach contributing area, that is, the area within each stream’s

catchment; Total upstream¼ total area of all upstream catchments of all flow-connected stream reaches.
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flow-connected model with the lowest Akaike’s infor-

mation criterion (AIC; indicating the best overall

model fit) and root mean square prediction error (indi-

cating the least uncertainty) was selected for use in

predictive mapping of stream temperature (Isaak et al.

2017; Ver Hoef and Peterson 2020; Rhea et al. 2022).
Following model selection, SSN model performance

was further quantified through leave-one-out cross-vali-

dation (Ver Hoef et al. 2014). This process removed

observations one at a time and the resulting model

was used to predict each of the removed values and its

predicted standard error (Ver Hoef and Peterson

2020). Finally, predicted Max7DADM values were

generated for each of the 17,274 prediction points cre-

ated for the basin. These predictions, along with their

associated standard error values, were joined to the

original stream network for uncertainty visualization.

Results

Spearman’s Correlation Coefficients

Results from nonparametric Spearman’s correla-

tion coefficients (q) calculated for each of the

explanatory variables are summarized in Figure 3. In-

stream explanatory variables, BFI, which represents

the component of streamflow that can be attributed

to groundwater discharge into streams (q ¼ −0.78,
p< 0.001), and stream channel slope (q ¼ −0.49,

p< 0.01) were negatively correlated with

Max7DADM. Of atmospheric variables, summer

mean air temperature (q¼ 0.58, p< 0.001) and wet

season precipitation (q ¼ −0.52, p< 0.01) were the

most significantly correlated with Max7DADM.
Of the explanatory variables calculated at multiple

scales, those resulting in the most significant correla-

tions in their corresponding calculated scales were

High Cascades geology, calculated as a total upstream

watershed percentage (q ¼ −0.62, p< 0.001); vegeta-

tive cover, calculated as an average percentage at the

RCA scale (q ¼ −0.66, p< 0.001); vegetation height,

calculated as an average percentage at the total

upstream scale (q ¼ −0.65, p< 0.001); percentage

agriculture land cover at the total upstream scale

(q¼ 0.66, p< 0.001); percentage developed land

cover at the total upstream scale (q¼ 0.63, p< 0.001);

and elevation, calculated as an average at the buffer

scale (q ¼ −0.78, p< 0.001). Other scaled variables

(burned area, road density, wetland area, open water

area) did not result in significant correlation coeffi-

cients greater than 0.4 or less than −0.4.

Multiple Linear Regression Model Selection and
Results

The nonspatial MLR analysis described earlier

resulted in a model that included (1) percentage

upstream watershed area burned (p< 0.001), (2)

Figure 2. Conceptual diagram of three spatial scales used to calculate landscape variables associated with stream temperature. These

scales of calculation, which relate to a stream reach and associated catchment, include (A) stream reach contributing area scale, (B)

total upstream area scale, and (C) a set buffer scale of 100 m on each side of each stream reach.

Scales of Connectivity within Stream Temperature Networks 7



elevation at the buffer scale (p< 0.001), and (3) per-
centage upstream watershed area with underlying
High Cascades geology (p< 0.001). This

combination of variables resulted in an R2 value of
0.81, a leave-one-out cross-validation R2 value of
0.80, and an AIC value of 362.8 (Table 2).

Figure 3. Spearman correlation matrices of investigated predictor variables and stream temperature (maximum seven-day average daily

maximum temperature: (A) derived at the 100-m buffer area scale; (B) derived at the reach contributing area scale; (C) derived at the total

upstream area scale; and (D) single-scale variables related to in-stream and atmospheric conditions, along with total upstream area as a

stand-alone covariate. Statistical significance of predictor variables: �p< 0.05. ��p< 0.01. ���p< 0.001. M7T¼Max7DADM;

Elv¼ elevation; Dv¼ developed; Ag¼ agriculture; Brn¼ burned area; Wet¼wetland; OpW¼ open water; HCS¼High Cascades; Rd¼ road

density; VgH¼ vegetation height; VgC¼ vegetation cover; BFI¼ base flow index; Slp¼ slope; MxA¼maximum air temperature;

MnA¼mean air temperature; MMA¼monthly mean maximum air temperature; AP¼ annual precipitation; DP¼ dry season precipitation;

WP¼wet season precipitation; UA¼ upstream area; Cor¼ Spearman correlation coefficient.
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SSN Model Selection and Results

The SSN model, which used the same set of three

explanatory variables as that in the nonspatial MLR,

resulted in a lower AIC value of 325.6, indicating a

better overall model fit than the nonspatial model.

A linear regression model of observed versus cross-

validated predictions resulted in an R2 value of 0.93,

further confirming a good model fit.

Variance components were calculated for explana-

tory variables and autocovariance structures within the

SSN model, with 68.6 percent explained by explana-

tory variables, and an additional 25.9 percent

explained by spatial autocorrelation of flow-connected

observations alone (Table 2). The prediction points

along the landscape network showedMax7DADM val-

ues ranging from 1.10 �C to 27.54 �C (Figure 4).

Standard errors for each prediction point ranged from

0.44 to 2.69. These prediction errors increase with dis-

tance from observed stream temperature values, and

along stream reaches that are associated with values of

explanatory variables lacking observed counterparts

(e.g., a prediction of stream temperature in a severely

burned reach within a modeled watershed without a

direct observation of stream temperature in a similarly

burned reach).

Discussion

The highly negative correlations of elevation and

High Cascades geology with stream temperature

indicate that the CRB’s stream temperatures are

highly regulated by these factors, as shown in cold

temperatures in the groundwater-rich upper subwa-

tersheds of the Upper Clackamas and Oak Grove

Fork of the Clackamas (Figure 1). High Cascades

geology was most negatively correlated with stream

temperature as an accumulated watershed percent-

age; cold groundwater is accumulated as the stream

network passes through porous geology containing

cold water springs (Tague and Grant 2004). Indeed,

predicted stream temperatures across the basin

(Figure 4) indicate that subwatersheds with underly-

ing High Cascades geology are carrying cooled water

downstream, and on their confluence with warmer

tributaries with underlying Western Cascades geol-

ogy and lower base flow contributions, have a cool-

ing effect on the mainstem Clackamas River. For

example, when observed Max7DADM Collawash

River (upstream Western Cascades geology) temper-

atures of 25 �C (67.5 BFI) near its outlet meet the

groundwater-dominated Upper Clackamas subwa-

tershed (with predicted Max7DADM temperatures

of 16 �C just above its outlet, 69.9 BFI), the result-

ing predicted temperature of the downstream main-

stem Clackamas drops to 21 �C (68.48 BFI). This

and other examples demonstrate a downstream direc-

tional network connectivity throughout the basin as

it relates to porous groundwater source areas

upstream.
High-severity burn area effects were included in

MLR and SSN models as a highly significant explan-

atory variable independent of elevation and geology

Table 2. Summary of spatial stream network (SSN) and multiple linear regression (MLR) models
that explain stream temperature

Model type

MLR SSN

Parameter estimates Upstream burned % 0.06��� 0.07���
Elevation, buffer scale −0.01��� −0.01���
Upstream High Cascades % −0.07��� −0.06���

Variance components (%) Explanatory variables 81.2 68.6

Flow-connected distance 0 25.9

Total explained 81.2 94.4

Total unexplained 18.8 5.6

Model performance Akaike’s information criteria 362.8 325.6

Leave-one-out cross validation R2 0.80 0.93

Note: Parameter estimates represent the regression coefficient, which equals change in the stream temperature based on a 1-

unit change in the predictor variable with all other variables being constant. Variance components assign variance in stream

temperature to explanatory variables, flow-connected stream distance, and unexplained variance.
�p< 0.05.
��p< 0.01.
���p< 0.001.
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(see Figure 3). This variable, in addition to percent-
age tree mortality, includes metrics such as soil burn

severity in its definitions of wildfire burn severity
(Eidenshink et al. 2007). An increase in summer
stream temperatures has been reported downstream

of and following high-severity wildfire, lasting for up
to several years depending on watershed characteris-

tics and local climate (Dunham et al. 2007; Chen
and Chang 2023), although some maximum temper-
atures lessened once deciduous vegetation

Figure 4. Basin-wide, continuous predicted stream temperatures with standard errors. The size of the gray line below each prediction

indicates the prediction standard errors; thicker lines have higher prediction standard errors, thus the less confidence in a point, the

more it stands out in the graphic. Standard errors range from 0.4 to 2.7. Max7DADM¼maximum seven-day average daily maximum

temperature.
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reestablished (Mahlum et al. 2011). Furthermore,

increased aridity and frequency of wildfire events

under climate change in the Pacific Northwest could

contribute to prolonged periods between riparian for-

est canopy reestablishment in the future, with possi-

ble ecosystem shifts toward lower density patches of

vegetation (Busby, Moffett, and Holz 2020).

Research investigating the impact of wildfires on

watershed flow regimes, however, has found tempo-

rary increases in base flow following wildfires in

some areas, which could contribute to cold water

observations during parts of the summer months

(Saxe, Hogue, and Hay 2018). With subsequent

years of stream monitoring data being available in

the future, further investigation of the rate of change

in wildfire effects on stream temperatures, including

vegetation recovery and changes in base flow, will

be possible.
Our results add to the growing body of literature

demonstrating the utility of a spatial network

approach in explaining the variation of stream tem-

perature. Incorporating SSN models’ realistic covari-

ance structures associated with stream distance, flow

accumulation, and flow direction decreases the bias

of stream temperature observations that are often

clustered and nonrandom, such as ours. When the

same explanatory variables were included in the

SSN model that considered stream temperature vari-

ation explained by flow-connected distance between

observations, a much higher amount of variation was

explained (94.4 percent vs. 81.2 percent in nonspa-

tial model; see Table 2). Mapping of maximum

stream temperatures illustrates thermal cold spots

and hot spots that can be flagged for further study or

management activities. Additionally, mapped stan-

dard errors identify potential future monitoring sites

in areas with higher uncertainty of predicted stream

temperatures (e.g., the upper Oak Grove Fork

Clackamas River).

These results include management implications

and will inform future SSN modeling using stream

temperature data, contributing to a knowledge gap

in the literature regarding scale-dependent perfor-

mance of variables used in SSN models and their

applications. These implications include the poten-

tial benefit of upland forest restoration (i.e., main-

taining or increasing tree cover while retaining tall

trees) on reducing downstream temperatures.

Wildfire suppression or recovery efforts in the areas

of thermal concern could also lower future

downstream water temperatures through activities

focused on maintaining shade or increasing postfire

shade during the summer months. As others have

noted (e.g., Isaak et al. 2010), however, wildfire sup-

pression in riparian areas as a strategy to reduce

stream temperature increases must also be weighed

against long-term benefits to stream habitat and

diversity resulting from wildfires (Pettit and Naiman

2007). Predictions of stream temperature in response

to changes in land use and climate inform manage-

ment of cultural values such as tribal fisheries and

the distribution of recreation infrastructure adjacent

to streams such as parks and campgrounds. They also

inform an adaptive approach to economically driven

management actions within the basin and across the

region, including timber harvest and hydropower

development.

Finally, ecologically driven initiatives such as in-

stream habitat restoration will be most viable when

prerestoration stream temperature conditions are

integrated into project prioritization, planning, and

monitoring of compliance with water quality stand-

ards (e.g., TMDLs). The spatially continuous stream

temperature predictions generated by SSNs showcase

the spatial extent of both cold water refugia and

more thermally sensitive reaches, potentially guiding

strategic planning efforts by agencies and interest

groups determining appropriate site-specific

approaches to watershed restoration (Clackamas

Partnership 2018), as well as aquatic species conser-

vation and recovery plans and designations of criti-

cal habitat. For example, both warm and cold stream

reaches might be lacking structural habitat compo-

nents required by salmonids (e.g., large wood, spawn-

ing gravel), but persistent cold-water areas identified

by SSN analysis could have a higher likelihood of

successfully creating viable habitat in the long term,

even if additional shade is added to the compara-

tively warmer reaches before restoring in-stream

structure.

Conclusions

This study leveraged a stream temperature moni-

toring effort in the CRB to (1) compare scales of

analysis related to calculating a novel pool of

explanatory data sets through their correlation with

observed stream temperatures; (2) derive a predictive

stream temperature model with factors representing

the spatial variation of local climate, recent wildfire,
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and stream discharge; and (3) compare nonspatial

MLR analysis to an SSN model to assess the com-

bined importance of the spatial scale of analysis and

flow-connected stream distance in explaining total

variation in stream temperatures.
The results of this study demonstrated the relative

importance of certain explanatory variables, the

scale of analysis, and network connectivity. Of

explanatory variables that were calculated at multi-

ple scales, most of the significant relationships

derived by correlation were at the total upstream

area scale. The strongest correlation between eleva-

tion and stream temperature, however, was derived

at the buffer area scale, and vegetative cover was

most correlated with stream temperature at the reach

contributing area scale. The nonspatial MLR model

including explanatory variables of total upstream

burned area, total upstream area with underlying

High Cascades geology, and the elevation of the

100-m riparian area was outperformed by SSN

modeling that used flow-connected stream network

in its calculation of spatial effects.
Future investigations of stream networks in the

CRB could benefit from including more stream tem-

perature metrics, such as thermal flashiness and days

above a biologically significant temperature thresh-

old (Grabowski, Watson, and Chang 2016), or sensi-

tivity to air temperature (Chang and Psaris 2013).

This last metric in particular could aid in explaining

spatial variation in the effects of extreme air temper-

atures resulting from 2021s historic heat dome event

on stream temperatures in the CRB. Given that

Oregon’s forestry laws related to stream temperature

center around protective riparian buffer areas

(Lorensen, Andrus, and Runyon 1994), further

investigation could shed light on the spatial mecha-

nisms of stream cooling by vegetation at the accu-

mulated RCA versus buffer scales by adding a scale

of analysis defined by smaller (e.g., 30 m) buffer

widths or the total upstream riparian buffer area

from each monitoring site. Furthermore, future work

could include a hybrid SSN–geographically weighted

regression model (e.g., Mainali, Chang, and Parajuli

2023), which could reveal more spatially explicit

hydrological processes within different parts of the

basin. Additionally, integrating historic atmospheric

and stream temperature data into the model, along

with projected climate change scenarios, could pro-

vide more locally relevant estimations of future

stream temperatures than are currently available

through regional databases such as NorWeST (Isaak

et al. 2017). Such endeavors undoubtedly inform

watershed managers preparing adaptive management

strategies in response to a changing climate.
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