Portland State University

PDXScholar

Student Research Symposium

Student Research Symposium 2022

May 4th, 9:00 AM - 11:00 AM

Respiratory Function in Transgender and Gender Diverse Individuals on Testosterone Therapy: A Comparative Study

Jillian River R. Browy Portland State University

Alicia Heitzman Salem Health Hospital

Deanna Britton

Portland State University

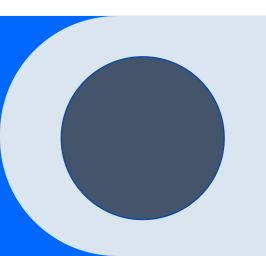
Jeff Conn Portland State University

Karen Drake
Oregon Health & Science University

Belove this age of additional wholes https://pdxscholar.library.pdx.edu/studentsymposium

Part of the Speech and Hearing Science Commons

Let us know how access to this document benefits you.


Browy, Jillian River R.; Heitzman, Alicia; Britton, Deanna; Conn, Jeff; Drake, Karen; and Ziegler, Aaron, "Respiratory Function in Transgender and Gender Diverse Individuals on Testosterone Therapy: A Comparative Study" (2022). *Student Research Symposium*. 5.

https://pdxscholar.library.pdx.edu/studentsymposium/2022/presentations/5

This Oral Presentation is brought to you for free and open access. It has been accepted for inclusion in Student Research Symposium by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

Presenter Information Jillian River R. Browy, Alicia Heitzman, Deanna Britton, Jeff Conn, Karen Drake, and Aaron Ziegler								

Respiratory Function in Gender Diverse Individuals on Testosterone Therapy: A Comparative Study

Jillian River Browy, BA
Ali Heitzman, MA, CCC-SLP
Deanna Britton, PhD, CCC-SLP, BC-ANCDS
Jeff Conn, PhD, CCC-SLP
Karen Drake, MA, CCC-SLP
Aaron Ziegler, PhD, CCC-SLP

Disclosures

Ali Heitzman, MS, CCC-SLP

Financial Disclosures

SLP at Salem Health Hospital

Non-financial Disclosures

- ASHA 2021 Voice and Upper Airway Impairments Committee member
- Community member

Jeff Conn, PhD, CCC-SLP

Financial Disclosures

- Associate Professor at Portland State University
- Clinical supervisor for Gender Communication Lab
- Vice chair of L'GASP

Non-financial Disclosures

Community member

Jillian River Browy, BA

Financial Disclosures

• No relevant financial relationships to disclose

Non-financial Disclosures

- Graduate student at Portland State University, with this research as their cumulating project
- Community member

Karen Drake, MA, CCC-SLP

Financial Disclosures

- Assistant Professor of Otolaryngology Head and Neck Surgery, Laryngology, School of Medicine, OHSU
- Clinician and clinical supervisor at Northwest Clinic for Voice and Swallowing

Non-financial Disclosures

Nothing to disclose

Disclosures continued

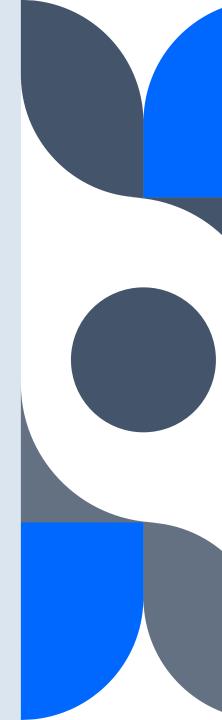
Deanna Britton, PhD, CCC-SLP, BC-ANCDS

Financial Disclosures

- Adjunct Assistant Professor of Otolaryngology Head and Neck Surgery, Laryngology, School of Medicine, OHSU
- Clinician and clinical supervisor at Northwest Clinic for Voice and Swallowing
- Assistant Professor at Portland State University

Non-financial Disclosures

Nothing to disclose


Aaron Ziegler, PhD, CCC-SLP

Financial Disclosures

- Founder and clinician at Wellness Group for Voice, Speech, and Swallowing, LLC
- Co-founder and educator at Confident Clinician Cooperative, LP

Non-financial Disclosures

Nothing to disclose

Defining Terminology

Sex assigned at birth — Label assigned at birth by doctor based on genital anatomy and chromosomes

Gender - Social and legal status influenced by societal expectations and based on an individual's identity and feelings.

Gender diverse — Noting or relating to a person whose gender identity or gender expression does not conform to socially defined binary gender norms.

Transgender – Gender identity that does not correspond to sex assigned at birth.

Cisgender – Gender identity corresponds to sex assigned at birth.

https://www.uwmedicine.org/provider-resource/lgbtq/lgbtq-inclusion-glossary

Background

- Interpretation of pulmonary function tests (PFT) is common practice in assessing respiratory function of individuals – including gender diverse individuals who were assigned female at birth
- Interpretation of PFTs for these individuals is challenging
 - Cisgender norms for forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), and FVC/FEV1 ratio are based on sex, race, age, and height (Quanjer, et al., 2012)
 - Cisgender norms for maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) are more debated but fall between a general range based on age and biological sex (Evans and Whitelaw, 2009)

- Impact of gender-affirming hormone therapy testosterone on pulmonary function has not been investigated
- Known impact of testosterone therapy
 - Higher lean body mass
 - Lower body and subcutaneous fat
 - Greater muscle strength
 - Thickening of vocal folds

(Irwig, 2016)

Haynes and Stumbo (2018)

- •Using a non-assigned birth sex in diagnosing subjects with airflow obstruction can have a significant impact on test interpretation of PFT values
- •Consider birth sex and not gender alone when interpreting test results in an ethical and respectful manner
- •Need for study with transgender individuals without airflow obstruction, on hormone replacement therapy

Purpose

Investigating the respiratory capacity and strength of individuals who have undergone hormone therapy and comparing their results to established cisgender norms as well as a group of age, race, and biological sex matched peers will aid in the accuracy in PFT interpretation for this group.

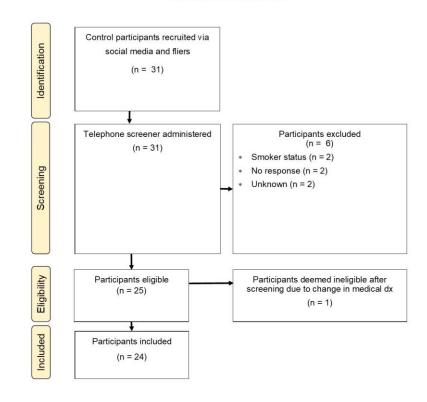
Learner Outcomes

Contrast expected respiratory values when assessing transgender and gender diverse individuals compared to both cisgender male and female values

Describe respiratory changes that occur following testosterone therapy for the purposes of aligning gender identity in transgender and gender diverse individuals

Differentiate the significant impact of assigning gender when collecting respiration data with transgender and gender diverse individuals

Participants


Participants:

- Experimental group (GDV)
 - Assigned female at birth, non-smoking, between ages 18-65, on testosterone therapy for at least 1 year
- Control group (CGF)
 - Assigned female at birth, non-smoking, between ages of 18-65, no history of testosterone therapy, matched by age and race to a member of the experimental group

Recruitment – Experimental Group

Respiratory Function of Gender Diverse Individuals on Testosterone Therapy: A Comparative Study

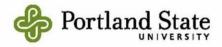
Experimental Group Recruitment

Impact of Testosterone on Respiratory Support for Voice in Transgender Individuals

Research Study Opportunity

Researchers at Portland State University's (PSU) Department of Speech & Hearing Sciences are conducting a study of how testosterone therapy as part of medical treatment to align gender identity affects respiration and voice.

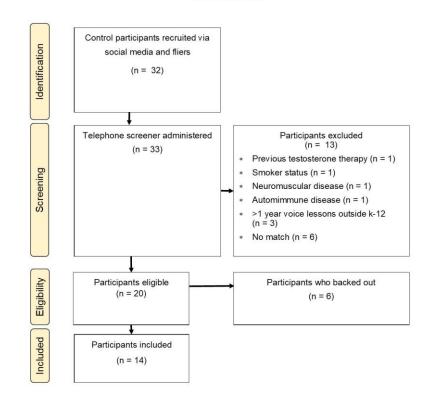
You may be eligible to participate in this study if you:


- Were assigned female at birth
- Have been on testosterone therapy consistently for at least the past year as part of your genderaffirming medical treatment plan
- Are between the ages of 18-65 years old
- Are a non-smoker or vaper of tobacco or nicotine products for at least the past 5 years
- · Have had no more than 1 asthma attack in the past 6 months
- Do not have any other conditions that would lead to reduced respiratory strength such as: neuromuscular disease, pulmonary (other than asthma) or autoimmune diseases, etc.
- Have had no more than one year of consistent voice lessons outside of k-12 school

Participants will be asked to do the following:

- Complete a screening interview to determine candidacy
- Complete questionnaires relating to your gender, background, voice and respiration
- Undergo an examination of your respiratory capacity and strength
- Undergo examination of vocal quality and range through a series of voice tasks
- Due to the restrictive nature of chest binders, we ask that you remove any binding devices prior
 to arriving for your 1- hour appointment. Two single-stall, all gender bathrooms will be provided
 within the department as a safe space to change.

Research data collection will occur at PSU. Participation is voluntary and all identifying information will be kept confidential. Participants will be scheduled for a 1-hour appointment and receive \$25 cash as a thank you for taking part in this study.


ARE YOU INTERESTED? For more information or to schedule a screening interview contact Alicia Heitzman at: ach@pdx.edu or call at 503-380-9328

Recruitment – Control Group

Respiratory Function of Gender Diverse Individuals on Testosterone Therapy: A Comparative Study

Control Recruitment

Impact of Testosterone on Respiratory Support for Voice in Transgender Individuals

Research Study Opportunity

Researchers at Portland State University's (PSU) Department of Speech & Hearing Sciences are conducting a study of how testosterone therapy as part of medical treatment to align gender identity affects respiration and voice.

We are seeking control participants and you may be eligible to participate in this study if you:

- · Were assigned female at birth
- · Identify as woman
- · Are between the ages of 18-65 years old
- · Are a non-smoker or vaper of tobacco or nicotine products for at least the past 5 years
- Have had no more than 1 asthma attack in the past 6 months
- Do not have any other conditions that would lead to reduced respiratory strength such as: neuromuscular disease, pulmonary (other than asthma) or autoimmune diseases, etc.
- · Have less than one year of consistent voice lessons outside of k-12 school

Participants will be asked to do the following:

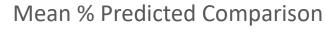
- · Complete a screening interview to determine candidacy
- Complete questionnaires relating to your gender, background, voice and respiration
- · Undergo an examination of your respiratory capacity and strength
- Undergo examination of vocal quality and range through a series of voice tasks

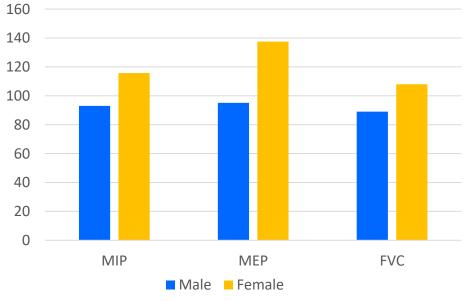
Research data collection will occur at PSU. Participation is voluntary and all identifying information will be kept confidential. Participants will be scheduled for 1-hour appointments and receive \$25 cash for taking part in this study.

lconfinder.com

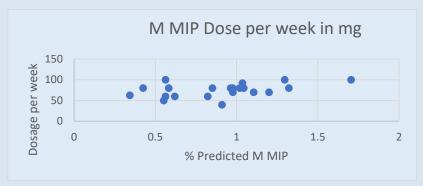
ARE YOU INTERESTED?

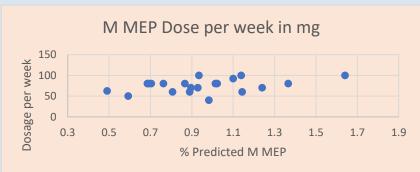
For more information or to schedule a screening interview contact Jillian River Browy at: jilbrowy@pdx.edu or call at (503) 548-8047

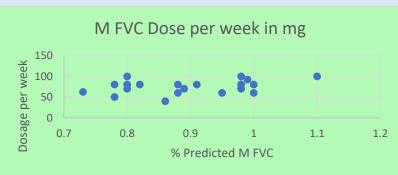

Methods


- Background, demographic data, and information regarding satisfaction with voice were collected via study-specific questionnaire and Voice Handicap Index 30 (VHI30)
- Primary outcomes of interest were measures of respiratory volume and strength, collected using EasyOne-PC Spirometer (NDD Medical Technologies, Inc.) for FVC measures and MicroRPM for values of MIP and MEP
- Assessed average of percent predicted for each measure, instances where participants fell below or above lower limit of normal (LLN) when compared to cisgender norms (Quanjer et al, 2012, Evans and Whitelaw, 2009) and compared results between matched pairs.
- Voice data collected using Computerized Speech Lab (CSL) and Phonatory Aerodynamic System (PAS)

Preliminary Respiration Results

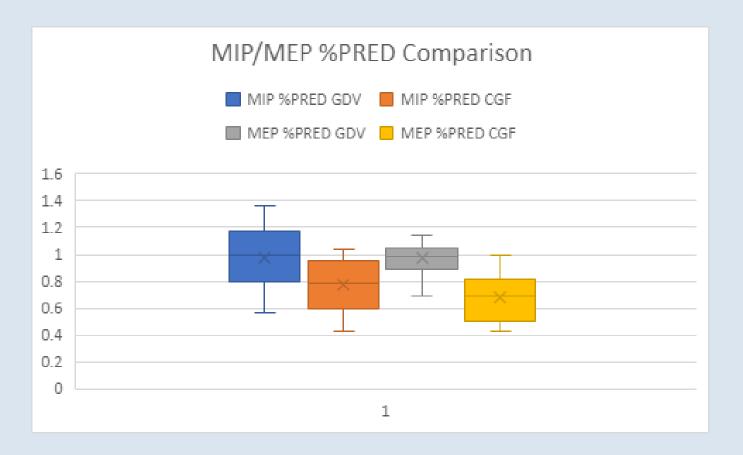

Male Norms	Mean % Predicted	Standard Deviation	Range	Number Below LLN
MIP	92.97%	32.28%	34.37%-170.55%	2
MEP	95.97%	24.61%	48.06%-164.05%	2
FVC	89%	10.55%	71%-110%	3


Female Norms	Mean % Predicted	Standard Deviation	Range	Number Below LLN
MIP	115.77%	41.77%	40.44%-219.79%	1
MEP	137.6%	39.77%	68.33%-247.88%	1
FVC	108%	12.75%	85%-136%	0



Impact of testosterone dosage

Male	Pearson Correlation	Sig (2-tailed)
MIP	.434*	.049
MEP	.399	.073
FVC	.334	.139


Female	Pearson Correlation	Sig (2-tailed)
MIP	.434*	.049
MEP	.383	.086
FVC	.352	.117

Comparing respiration volume and strength between matched pairs

COMPARISON OF DATA USING CISGENDER FEMALE NORMS					COMPARISON OF DATA USING CISGENDER MALE NORMS							
	MIP %PRED		MEP	%PRED	FVC %PRED N		MIP	%PRED	RED MEP %		FVC 9	%PRED
	GDV	CGF	GDV	CGF	GDV	CGF	GDV	CGF	GDV	CGF	GDV	CGF
Mean	121%	92%	138%	98%	110%	109%	97%	77%	97%	68%	91%	91%
SD	31%	20%	17%	26%	12%	14%	25%	18%	12%	18%	10%	11%
Range	66%- 164%	51%- 127%	99%- 167%	60%- 135%	85%- 127%	90%- 129%	56%- 136%	43%- 104%	69%- 114%	43%- 100%	71%- 105%	75%- 108%
N below LLN	0	1	0	5	0	0	0	2	0	5	2	1

Comparing respiration volume and strength between matched pairs

Conclusions/Discussion

- Percent predicted values were higher when analyzed using cisgender female norms but fell between what was
 expected for cisgender females and cisgender males.
- Testosterone intervention may be associated with strengthening of pulmonary function in gender diverse individuals assigned female at birth, most prominently with measures reflecting respiratory muscle strength.
- Dosage seems to be more of an indicator than testosterone level.
- When working with transgender and gender diverse clients, consideration of hormonal intervention and sex assigned at birth are important factors in interpreting PFTs.
- Further studies with larger and more diverse participant cohorts are warranted to build on this preliminary data.

Thank you for your time!

TESTOSTERONE THERAPY: A COMPARATIVE STUDY

19

References

Cosyns, M., Van Borsel, J., Wierckx, K., Dedecker, D., Van de Peer, F., Daelman, T., Laenen, S., & T'Sjoen, G. (2014). Voice in female-to-male transsexual persons after long-term androgen therapy. *The Laryngoscope*, 124(6), 1409–1414. https://doi.org/10.1002/lary.24480

Haynes, J. M., & Stumbo, R. W. (2018). The Impact of Using Non-Birth Sex on the Interpretation of Spirometry Data in Subjects With Air-Flow Obstruction. *Respiratory Care*, 63(2), 215–218. https://doi.org/10.4187/respcare.05586

Irwig, M. S. (2016). Testosterone therapy for transgender men. The Lancet. Diabetes & Endocrinology, 5(4), 301-311. https://doi.org/10.1016/S2213-8587(16)00036-X

Quanjer, P. H., Stanojevic, S., Cole, T. J., Baur, X., Hall, G. L., Culver, B. H., Enright, P. L., Hankinson, J. L., Ip, M. S. M., Zheng, J., Stocks, J., & ERS Global Lung Function Initiative. (2012). Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. *The European Respiratory Journal*, 40(6), 1324–1343. https://doi.org/10.1183/09031936.00080312

Van Caenegem, E., Wierckx, K., Taes, Y., Dedecker, D., Van de Peer, F., Toye, K., Kaufman, J.-M., & T'Sjoen, G. (2012). Bone mass, bone geometry, and body composition in female-to-male transsexual persons after long-term cross-sex hormonal therapy. *The Journal of Clinical Endocrinology and Metabolism*, 97(7), 2503–2511. https://doi.org/10.1210/jc.2012-1187

Evans, J. A., & Whitelaw, W. A. (2009). The Assessment of Maximal Respiratory Mouth Pressures In Adults. RESPIRATORY CARE, 54(10), 12.

Ziegler, A, Henke, T, Wiedrick, J, & Helou, LB. (2018). Effectiveness of testosterone therapy for masculinizing voice in transgender patients: A meta-analytic review. *International Journal of Transgenderism*, 19(1), 25-45.