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Abstract—Reciprocal altruism and inclusive fitness are 
generally considered alternative mechanisms by which 
cooperative, altruistic traits may evolve. Here we demonstrate 
that very general versions of Hamilton’s inclusive fitness rule 
(developed by Queller) can be applied to traditional 
reciprocal altruism models such as the iterated Prisoner’s 
Dilemma. In this way we show that both mechanisms rely 
fundamentally on the same principle—the positive assortment 
of helping behaviors. We discuss barriers to this unified view, 
including phenotype/genotype differences and non-additive 
fitness (or utility) functions that are typical of reciprocal 
altruism models. We then demonstrate how Queller’s versions 
of Hamilton’s rule remove these obstacles. 

I.  INTRODUCTION 

Over two decades ago Axelrod and Hamilton [1, 2] 
suggested two alternative mechanisms for the evolution of 
cooperative (altruistic)1 traits: 1) when the benefits of 
altruism fall to relatives, inclusive fitness [3-5] is the 
likely mechanism; and 2) when benefits fall to non-
relatives, reciprocal altruism [6] is the likely mechanism. 
Around this same time researchers began to show that 
multilevel (group) selection theory [7, 8], a third 
alternative not emphasized by Axelrod and Hamilton, is 
mathematically equivalent [9-14]  to Hamilton’s inclusive 
fitness theory. This theory shows that Hamilton’s 
coefficient of relatedness can be treated as a measure of 
positive assortment among altruistic traits (or behaviors) 
rather than strictly as a measure of kinship [5] and that the 
differential productivity of groups constitutes a group-
level selection process [15]. Other researchers have gone 
further in claiming that reciprocal altruism also can be 
unified with multilevel selection and inclusive fitness 
theories. Queller [10] originally suggested that a 
generalization he developed of Hamilton’s rule could be 
applied to reciprocal altruism and more recently Sober 
and Wilson [14] have claimed such a unification is 
possible, yet there has not been a clear demonstration of 
how to apply Queller’s equations to traditional reciprocal 
altruism models. In fact in a subsequent expansion of his 
original result Queller [11, 12] does not mention its 
application to reciprocal altruism.  

Here we take up this thread of inquiry and demonstrate 
that Queller’s equations do indeed provide a foundation 
for the unification of reciprocal altruism, inclusive fitness, 
and multilevel selection theories. We do this by using 
                                                           
1 We will use cooperation and altruism synonymously because 

in the examples used in this paper, the cooperate behavior (C) 
always involves an altruistic sacrifice in fitness (or utility). 

Hamilton’s inclusive fitness rule to predict whether a 
reciprocal altruism strategy will increase or not within a 
classic iterated Prisoner’s Dilemma (PD) model. This 
model is similar to those used by Axelrod and Hamilton in 
their original work. In this way we support the idea that, 
rather than relying on alternative mechanisms, these 
theories offer different ways of understanding a common 
principle by which self-sacrificing traits can increase. This 
principle is that altruism can evolve if there exists: 1) 
sufficient positive assortment among altruistic behaviors 
such that on average altruistic genotypes benefit more 
from these behaviors than average population members, 2) 
sufficient non-zero-sum benefits of cooperation such that 
on average the benefit provided to others by an altruist 
exceed the cost to the altruist, and 3) heritability of these 
behaviors. The “sufficient” positive assortment and 
benefit to cost values necessary for altruism to increase 
are given by Queller’s generalizations of Hamilton’s rule. 
This rule applies whether the source of positive 
assortment among altruistic behaviors is due to 
conditional strategies, higher interaction levels among 
relatives, or other causes of population grouping (even 
among non-relatives).  

II.  OBSTACLES TO APPLYING HAMILTON’S RULE TO 
RECIPROCAL  ALTRUISM 

There are two major difficulties in unifying reciprocal 
altruism with inclusive fitness and multilevel selection 
theories—one stemming from the difference between 
genotype and phenotype and the other from non-additive 
fitness functions. The first obstacle is that by definition 
there is not a one-to-one relationship between behavior 
and genotype in reciprocal altruism models. In contrast, 
inclusive fitness and multilevel selection models most 
often assume that there is a cooperation or altruism “gene” 
(or some additive combination of genetic determinants) 
and that the frequency of the genetic trait is proportional 
to the frequency of the cooperative or altruistic behavior. 
With reciprocal altruism models, however, behaviors are 
conditioned on environmental circumstances (e.g. the 
behaviors of others) and are not generally proportional to 
genetic frequencies. For example, if there is a trait such 
that cooperation is conditioned on what others did in 
previous encounters, then the frequency of this trait does 
not directly predict the frequency with which an 
individual displays cooperative behaviors. For this one 
must know the previous behaviors of those with whom the 
individual interacts.  
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Because the round-robin tournament structure used by 
Axelrod and Hamilton ensures no positive assortment 
among player types (ignoring the play against ones 
“shadow” self [2]), it seems that altruism cannot evolve 
via either inclusive fitness or multilevel selection. Both 
Hamilton [16] and Wilson [7] (working independently) 
have shown that altruism does not evolve when groups are 
formed randomly because there is not enough positive 
assortment in the altruistic trait. Recently, however, we 
showed that altruism can evolve in randomly formed 
groups if these groups are multigenerational [17]. Here we 
will demonstrate that altruism can also evolve in single 
generation groups (pairings) when behaviors are 
positively assorted—even in the absence of assortment 
between the interacting genetic types. 

The second obstacle to unification is that the fitness (or 
utility) values used in reciprocal altruism models are not 
necessarily additive and therefore are not decomposed 
into the familiar benefits and costs commonly employed 
in inclusive fitness and multilevel selection models. This 
non-additivity is true of the most common payoff matrices 
used in iterated PD experiments (Fig. 1), including those 
of Axelrod and Hamilton. We explain this further in the 
section on non-additivity. 

Both of these obstacles, as we demonstrate below, are 
effectively handled by Queller’s generalizations of 
Hamilton’s rule. We begin by briefly reviewing the 
iterated PD experiments of Axelrod and Hamilton as well 
as Hamilton’s rule and Queller’s contributions. We then 
demonstrate how Hamilton’s inclusive fitness rule can be 
applied to an additive PD experiment involving a 
conditional strategy, and then finally do the same when 
fitness payoffs are non-additive. Table I lists the symbols 
that will be used in our discussion. 

 
TABLE I. SYMBOLS USED 

Symbol Meaning 
PD Prisoner’s dilemma 
TFT Tit-For-Tat genotype 
ALLD Always-Defect genotype 
C cooperate behavior 
D defect behavior 
GP fraction of TFT genotype in population 
GA fraction of TFT genotype in an actor (1 or 0) 
PP fraction of C behaviors in population 
PA fraction of C behaviors by an actor 
PO fraction of C behaviors by actor's opponents 
i number of iterated games in a pairing 
b benefit provided by a C behavior 
c cost paid for a C behavior 
d deviation from additivity for CC interaction 
fTT fraction of  TFT-TFT pairings 
fTD fraction of  TFT-ALLD pairings 
fDD fraction of  ALLD-ALLD pairings 

III.  THE ITERATED PRISONER’S DILEMMA 

The prisoner’s dilemma (PD) game captures a 
fundamental problem of social life—individually rational 
behavior may lead to a collectively irrational and deficient 
outcome. Fig. 1 illustrates a typical 2-player PD payoff 
matrix (and the one used by Axelrod and Hamilton [1, 2]). 
The game is symmetric and each player has a dominant 
strategy to defect (D). This mutual defection results in 
each player receiving a payoff of 1, but if they had both 
cooperated (C), they could have each received a payoff of 
3. In this game it is presumed that players choose their 
strategy simultaneously and there is no knowledge or 
guarantees about what the other player will do. The 
dilemma is that cooperation makes a player vulnerable to 
exploitation—in this case the exploiting defector gets 5 
while the lone cooperator gets 0. 
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Figure 1. Shows typical PD utility (or fitness) values for the actor 
given its own and opponents behaviors. Behaviors are either 
cooperate (C) or defect (D). 

An n-player version of the PD in which cooperators 
contribute to the common good (also called whole-group 
altruism [18]) models familiar social dilemmas such as the 
“tragedy of the commons” [19] and the “free-rider 
problem” [20, 21]. Elsewhere we have demonstrated that 
an n-player PD with fixed strategies played across 
multiple groups captures fundamental features of the 
evolution of altruism via multilevel selection (or 
equivalently inclusive fitness) [22-24]. Here we will show 
that a 2-player game with conditional strategies also fits 
into this broader framework.  

Although in a PD situation it is individually rational to 
defect in single plays of the game, Axelrod and Hamilton 
[1, 2] showed that conditional cooperative strategies can 
do well overall when games are iterated. This combination 
of iterated games and conditional play can create positive 
assortment among behaviors even when there is none 
among player types. In their experiments many different 
types of players (submitted by researchers from many 
fields) competed in a round-robin tournament in which 
each submission played all others an average of 200 
times. The most successful strategy in Axelrod and 
Hamilton’s experiments was also one of the simplest. 
Submitted by social scientist Anatol Rapoport, it was 
called Tit-For-Tat (TFT). TFT always cooperates with an 
opponent on the first move and then in all subsequent 
moves simply plays whatever the opponent did in the last 
game. Even though TFT never came out ahead in any 

  opponent’s behavior 



single match of 200 iterated games [14, 25], its overall 
score was superior as it was able to minimize exploitation 
by defecting strategies such as Always-Defect (ALLD), 
while taking advantage of mutual cooperation when it met 
other “nice” strategies. When viewed as an evolutionary 
process where utility payoffs of the PD are used to 
determine the number of each player type in the next 
generation, Axelrod and Hamilton showed that both 
ALLD and TFT are Evolutionarily Stable Strategies 
(ESS). That is, they cannot be invaded by individual 
mutations or migrants exhibiting a different strategy. 
Since these original experiments more than 20 years ago, 
much research has been done on the iterated PD (e.g. see 
[26] for review]). 

IV.  HAMILTON’S RULE 

Hamilton’s rule gives the condition necessary for an 
altruistic trait to increase in a subsequent generation and is 
deceptively simple [3]: 

                    (1) crb >

where b is the average benefit provided by an altruist and 
c is the average cost to the altruist. The complications lie 
in the meaning of the r term which has been progressively 
generalized over the years. Originally thought of as a 
simple measure of relatedness via descent [3], Hamilton 
(after interacting with Price [15]) broadened the meaning 
of r to be a measure of the interaction of genetic types 
regardless of relatedness: 
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where GA is the genotype or breeding value with respect 
to the altruistic trait for each potential actor and GO it the 
average genotype or breeding value of those that interact 
with the actor. After several examples of Hamilton’s rule 
failing were reported in the literature [e.g. 27], Queller 
showed that these were due to phenotype/genotype 
differences and that it was the altruistic behaviors of 
others and itself that determined whether the actor’s 
genotype increased, not the genotype of others. Queller 
generalized Hamilton’s r term as follows [10-12]: 
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where PO is the average phenotypic value of others 
interacting with the actor and PA is the average phenotypic 
value of the actor.  

Note that Eqn. (3) is more general than Eqn. (2). In the 
case of no genotype/phenotype difference (PO = GO and 
GA = PA) Eqn. (3) reduces to Eqn. (2). The absence of any 
GO component in this most general interpretation of 
Hamilton’s r term by Eqn. (3) is especially noteworthy 

because it challenges the selfish gene [28, 29] view of 
inclusive fitness in which genes encode altruistic 
behaviors only because these behaviors help other copies 
of the genes residing in those receiving the altruism.  

Based on the definition of covariance, Eqn. (3) can also 
be written as: 
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where the summation is over each individual in the 
population (each potential actor) and PP is the average 
population phenotypic value. We use this equation to 
calculate r below. Note that here there is no mutation and 
the genetics are haploid, but Frank [13] has expanded 
Queller’s equations to accommodate different degrees of 
fidelity in transmission from one generation to the next. 

V.  APPLYING HAMILTON’S RULE TO  
RECIPROCAL ALTRUISM  

Here we provide a simple example of applying 
Hamilton’s rule to reciprocal altruism using a population 
consisting of two classic evolutionarily stable (ESS) 
types, TFT and ALLD. Because one of the types (TFT) 
uses conditional behaviors we must measure genotypes 
and phenotypes separately. Fig. 2 illustrates a general 
view of the PD in which an altruist provides a benefit 
value of b to its opponent at a cost c to itself. w0 is the 
base fitness value unrelated to the altruistic trait. The d 
term is a deviation from additivity and is discussed in the 
next section; in this section d = 0. Behaviors are either 
cooperate (C) which has a phenotypic (P) value of 1 or 
defect (D) which has a phenotypic value of 0. Note that 
the fitness values in Fig. 2 depend only on the phenotype 
of the actor (PA) and the opponent (PO), not on their 
genotypes. We focus on the TFT type and thus give it a 
genotypic (breeding) value of 1 and ALLD a value of 0.  
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Figure 2. Shows PD utility (or fitness) values for the actor given 
its own and opponents behavior. The fitness (or utility) values for 
the actor are represented as the sum of additive contributions from 
the opponent and its own sacrifice. The w0 term is an additive 
base fitness value uncorrelated with C and D behaviors. The d 
term is the deviation from additivity (addressed in next section). 

In this population of two types there will be three 
possible parings each with set values for GA, PO, and PA. 
Table II gives the values for each of the player types when 



it is the potential actor (A) and its opponent (O) is either 
the same type or different. 

 
TABLE II. GA AND PREDICTED PA, AND PO VALUES 

Actor (A) Opponent (O) GA PA PO 
TFT TFT 1 1 1 
TFT ALLD 1 1/i 0 
ALLD TFT 0 0 1/i 
ALLD ALLD 0 0 0 

Fig. 3 shows the change in the fraction of TFT in the 
population after one generation (or tournament), ∆GP = 
GP' – GP, as a function of benefit level where cost and 
base fitness are held constant at c = 1 and w0 = 1. 
Calculation results are shown for a few different starting 
GP and i values. Note the general trends—∆GP is positive 
for higher initial GP and more game iterations.  

For our purposes, the main point is to notice that the 
precise value of b needed to get an increase in TFT, ∆GP 
> 0, is given by Hamilton’s rule. Rearranging Eqn. (1) 
gives the condition  b > c/r. Table III gives the c/r values 
for the five example set of parameters used in Fig. 3 
(where cost is held at c = 1). Each c/r value precisely 
predicts the benefit level needed for TFT to increase, i.e. 
∆GP > 0. 

 
The value 1/i in Table II represents the fact that when 

playing an ALLD player, TFT will cooperate once on the 
first play out of i total plays in this pairing. To use Eqn. 
(4), we need additionally the values of  i, GP, and PP. We 
take i and GP to be parameters of the model, but the 
overall fraction of cooperate behaviors, PP, can be 
calculated from the frequencies (f) with which different 
pairings occur: 

i
fifP TDTT

P 2
2 +

= , (5) 
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Figure 3. The change in the fraction of TFT players in population 
after one generation, ∆GP, as a function of benefit level, b. Data is 
shown for indicated initial GP and i. Cost c and base fitness w0 are 
both held constant at 1. 

where the numerator of Eqn. (5) represents 2i cooperate 
behaviors in all TFT-TFT pairings plus one cooperate 
behavior in all TFT-ALLD pairings. The expected 
frequency of pairing types can be calculated from GP and 
population size for various ways of forming pairs (e.g. a 
binomial or hypergeometric distribution). The round-robin 
tournaments used by Axelrod and Hamilton are equivalent 
to the expectation for a hypergeometric distribution 
(sampling without replacement) if one ignores the ad hoc 
modifications of having each player play a “shadow” self 
and an opponent playing randomly. For a round-robin 
tournament (hypergeometric distribution) of large 
population size, the frequencies of pair types approaches 
those of a binomial distribution. Here for simplicity we 
will assume random pairings from an infinite population 
and therefore use a binomial distribution. In this case fTT = 
(GP)2,  fTD = 2GP(1 - GP), and fDD = (1 - GP)2. We thus 
have PP(i) and also from Table II, GA, PA(i), and PO(i). 
Now using only GP and i as parameters to this simple 
model, we can calculate r from Eqn. (4) and use it in 
Hamilton’s rule (Eqn. (1)) to predict whether TFT will 
increase or not.  

 
TABLE III. HAMILTON’S RULE MIN. b FOR ∆GP = 0 IN FIG. 3 

GP i Minimum b = c/r 
0.1 7 2.6667 
0.1 5 3.5000 
0.3 2 4.3333 
0.1 3 6.0000 
0.1 2 11.0000 

In order to check the predictions of Hamilton’s rule, we 
also calculate the fraction of TFT in a subsequent 
generation, GP', using the above frequencies (f) of pairings 
and b and c. This assumes that the number of each player 
type in the new generation is proportional to the fitness 
(or utility) values gained in the previous generation. A 
generation is defined as one round of pairings each with i 
games between paired players. GP' is then given by: 

VI.  HAMILTON’S RULE AND NON-ADDITIVITY 

The version of Hamilton’s rule given in Eqn. (1) relies 
on the assumption that fitness (utility) benefits and costs 
are additive and due to the independent effects of 
individual behaviors. But note that it is not possible to 
pick positive values for w0, b, and c in Fig. 2 that will sum 
to the values found in Axelrod and Hamilton’s classic 

000
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where for now d = 0. 



version of the PD in Fig. 1. This latter PD (Fig. 1) is non-
additive. One way to view non-additivity is as the 
presence of some positive or negative synergy for mutual 
action (where defection is considered non-action). As an 
example of positive synergy, imagine a cooperative trait 
that involves hunting for one’s paired partner—when both 
hunt simultaneously the catch may exceed two times the 
individual result. Negative synergy can be seen in terms 
of diminishing returns. In a different ecological context 
two hunters might interfere with each other or be 
exploiting the same limited resource—their total might 
then be less than the sum of individual efforts. The d term 
in Fig. 2 gives the deviation from additivity. Now we can 
use the values b = 4, c = 1, w0 = 1, and d = -1 to arrive at 
the familiar PD in Fig. 1. 

Again we can rely on Queller [10-12] who also 
developed a version of Hamilton’s rule that 
accommodates a non-linear term. In this case the 
condition for an altruistic trait to increase is [10-12]: 

cdrrb dev >+  (7) 

where r is still given by Eqn. (4) and rdev is given by: 
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Notice that the difference between rdev and r is that PO is 
replaced by the interaction term PAPO in the numerator. 
This term (which incorporates the effect of d on GA in 
Eqn. (7)) is only non-zero when there is mutual 
cooperation.  

Again, to verify Hamilton’s rule in this reciprocal 
altruism model we will need to calculate GP' using the 
deviation in the payoff for mutual cooperation, which 
happens only in TFT-TFT pairings (see Eqn. (6)). Fig. 4 
shows the effect of non-additive deviations on ∆GP where 
parameters are set to resemble those in Axelrod and 
Hamilton’s iterated PD experiments, b = 4, c = 1, w0 = 1, 
and i = 200. Again, when d = -1 this corresponds to the 
PD used in their experiments (Fig. 1). There are again 
general trends such that ∆GP is easier to make positive for 
higher initial GP and higher values of d. Note also that 
TFT can gain in the population even when relatively rare, 
given the high number of iterated interactions, i = 200. 
The more linear appearance of the curves in Fig. 4 
(compared to Fig. 3) is due to scale differences—here we 
start with much smaller GP values and plot much smaller 
changes. 

To check the application of Hamilton’s rule under these 
non-additive conditions we rearrange Eqn. (7) to get the 
condition d > (c – rb) / rdev. Table IV shows the value of 
(c – rb) / rdev for the parameters used in Fig. 4. For each 
set of parameters, these values precisely predict the 
threshold value of d where ∆GP becomes positive, thus, 
demonstrating that this version of Hamilton’s rule can be 

successfully applied to reciprocal altruism models, even 
when fitness values are non-additive. 

Figure 4. The change in the fraction of TFT players in a 
population after one generation, ∆GP, as a function of the 
deviation from additivity for mutual cooperation, d. Data is 
shown for indicated initial GP. Cost c and base fitness w0 are both 
held constant at 1, b = 4,  and the number of iterated games i = 
200. 
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TABLE IV. HAMILTON’S RULE MIN. d FOR ∆GP = 0 IN FIG. 4 

GP Minimum d = (c – rb) / rdev 
0.005 -1.985 
0.004 -1.735 
0.003 -1.318 
0.002 -0.485 
0.001  2.015 

VII.  CONCLUSION 

We have demonstrated how reciprocal altruism can be 
analyzed using Hamilton’s inclusive fitness rule. The key 
is to use general versions of Hamilton’s rule appropriate 
to the situation under study. In reciprocal altruism with its 
conditional strategies and repeated interactions there can 
be a positive assortment among behaviors, even when 
there is no positive assortment among genetic types. 
Therefore these differences must be accommodated in the 
analysis. Similarly, when the fitness consequences of 
individual behaviors are non-additive, this deviation must 
be accounted for. Queller [10-12] has provided versions of 
Hamilton’s rule that handle both of these situations.  

Our example has been minimal with only two different 
types, a fixed number of interactions, and predictable 
fractions of interacting pair types from an infinite 
binomial distribution. But these techniques can be used 



for more complicated situations if one uses the actual 
frequency of phenotypes and genotypes observed in all 
interactions.  

Our demonstration of an underlying unity in 
mechanisms for the evolution of altruism broadens the 
meaning of both reciprocal altruism and inclusive fitness. 
Fundamentally, the evolution of altruism depends on the 
positive assortment of social behaviors such that “nice” 
types help each other more than they help average 
population members. In this sense, altruism requires 
reciprocity in order to evolve whether based on 
conditional strategies or some other source of positive 
assortment. The notion of inclusive fitness must also be 
broadened beyond the selfish gene viewpoint [28, 29] 
when phenotype differs from genotype.  For instance, if 
one imagines a single Always-Cooperate (ALLC) 
individual interacting in a population where all remaining 
individuals are TFT, the fitness of the ALLC player would 
be equal to the fitness of a TFT player—not because it 
selfishly helps copies of its own genetic type (ALLC), but 
because it successfully exchanges cooperate behaviors 
with the TFT type. Axelrod and Hamilton emphasized that 
symbiotic interactions were an example of cooperation 
between different species that could not be based on 
relatedness. In the above example one could view the 
ALLC and TFT types as different species. Cooperation 
across species is a clear demonstration that the “selfish-
gene” of kin-selection theory is only a special case of a 
much more general phenomenon. Although it sounds 
strange to say, inclusive fitness as captured by Hamilton’s 
rule can involve different species as well as non-relatives 
of the same species. 

Reciprocal altruism is not fundamentally different from 
inclusive fitness or multilevel selection. As we have 
shown using Queller’s equations [10-12], inclusive fitness 
can be generalized to encompass reciprocal altruism as a 
special case. As already noted, inclusive fitness and 
multilevel selection have been shown to be 
mathematically equivalent. It thus follows that all three 
theories offer different accounts of the same phenomenon. 
In fact there are many specific mechanisms by which 
altruism can evolve, including passive ones such as 
foraging in non-uniform resource distributions [30], 
continuous population viscosity with periodic 
environmental disturbances [31], the coevolution of group 
joining and cooperative behaviors [21], the presence of 
non-participants [32], and multigenerational randomly-
formed groups [17], as well as active methods such as kin 
recognition [33],  conditional behavior based on the 
reputations [34, 35] or past behaviors [1, 2, 6, 26] of 
others,  policing [36, 37], punishment of non-altruists [38-
40], the coevolution of cultural institutions that constrain 
individual behaviors [41], and even recognition of 
arbitrary tags [42]. What all these mechanisms have in 
common is: 1) sufficient positive assortment among 
altruistic behaviors, 2) sufficient non-zero-sum benefits of 
cooperation, and 3) heritability of these behaviors. 
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