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Information�Theoretic Mask Analysis of Rainfall
Time Series Data
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Systems Science Ph�D� Program and Dept� of Civil Engineering�� Portland State University� U�S�A�

�Received �

This study explores an information�theoretic�log�linear approach to multivariate time
series analysis� The method is applied to daily rainfall data �� sites� � years	� originally
quantitative but here treated as dichotomous� The analysis ascertains which lagged
variables are most predictive of future rainfall and how season can be optimally de
ned
as an auxiliary predicting parameter� Call the rainfall variables at the four sites A���D�
and collectively� Z� the lagged site variables at t��� E���H� at t��� I���L� etc�� and the
seasonal parameter� S� The best model� reducing the Shannon uncertainty� u�Z	� by
��� is HGFSJK Z� where the independent variables� H through K� are given in the
order of their predictive power and S is dichotomous with unequal winter and summer
lengths�

�� Introduction

This study is an application of mask analysis to time series studies� more speci�cally�
to rainfall forecasting� The term� �mask analysis�� derives from the �general systems
methodology� of Klir ��	
��� Krippendor ��	
�� and their colleagues� which is exten�
sively based in information theory� These methods� when applied to multivariate nominal
statistical data� substantially overlap what in the social sciences are called �log�linear�
techniques �Bishop Feinberg and Holland �	�
� Knoke and Burke �	
��� The primary
purpose of the study is methodological� to test these information�theoretic techniques on
a particular multivariate time series problem� and to enrich these methods with the statis�
tical assessments common in log�linear analysis� A secondary purpose is to demonstrate
the applicability of these methods to the water resources application area�
The data to be analyzed consist of daily rainfall measurements at four collecting sites

over the nine�year period from �	
� to �		�� more speci�cally for ���� days during this
period� While the data were originally quantitative �inches of rainfall�� they are here dis�
cretized into two states� rain or no rain� The methods used� however� are fully applicable
to multichotomous data� No single program available to us could handle all the needed
calculations� so various programs were used jointly� SHANNON �Hosseini� Zwick� and
Anderson�� CONSTRUCT �Krippendor �	
��� GSPS �Klir �	
�� Elias �	

�� CHISQ
�Anderson��

ISSN ��������� c� ���� International Institute for General Systems Studies
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Table �� Mask analysis framework

day� t�� t�� t�� t

site� � M I E A
� N J F B
� O K G C
� P L H D

season� S� S� S� S

�� Models and Their Evaluation

The rainfall variables de�ned for the four sites at time t are called A� B� C� and D� at
time t��� E� F� G� and H� at time� t��� I� J� K� and L� etc�� as shown in Table �� In addition�
a seasonal variable� S� is used� as shown in the table� For convenience� we will refer to the
dependent variables A���D� taken collectively� as the aggregate ����state� variable� Z� An
unspeci�ed dependent variable will be called R� The aggregate variable� Y� will be the
set of possible independent variables� e�g�� if three lags are considered� E���P and S���S�
or� if two are considered� E���L and S���S��
The question which mask analysis addresses is this� which subset� Y�� of the set� Y�

maximally reduces the information�theoretic uncertainty �Shannon entropy�� u�Z��

u�A�B�C�D� � u�Z� � �
X

p�Z� log� p�Z��

We want to de�ne Y� such that

�u � u�Z�� u�ZjY �� � u�Z� � u�Y �� Z� � u�Y ��

is statistically signi�cant and as large as possible� �u will sometimes be expressed as a
percentage� �u�u�Z�� It is useful also sometimes to calculate �u�u�Y ��� the �predictive
power� of Y�� i�e�� the uncertainty reduction in Z normalized by the amount of information
in Y� used to achieve that reduction� It should be realized that because of the logarithm
in the de�nition of u� a small �u�u�Z� can actually indicate high predictability� One
could� for example� construct a hypothetical �x� contingency table where a rather small

� reduction of uncertainty corresponds to a relatively large shift of probabilities for the
dependent variable from ������� to ��������� when the independent variable is known�
The algebraic uncertainty analysis which follows is based on the exposition of Krippen�

dor ��	
��� We evaluate only models of the form Y�Y�Z� where Y is the set of possible
independent variables being considered and Y� is the subset of Y actually used to predict
Z� That is� each model considered here consists of two contingency tables �probability
distributions�� with overlapping variable sets� one for the variables in Y and the other
for the variables in Y� and in Z� When Y��Y� we have the �saturated� model �m�� for
which Y�YZ is written simply as YZ� The constant Y component in these models re�ects
the fact that in systems where one distinguishes between independent and dependent
variables� models must always have a component which groups together all independent
variables� This assures that the models �cover� the same set of variables� so that they
can be compared�
These Y�Y�Z models are only a subset of the full set of possible models� They have the

virtue� however� of not having loops� which allows us to calculate statistical quantities
easily in simple algebraic expressions� �A model Q�R�S���� has no loops if after repeatedly
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removing variables unique to individual components and also components embedded in
other components one arrives �nally at the null set of variables��
In this paper� we always compare two models� a reference model of form Y�Y�Z� and a

tentative model� Y�Y�QZ� which adds an additional predicting variable� Q� from the set
Y to the predicting set Y�� We compute the increment of uncertainty reduction which Q
produces� i�e�� u�ZjY�� � u�ZjY�Q�� and test the statistical signi�cance of the deviation
of this quantity from zero� If this deviation is signi�cant� the addition of Q to the set of
predicting variables is warranted�
We start with Y� being the null set� choosing for a reference model the bottom model�

Y�Z� which says that Z is independent of Y� We then increase the set of predicting
variables one at a time� ascending via a sequence of Y�Y�Z models towards the top model�
YZ� stopping at that particular Y�Y�Z where further ascent is statistically unjusti�ed� At
this point we simplify our notation by dropping the Y component and calling Y�Z our
model� �The actual procedure is to try all single predictors� pick the best� try all pair
predictors� pick the best� etc�� but to make statistical comparisons between two models�
one must be a descendent of the other��
To compare two models� one computes �L�� the change in the likelihood�ratio Chi�

square� and �df� the change in the degrees of freedom� between the models as follows

�L��Y �QY �Z � Y �Y �Z� � ���
�NI�Y �QY �Z � Y �Y �Z�

�df�Y �QY �Z � Y �Y �Z� � df�Y �QY �Z� � df�Y �Y �Z�

where N is the sample size and I�mi � mj� is the information distance between model
i and model j� With these� we test the null hypothesis� H�� Y�QY�Z � Y�Y�Z� i�e�� �u �
u�ZjY�� � u�ZjY�Q� � � by consulting the Chi�square table with a cut�o probability ���
of making a Type I error� If we reject the null hypothesis� it means that Y�QY�Z captures
information in the data not captured by Y�Y�Z� i�e�� that the nonzero �u is statistically
sign�cant� If we cannot reject the null hypothesis� the nonzero �u is not statistically
signi�cant and the addition of Q to the predicting set cannot be justi�ed�
The information distance� I�Y �QY �Z � Y � Y �Z�� can be written as a dierence of

transmissions�

I�Y �QY �Z � Y �Y �Z� � T �Y �Y �Z� � T �Y �QY �Z��

For a model� mj � without loops� T �mj � � u�mj�� u�m��� thus

I�Y �QY �Z � Y �Y �Z� � u�Y �Y �Z� � u�Y �QY �Z��

In general for composite variables Q and R� u�Q � R� � u�Q� � u�R�� u�Q�R�� where
the intersect selects the variables common to Q and R� Hence�

u�Y �Y �Z� � u�Y � � u�Y �Z� � u�Y �� � u�Y � � u�ZjY ��

u�Y �QY �Z� � u�Y � � u�QY �Z� � u�QY �� � u�Y � � u�ZjQY ��

and thus�

I�Y �QY �Z � Y �Y �Z� � u�ZjY ��� u�ZjQY ���

that is� the information distance is the additional uncertainty reduction achieved by Q�
The dierence in degrees of freedom between two models is

�df�mi � mj� � df�mi�� df�mj��
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Table �� Determination of number� starting month� and length of seasons

nS mo� �u�u�R	 �u�u�S	

� �� ���� ���� equal
� �� ���� ����
� �� ���� ����
� � ���� ����
� � ���� ����
� � ���� ����
� �� ���� ����
� �� ���� ����
�� �� ���� ����

� �� ���� ���� unequal

The degrees of freedom of a model of form A�B�

df�A �B� � df�A� � df�B� � df�A �B��

where the intersect operator selects the variables common to A and B �e�g�� for the model
Y �QY �Z� the intersect selects QY ��� This yields� in the present case�

�df�Y �QY �Z � Y �Y �Z� � df�QY �Z� � df�QY ��� df�Y �Z� � df�Y ���

�� Preliminary Analysis

First� we estimate the number of usable predicting variables� For ���� data points
and assuming about � data points per cell �a Chi�square rule of thumb� we have a
limit of about ��� cells in our contingency table for both independent and dependent
variables� This means 	 to �� site variables� i�e�� ������ to �������� cells� hence � to �
predicting dichotomous variables� Since using t�� lags� even without season� would involve

 predicting variables� we can probably safely ignore all t�� lags�
We now consider the seasonal variable� S� and decide how many seasonal states to allow

and for what temporal periods� Let�u � u�R��u�RjS�� for R � A���D� Table � gives the
average� over the � individual sites� of both �u�u�R�� the � reduction in uncertainty�
and �u�u�S�� the predictive power �e�ciency� of S� as a function of the number of
seasons� nS � and the starting month� mo�� The table indicates the following� ��� For
� seasons� the optimum month to begin winter is November �mo������ ��� Although
greater uncertainty reduction is achievable with additional seasons� predictive power is
better for � than for �� �� or ��� Using season in the model requires giving up degrees of
freedom of lagged site variables for degrees of freedom of S� and it seems unlikely that a
multichotomous season would oer any predictive advantage� ��� Additional improvement
of uncertainty reduction and predictive power is gained by making the � seasons unequal
�� months winter � � months summer�� Greater inequality of season length �calculations
not shown�� however� does not improve uncertainty reduction� The conclusions drawn
from these calculations are not actually de�nitive� as these ratios are not statistical
measures with error probabilities we can calculate� However� a mask analysis reported
brie�y in the next section provides some supporting evidence�
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Table �� Mask analysis for lags EFGH JKL and season� S �key values are dotted�

�ucum �uincr �L� �df �

�� u�ZjEFGHJKLS	 ���� ���� ���� ���� ���� ����
�� u�ZjFGHJKLS	 ���� ���� ��� ��� ��� ����
�� u�ZjFGHJK S	 ����� ����� ��� ��� ��� �����
�� u�ZjFGHJ S	 ���� ���� ��� ��� ��� ����
�� u�ZjFGH S	 ���� ���� ��� ��� ��� ����
�� u�ZjFGH	 ���� ���� ��� ��� �� ����
�� u�ZjGH	 ���� ��� ��� ��� �� ����
�� u�ZjH	 ���� ��� ��� ��� �� ����
�� u�Z	 ���� � � � � �

�� Mask Analysis

With the seasonal variable de�ned� we do mask analysis as shown in Table �� We do
a bottom up stepwise analysis to select a subset of predicting variables from the set Y
� EFGH JKL S� This starting set was chosen on the basis of preliminary calculations�
not shown here� where mask analysis was done without using the seasonal variable� In
this earlier analysis for which u�ZjY � � ����� the optimum predictors were EFGH KL
and the next best predictor was J� We include these predictors in Y� along with S� it
is unlikely� because of this earlier run� that we need to include I� �A simpler� one�step�
procedure would have been to de�ne S and just start with Y � EGH IJKL S��
Essentially� our objective here is to select � of the possible 
 independent variables

�four t�� and three t�� lags � season�� i�e�� to determine which of the 
����������
 models
should be used�
Table � shows that the best predictors are FGH JK S �model ��� Compare this to

the best predictors obtained when season was not used� namely EFGH KL� The lagged
site variables E and L are replaced by J and S� The �nal model is FGHJKS Z� and the
predictive order for the independent variables� from most predictive to least� is� �most� H
G F S J K �least�� The model achieves a u�ZjY � � ���� compared to u�ZjY � � ���� for
the earlier model where season was not considered� Measuring from the reference level
of u�Z� � ����� consideration of season improves the predictive model from a �	��� to
a ����� reduction in uncertainty� It is interesting that E� the t�� lagged value of site ��
does not appear in the model� i�e�� is a weaker predictor than the t�� lags �J and K� of
sites � and �� This is consistent with I being the weakest predictor of the t�� lags� Site �
also had much smaller values of �u�u�R� and �u�u�S� than the other � sites�
Season is less predictive than each of the t�� lagged site variables� HGF� but more

predictive than each of the t�� lagged site variables� JK� It may be surprising that season
is not a stronger predictor� but the lagged variables �especially the t�� lags� intrinsically
capture seasonal information in the sense that runs of rain or no�rain are more likely in the
winter and summer� respectively� The uncertainty reduction is not very sensitive to the
choice of the last two predictors� For example� a model� FGHKLS Z� has u�ZjY � � �����
which is only slightly worse than the ���� of the best model� The previous determination
that S should be dichotomous was also checked with a mask analysis using a ��state
seasonal variable� which is a composite of an s�� specifying two equal seasons� and an
s�� splitting winter and summer into early and late halves� Consistent with the results
shown in Table �� the �nal model was FGH s� JK� and s� was omitted�
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Table �� Final model� FGHJKS Z� superscripts give predictive order

time t�� t�� t

site� � I E A
� J� F� B
� K� G� C
� L H� D

season� S� S� S�

�� Discussion

In summary� our best predictors are Y � FGH JK S with u�ZjY � � ����� an overall
uncertainty reduction of ��� from the initial u�Z� � ����� This �nal model is shown
in Table �� Improvements might be possible� however� by further information�theoretic
analyses� as only a small subset of the possible models have been considered� The model
is used for predictive purposes simply by computing the conditional probabilities� p�ZjY��
from which one can calculate the probabilities of rainfall one day ahead�
Nothing in the present approach is intrinsically dependent upon variables being dich�

tomous� We could have �binned� the rainfall data into more than two states and thus
approximated a treatment of rainfall as a quantitative variable� Optimal binning� how�
ever� is non�trivial� Alternatively� the FGHJKS Z model could be taken as a starting
point for full quantitative modeling by other techniques� More generally� the approach
used here is broadly applicable to multivariate time series analysis of nominal variables
or quantitative variables with unknown non�linear relations when large data sets are
available�
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