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A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC EIGENVALUE PROBLEMS
USING AUXILIARY SUBSPACE TECHNIQUES

STEFANO GIANI, LUKA GRUBIŠIĆ, HARRI HAKULA, AND JEFFREY S. OVALL

Abstract. We propose an a posteriori error estimator for high-order p- or hp-finite element discretizations
of selfadjoint linear elliptic eigenvalue problems that is appropriate for estimating the error in the approx-
imation of an eigenvalue cluster and the corresponding invariant subspace. The estimator is based on the
computation of approximate error functions in a space that complements the one in which the approximate
eigenvectors were computed. These error functions are used to construct estimates of collective measures
of error, such as the Hausdorff distance between the true and approximate clusters of eigenvalues, and the
subspace gap between the corresponding true and approximate invariant subspaces. Numerical experiments
demonstrate the practical effectivity of the approach.

1. Introduction

This paper concerns the a posteriori estimation of error in high-order (p or hp) finite element approx-
imations of eigenvalues and invariant subspaces for variational eigenvalue problems of the form: Find
(λ, ψ) ∈ R×H, ψ 6= 0, satisfying∫

Ω

A∇ψ · ∇v + bψv dx︸ ︷︷ ︸
B(ψ,v)

= λ

∫
Ω

ψv dx︸ ︷︷ ︸
(ψ,v)

for all v ∈ H ,(1)

where Ω ⊂ Rd is open and bounded, and H ⊂ H1(Ω) incorporates homogeneous Dirichlet, Neumann, or
mixed Dirichlet/Neumann boundary conditions. Standard assumptions on the coefficients A ∈ [L∞(Ω)]d×d

and b ∈ L∞(Ω) ensure that B is an inner-product on H, whose induced “energy” norm, |||v||| =
√
B(v, v), is

equivalent to the standard norm on H1(Ω), ‖v‖1. We also use ‖v‖0 to denote the standard norm on L2(Ω).
We will compute a collection of approximate eigenvalues and eigenvectors using either p or hp finite

element discretizations (see Section 3 for details). Let V ⊂ H denote such a finite element space. The
corresponding discrete version of (1) is: Find (λ̂, ψ̂) ∈ R× V , ψ̂ 6= 0 satisfying

B(ψ̂, v) = λ̂(ψ̂, v) for all v ∈ V .(2)

For convenience, we state a few well-known results concerning the solutions of (1) and (2).
(a) The problem (1) admits countably many solutions {(λn, ψn) : n ∈ N}, such that

(i) 0 < λ1 < λ2 ≤ λ3 ≤ · · · , and {λn} has no finite accumulation points;
(ii) {ψn} is an orthonormal Hilbert basis of L2(Ω).

(b) The problem (2) admits N = dim(V ) solutions {(λ̂n, ψ̂n) : 1 ≤ n ≤ N}, such that
(i) 0 < λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂N ;
(ii) {ψ̂n} is an L2(Ω)-orthonormal basis of V .

(c) λn ≤ λ̂n for 1 ≤ n ≤ N .
One feature of eigenvalue problems that complicates the estimation of error is the possibility of repeated

or tightly-clustered eigenvalues, which arise very naturally in domains with symmetries or near-symmetries,
and will heavily feature in our numerical experiments. When such eigenvalues are to be approximated in
practice, it may make little sense to try to determine whether computed eigenvalue approximations that are
very close to each other are all approximating the same (repeated) eigenvalue, or approximating eigenvalues
that just happen to be very close to each other. In this case, it is best to estimate eigenvalue error and
associated invariant subspace error in a “collective sense”, as described in Section 2. Let us briefly outline
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(a) p = 4:
ψ̂52 ≈ ψ41.

(b) p = 5:
ψ̂52 ≈ ψ55.

(c) p = 6:
ψ̂52 ≈ ψ55.

(d) p = 7:
ψ̂52 ≈ ψ52.

(e) p = 4:
ψ̂53 ≈ ψ59.

(f) p = 5:
ψ̂53 ≈ ψ52.

(g) p = 6:
ψ̂53 ≈ ψ52.

(h) p = 7:
ψ̂53 ≈ ψ53.

Figure 1. Contour plots of computed eigenvectors ψ̂52 (top row) and ψ̂53 (bottom row) on
a sequence of increasingly fine discretizations.

approaches to “collective” eigenvalue estimates in the literature. First there is an approach using majorization
inequalities championed by A. Knyazev in a series of papers, see for instance [18] and the references therein.
Majorization inequalities yield optimal estimates for clusters of eigenvalues on the extreme portions of the
spectrum and Knyazev’s approach is focused on a priori estimates. See also the notion of cluster robustness
from [21] in the context of a posteriori estimates. These estimates are optimal for the eigenvalues on the
boundary of the spectrum and involve only “diagonal part” or “trace” of the subspace residual, see Section
2 for more details. An alternative approach involves the use of Hausdorff distance between the “matched”
groups of eigenvalues and their approximants, as well as a measure of the subspace gap between the true
invariant subspace and its approximation, see [3]. As with [3], we are principally interested in a posteriori
estimates of error measured in Hausdorff distance (for eigenvalues) and subspace gap (for eigenvectors), but
both our analysis and the practical realization of the estimators take on a very different form.

As is the case with solutions of source problems (boundary value problems), eigenvectors can have singu-
larities due to domain geometry and/or discontinuities in the differential operator or boundary conditions,
and the types and severity of singularities that can occur are well-understood [9,19,25]. Unlike source prob-
lems, where the strongest singular behavior that can be present is typically seen in practice, with eigenvalue
problems, the regularity of eigenvectors varies (dramatically) depending on where you are in the spectrum, as
illustrated in the following example. We consider this example in detail, first focusing on an eigenvalue cluster
of mixed regularity and illustrating the notion of “mixing of eigenmodes” at different levels of discretization,
and later revisiting it to demonstrate the performance (effectivity) of our a posteriori error estimates—the
eigenvalues and vectors are known, so the errors and error estimates can be directly compared.

Example 1.1 (Slit Disk). Let Ω ⊂ R2 be the unit disk with the positive x-axis removed, and consider the
Laplace eigenvalue problem:

−∆ψ = λψ in Ω , ψ = 0 on ∂Ω

2



The eigenvalues and vectors are known explicitly (cf. [20]), and are doubly-indexed for m,n ∈ N by

ψm,n = Jn/2(jm,nr) sin(nθ/2) , λm,n = j2
m,n ,(3)

where Jn/2 is the first-kind Bessel function of order n/2 and jm,n is the mth positive root of Jn/2; r ∈ [0, 1]

and θ ∈ [0, 2π] are the usual polar coordinates. Since J1/2(z) =
√

2/(πz) sin z, we see that λm,1 = (mπ)2,
and ψm,1 ∈ H3/2−ε(Ω) only for ε > 0.

It is well-known that, when ν ∈ Q and ` ∈ N, then Jν and Jν+` have no common positive roots (cf [24, pp.
484-485]), and that the positive roots of Bessel functions are simple. It follows from the first of these
assertions that Jn/2 and Jn′/2 have no common positive roots when n and n′ have the same parity, but it
does not rule out that they may have common positive roots when n and n′ do not have the same parity. We
have not determined whether or not all eigenvalues in this example are simple, but we have verified that at
least the first 100 are, which will be sufficient for our purposes. If the eigenvalues are ordered in an increasing
sequence as described above, this induces a natural mapping (m,n) 7→ k from index pairs to absolute indices.
For k ≤ 100 we know that this map is invertible, with 52 7→ (3, 10) and 53 7→ (5, 1), for example. Contour
plots of ψ3,10 = ψ52 and ψ5,1 = ψ53 are given, together with their corresponding eigenvalues, in Figure 2.
This illustrates that eigenmodes associated with eigenvalues that are relatively close to each other can have
very different regularities; ψ53 ∈ H3/2−ε(Ω) only for ε > 0, but ψ52 ∈ H`(Ω) for all `.

We also use this example to illustrate a mixing of modes that may occur in eigenvalue/vector approxi-
mations. In Figure 1 we show contour plots of the computed eigenvectors ψ̂52 and ψ̂53 corresponding to λ̂52

and λ̂53, for a sequence of increasingly fine discretizations that will be described in Section 3. The computed
eigenvectors are then identified with the true eigenvectors they most closely resemble, based on analysis of
their behavior (e.g. sign changes) in both the angular and radial directions. We describe this procedure in
greater detail later. We note that ψ53 = ψ5,1 is approximated by ψ̂53 only on the finest of these discretiza-
tions, whereas ψ52 = ψ3,10 is approximated by ψ̂53 on two of the discretizations, and only moves into its
proper position on the finest discretization—compare with Figure 2. In its progression toward approximating
ψ52, ψ̂52 approximates ψ41 = ψ4,3 on the coarsest of the discretizations, and ψ55 = ψ1,23 on the next two
discretizations. Similarly, ψ̂53 approximates ψ59 = ψ2,17 on the coarsest discretization, and ψ52 on the next
two discretizations. The computed approximations λ̂52 and λ̂53 both decrease monotonically toward their
respective values λ52 and λ53 as the discretizations are enriched, as they should, with with λ̂52 = 317.923

and λ̂53 = 318.275 on the coarsest of the discretizations (p = 4), and λ̂52 = 247.941 and λ̂53 = 250.782 on
the finest of the discretizations (p = 7) used for Figure 1.

Having identified how fine our discretizations must be in order to properly identify ψ̂52 and ψ̂53 with ψ52

and ψ53, we highlight a feature of the error estimation technique that we propose. Our approach to error
estimation in the eigenvalue context is based on related work for source problems [12], in that eigenvector
errors are approximated as functions in an auxiliary space that, in a practical sense, complements the finite
element space in which the eigenvectors are approximated. For related work in the context of low-order finite
element eigenvalue/vector approximations, we refer to [2,11]. Appropriate norms of such approximate error
functions provide the basis for estimating eigenvalue and invariant subspace errors. Because we compute
approximate eigenvector error functions, we can provide qualitative, as well as quantitative estimates of error.
To illustrate this point, we compute approximate eigenvectors ψ̂52, ψ̂53 in suitable finite element spaces, and
provide contour plots of the errors ej = ψj − ψ̂j and approximate errors εj ≈ ej , also in Figure 2. The
functions ψj and ψ̂j have been normalized so that ‖ψj‖0 = ‖ψ̂j‖0 = 1 and ψ̂j is a better approximation of
ψj than is −ψ̂j . The mesh used for these computations, shown in Figure 3, resolves these modes close to the
origin with errors that are an order of magnitude smaller than those a bit farther away. Because of this, for
visual clarity we have omitted the contours of εj in the central portion of Figures 2(c)-(d).

The rest of the paper is organized as follows. In Section 2 we present general results concerning estimation
of error that is suitable for clusters of eigenvalues and their corresponding invariant subspaces. In Section 3,
we describe the p- and hp-finite element spaces that are used in this work, the technique we have used to
identify computed eigenmodes with true eigenmodes when the latter are known (as was done in Example 1.1),
and our approach for a posteriori error estimation in this context. We provide a detailed case study in
Section 4 of examples having many clustered eigenvalues throughout the spectrum, which were constructed
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(a) Eigenvector ψ52. (b) Eigenvector ψ53.

(c) Eigenvector error e52 and approxi-
mation ε52.

(d) Eigenvector error e53 and approxi-
mation ε53.

Figure 2. Two consecutive eigenvectors ψj for the slit disk, together with finite element
errors ej = ψj − ψ̂j and their approximations εj ≈ ej . The eigenfunction error ej is given as
a greyscale contour plot, and thick black contour lines of its approximation εj are overlaid.

taking a pair of isospectral drums and connecting them in various ways with narrow bridges. We focus on
2D problems in Sections 3 and 4, but we emphasize that the theoretical development in Section 2 is not
dimension-dependent.
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2. Theoretical Results

It will be convenient for the development of the error estimates to express (1) in terms of operators. The
bilinear form defines an operator A by a representation theorem of Friedrichs [5] (see also [16, Chapter 6,
Theorem 2.1]), such that (Av, w) = B(v, w) for all v ∈ Dom(A) ⊂ H and w ∈ H, and we write Av =
−∇·A∇v+ bv. The operator A is self-adjoint and positive definite, and is typically viewed as an unbounded
operator on L2(Ω). The variational eigenvalue problem (1) is equivalent to the operator eigenvalue problem:
Find (λ, ψ) ∈ R×Dom(A), ψ 6= 0, such that Aψ = λψ. A second representation theorem (see [16, Chapter
6, Theorem 2.23]) expresses the bilinear form in terms of the self-adjoint and positive definite square-root of
A, A1/2 (see [16, Chapter 5, Theorem 3.35]),

B(v, w) = (A1/2v,A1/2w) for all v, w ∈ Dom(A1/2) = H ,

and we see that |||v||| = ‖A1/2v‖0.
Let Spec(A) denote the spectrum of A. Given a finite subset Λ ⊂ Spec(A), let

E(Λ) = span{ψ ∈ Dom(A) : Aψ = λψ for some λ ∈ Λ}

be the associated invariant subspace. Let S(Λ) be the L2(Ω)-orthogonal projector onto E(Λ). When Λ = {λ},
we use E(λ) and S(λ). It is well-known that S(Λ) is also the orthogonal projector onto E(λ) with respect to
the energy inner-product. These orthogonal projection properties are stated as best approximation results
in the following proposition.

Proposition 2.1. Let Λ ⊂ Spec(A) be a finite set, E = E(Λ) and S = S(Λ). For any v ∈ H, it holds that
‖(I − S)v‖ = infw∈E ‖v − w‖, where ‖·‖ denotes either the L2 or energy norm. In the case of the L2 norm,
we may allow v ∈ L2(Ω).

Taking Λ and S = S(Λ) as above, let µ̂ 6∈ Spec(A) \ Λ be a non-zero real number, and φ̂ ∈ H. It can be
seen in the proof of [6, Proposition 2] that

(I − S)φ̂ = −[A1/2(µ̂−A′)−1(I − S)][A1/2(φ̂−A−1(µ̂φ̂))](4)

where A′ = A(I − S). It follows that

|||(I − S)φ̂||| = ‖A1/2(I − S)φ̂‖0 = ‖A(µ̂−A′)−1(I − S)][A1/2(φ̂−A−1(µ̂φ̂))‖0 .

Since all of the operators in (4) commute, we also have

‖(I − S)φ̂‖0 = ‖A(µ̂−A′)−1(I − S)][(φ̂−A−1(µ̂φ̂))‖0 .

From these identities, we obtain the estimates

‖(I − S)φ̂‖ ≤C(µ̂,Λ)‖φ̂−A−1(µ̂φ̂)‖ ,(5)

where ‖·‖ denotes either the L2 or energy norms, and the constant C(µ̂,Λ) is given by

C(µ̂,Λ) = ‖A(µ̂−A′)−1(I − S)‖0 = ‖A′(µ̂−A′)−1‖0 = max
ξ∈(SpecA\Λ)∪{0}

ξ

|ξ − µ̂|
.(6)

The final identity can be found, for example, in [16, Chapter 5, Section 3.5], and uses the fact that SpecA′ =
(SpecA \ Λ) ∪ {0}. If Λ = {λ}, we use C(µ̂, λ) for this constant.

Now let E = E(Λ), with dimE = r. Suppose we are given a real subspace Ê ⊂ H of dimension r, as well
as an r-tuple of positive numbers (µ̂1, . . . , µ̂r) with µ̂i 6∈ Spec(A)\Λ, and µ̂1 ≤ · · · ≤ µ̂r. Taking {φ̂1, . . . , φ̂r}
as a basis of Ê, we identify µ̂i with φ̂i. It is natural to think of Λ̂ = {µ̂1, . . . , µ̂r} and Ê as approximations of
Λ and E obtained by an hp-finite element procedure, and we will do so later, but for now we work with the
given level of generality. Of particular interest in our discussion is the relative error in energy norm between
v̂ ∈ Ê and its projection Sv̂ ∈ E. Letting G,H ∈ Rr×r be the Gram matrices given by

Gij = B(φ̂j , φ̂i) , Hij = B((I − S)φ̂j , (I − S)φ̂i) ,(7)

5



and v ∈ Rr be the coefficient vector of v̂ with respect to the (ordered) basis (φ̂1, . . . , φ̂r), we have

|||(I − S)v̂|||2

|||v̂|||2
=

vtHv

vtGv
.(8)

This naturally leads to our first key result.

Theorem 2.2. We have the eigenvector error trace estimate

sup
v̂∈Ê

|||(I − S)v̂|||2

|||v̂|||2
≤ [C(Λ̂,Λ)]2

λmin(G)

r∑
j=1

|||φ̂j −A−1(µ̂j φ̂j)|||2 ,(9)

where C(Λ̂,Λ) = max{C(µ̂j ,Λ) : 1 ≤ j ≤ r}. If we further assume that B(φ̂i, φ̂j) = µ̂iδij, then we have the
following modification of (9),

sup
v̂∈Ê

|||(I − S)v̂|||2

|||v̂|||2
≤ [C(Λ̂,Λ)]2

r∑
j=1

|||φ̂j −A−1(µ̂j φ̂j)|||2

µ̂j
,(10)

as well as the eigenvalue error trace estimate,
r∑
j=1

(µ̂j − µj) ≤ [C(Λ̂,Λ)]2
r∑
j=1

|||φ̂j −A−1(µ̂j φ̂j)|||2 ,(11)

where Λ = {µ1, . . . , µr}, with µ1 ≤ · · · ≤ µr.

Proof. The ratio in (8) is clearly controlled by the eigenvalues of G−1H, and a simple upper-bound is given
by trace(H)/λmin(G). Combining this with (5) and (6) yields the bound (9). Under the further assumptions
on φ̂j and µ̂j , G is diagonal, and we instead bound (8) by trace(G−1H) to obtain (10). For the eigenvalue
estimate, let {φ1, . . . , φr} be an orthonormal eigenbasis of E, with µj = |||φj |||2. We have

r∑
i=1

|||(I − S)φ̂i|||2 =

r∑
i=1

|||φ̂i|||2 − r∑
j=1

µj [(φj , φ̂i)]
2


=

r∑
i=1

µ̂i −
r∑
j=1

µj

r∑
i=1

[(φj , φ̂i)]
2 ≥

r∑
i=1

µ̂i −
r∑
j=1

µj .

The bounds |||(I − S)φ̂i||| ≤ C(µ̂j ,Λ)‖φ̂j −A−1(µ̂j φ̂j)‖ complete the proof. �

Remark 2.3. The subspace gap (cf. [16, Chapter 4, Section 2]) is a standard measure of distance between
subspaces. The “Pair of Projectors Alternative” [16, Chapter 1, Theorem 6.34], implies that, if supv̂∈Ê |||(I −
S)v̂|||/|||v̂||| < 1, then

gap(E, Ê) = sup
v̂∈Ê

inf
v∈E

|||v − v̂|||
|||v̂|||

= sup
v∈E

inf
v̂∈Ê

|||v − v̂|||
|||v|||

< 1 .(12)

More generally, the gap between two subspaces M,N of H, with respect to the energy norm is

gap(M,N) = max

{
sup
w∈M

inf
v∈N

|||v − w|||
|||w|||

, sup
v∈N

inf
w∈M

|||v − w|||
|||v|||

}
.

If PM and PN are the corresponding orthogonal projectors (with respect to the energy inner-product), then
gap(M,N) = |||PM − PN |||, so we see that the gap provides a metric between subspaces. In fact, when M
and N have the same finite dimension, gap(M,N) is the sine of the largest principle angle between the
these subspaces (cf. [17]). A natural alternative to the subspace gap is to measure the distance between the
corresponding orthogonal projectors using a Hilbert-Schmidt norm. This is the approach taken in [4], for
example.

Remark 2.4. Suppose that Λ, Λ̂ ⊂ (a, b) for some 0 < a < b, and Spec(A) \Λ ⊂ (0, a]∪ [b,∞). Then we have

C(Λ̂,Λ) = max{C(µ̂1,Λ), C(µ̂r,Λ)} ≤ max

{
a

µ̂1 − a
,

b

b− µ̂r

}
.(13)
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For f ∈ L2(Ω), we define u(f) ∈ H and û(f) ∈ V by

B(u(f), v) = (f, v)0 for all v ∈ H , B(û(f), v) = (f, v)0 for all v ∈ V .(14)

Now suppose that (µ̂j , φ̂j) is a solution of (2) for 1 ≤ j ≤ r. Taking fj = µ̂j φ̂j , we have u(fj) = A−1(µ̂j φ̂j)

and û(fj) = φ̂j , and we rephrase (10) and (11) as

sup
v̂∈Ê

|||(I − S)v̂|||2

|||v̂|||2
≤ [C(Λ̂,Λ)]2

r∑
j=1

|||u(fj)− û(fj)|||2

µ̂j
,(15)

r∑
j=1

(µ̂j − µj) ≤ [C(Λ̂,Λ)]2
r∑
j=1

|||u(fj)− û(fj)|||2 .(16)

These forms of the estimates emphasize that eigenvalue and eigenspace errors are controlled by discretization
errors of source problems whose data are drawn from the discrete eigenpairs, and we will return to them in
our development of practical a posteriori estimates for eigenvalue and eigenspace errors in Section 3. We
also note that, in this setting, µ̂j ≥ µj .

The upper-bound on the subspace gap provided in (15), as well as its computable counterpart in (22) are
theoretically convenient over-estimates, which may be pessimistic when r is large. In fact, they might seem
more natural as bounds on a Hilbert-Schmidt type measure of subspace error (see Remark 2.3). The recent
contribution [4] takes this approach. If we had a decent computable approximation H̃ of the Gram matrix H
from (8), we could compute the eigenvalues of generalized eigenvalue problem H̃x = κ̃Gx directly, and not
be restricted to trace-type estimates such as (9), (10) or (15). The largest of these eigenvalues would then
provide an estimate of the subspace gap (12). In Section 4.2, we illustrate how the error estimates described
in Section 3 enable the computation of such an approximation H̃ of H.

The following Bauer-Fike estimate (cf. [7, Theorem 7.2.2]) provides a measure of distance between the
eigenvalues of (H,G) and (H̃,G) in terms of matrix norms.

Proposition 2.5. Let H̃ be a positive semi-definite approximation of the Gram matrix H from (8). If κ̃ is
an eigenvalue for the pair (H̃,G), then

min
κ∈Spec(H,G)

|κ− κ̃| ≤ ‖G−1/2‖2p‖H − H̃‖p ,

for any matrix p-norm, where G−1/2 is the (unique) positive definite square root of G−1.

We note that, if G = diag(µ̂1, · · · , µ̂r), then ‖G−1/2‖2p = (min{µ̂j})−1. It is clear that the roles of H
and H̃ can be reversed in Proposition 2.5, so we actually have a bound on the Hausdorff distance between
K = Spec(H,G) and K̃ = Spec(H̃,G),

dist(K, K̃)
.
= max

{
max
κ̃∈K̃

min
κ∈K
|κ− κ̃| , max

κ∈K
min
κ̃∈K̃
|κ− κ̃|

}
≤ ‖G−1/2‖2p‖H − H̃‖p .(17)

In Section 3, after we have properly introduced the approximate error functions εj , we illustrate (17) for the
Slit Disk problem and the choice H̃ij = B(εj , εi), in Example 3.3.

Remark 2.6. In [2,10,11], the authors develop an a posteriori eigenvalue and eigenvector error analysis based
on approximation defects, which are essentially the square roots of the eigenvalues of the pair (H,G).

Remark 2.7. A natural question would be the choice of optimal p. Matrix p-norms in general do not have a
monotonic relationship and the choice of 2 norms presents an easily computable norm. More on evaluating
other matrix p norms can be found in [14].

3. p and hp Finite Element Discretization, A Posteriori Estimates

Let Ω ⊂ R2 be a open, bounded domain, with Lipschitz boundary ∂Ω, and let T = {T} be a conforming
partition of Ω into convex (curvilinear) triangles and quadrilaterals, which we call a mesh or triangulation,
see Figure 3. We do not impose any restriction on the number of curved edges. Any curved elements are
handled using standard blending function techniques (cf. [23]). In order to reduce the level of technicality in
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describing the families of finite element spaces that we will consider, we state them for only in the case of
polygonal domains, partitioned into triangles and quadrilaterals.

For a given element T and non-negative integer m, we define the local polynomial space Qm(T ) as
follows. If T is a triangle, then Qm(T ) consists of the polynomials of total degree ≤ m, so dimQm(T ) =
(m+2)(m+1)/2. If T is a quadrilateral, then Qm(T ) consists of polynomials of degree ≤ m in each variable,
so dimQm(T ) = (m+ 1)2. For a given triangulation, T , let p : T → N be a function that assigns a positive
integer to each element T ∈ T . This map is called a p-vector. We define the corresponding finite element
space

V = V (T ,p) = {v ∈ H : v|T ∈ Qp(T )(T ) for all T ∈ T } .(18)

We note that V ⊂ C(Ω).
Let F = {T`} be a family of nested meshes obtained from successive refinements of an initial coarse mesh,

where the index ` ≥ 0 refers to a refinement level. Of particular interest to us in this work are eigenproblems,
such as that in Example 1.1, for which it is known that certain eigenfunctions will be singular (e.g. have
unbounded derivatives) at particular points in the domain. Such points are commonly referred to as singular
points, and in the case of the Laplace operator, occur at points on the boundary where there are non-convex
corners, and where there is a shift in the type of boundary condition (e.g. from a Dirichlet condition to
a Neumann condition). We explore examples having this second type of singular points extensively in the
Section 4. The asymptotic behavior of such singularities in the vicinity of singular points is well-understood
(cf. [8,9,19]), and based on such a priori knowledge various refinement approaches have been proposed that
involve a geometric grading of element sizes toward singular points that takes into account this a priori
knowledge of the singularity strength [22, Section 4.5]. Beginning with a coarse mesh T0 in which the vertex
graph distance between singular points (i.e., the minimal number of edges in a path connecting these points)
is at least two, the mesh grading approach is implemented using element-level replacement rules employing
exact geometry description as described in [13].

Given such a family of meshes, we distinguish two families of finite element spaces defined on them. We
refer to the first as the p-method family because it uses a fixed polynomial degree for every element in the
mesh. For this family, the polynomial degree p is chosen and applied to each element in the pth mesh in
the family, Tp ∈ F , i.e. p(T ) = p for all T ∈ Tp. We denote the finite element spaces in this family by
V1,p, and use 4 ≤ p ≤ 12 for our experiments. We note that the spaces are nested, V1,p ⊂ V1,p+1. We
refer to the second family as the hp-family because it uses variable polynomial degrees in the mesh. For
the second family, given a polynomial degree p, the mesh Tp is chosen as in the first family, but polynomial
degrees are no longer assigned uniformly throughout the mesh. All elements touching a singular point are
assigned polynomial degree 1, the next layer of elements are assigned polynomial degree 2, and so on, until
polynomials of degree p are achieved at the pth layer. Any elements that are greater than p layers away from
all singular points are also assigned polynomial degree p. The initial mesh and refinement scheme ensures
that there is no ambiguity in how polynomial degrees are assigned to each element. The element layers are
created by nested application of the same replacement rule on every element touching a singular point. At
each step, only the elements touching the singular point created at the previous one are refined making the
bookkeeping of the layers simple. This is illustrated in Figure 3. We denote the finite element spaces in this
by V2,p, again using 4 ≤ p ≤ 12 for our experiments. As before, the spaces are nested, V2,p ⊂ V2,p+1, and we
also note that V2,p ⊂ V1,p.

In practice, three types of polynomial functions are distinguished on an element: vertex functions, which
vanish on all vertices except one; edge functions, which vanish on all edges except one; and element functions
(interior bubble functions), which vanish on all edges. On the global (mesh) level, vertex functions are
supported in the patch of elements sharing that vertex, edge functions are supported in the (one or two)
elements sharing an edge, and element functions are supported in a single element. There are well-established
techniques for constructing hierarchical bases for Qp(T ) (cf. [22]), starting from a basis of Q1(T ) (vertex
functions), augmenting it with edge functions from Q2(T ) to form a basis for Q2(T ), further augmenting
this with edge and element functions from Q3(T ) to form a basis for Q3(T ), and so on. This distinction
between the types of polynomial functions enables one to build elements in which the degrees of the element
functions may differ from those of the edge functions, and the degree used on one edge may differ from that
used on another. In fact, this is precisely what is done in the hp-family, V2,p, to allow for variable p(T ).
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In particular, when T and T ′ are adjacent elements whose assigned polynomial degrees differ by one, say
p(T ) = m and p(T ′) = m+ 1, the polynomial degree of the edge functions associated with their shared edge
is taken to be m+ 1. The use of hierarchical bases, and the distinction between edge and element functions
plays a prominent role in the type of a posteriori error estimates that we now discuss.

3.1. A Posteriori Estimates. As suggested in Section 2, most clearly in the eigenvalue and eigenvector
error estimates (15)-(16), we see how such error estimates are built upon those for source problems. More
specifically we see that an a posteriori estimate of |||u(fj)− û(fj)|||, where the “source” fj = µ̂j φ̂j is obtained
from the approximate eigenpair (µ̂j , φ̂j), provides a measure of how far φ̂j is from a true eigenvector and how
far µ̂j is from a true eigenvalue. The field of a posteriori error estimation for source problems, particularly
for the reaction-diffusion operators we consider here, is quite mature, so we have many well-documented
methods for estimating |||u(fj) − û(fj)|||. The one we have chosen for the present work is based on the
principle of hierarchical bases, that seems particularly well-suited to the p- and hp-settings. What we use is
described in detail, and rigorously tested, in [12], so we provide a general overview here, and focus on how
it is used in the eigenvalue/vector context.

Given f ∈ L2(Ω), the exact and finite element solutions, u(f) ∈ H and û(f) ∈ V , satisfy

B(u(f), v) = (f, v) for all v ∈ H , B(û(f), v) = (f, v) for all v ∈ V .

We compute an approximate error function ε(f) ∈ W in an auxiliary subspace W ⊂ H as the projection of
u(f)− û(f) onto W ,

B(ε(f), v) = B(u(f)− û(f), v) = (f, v)−B(û(f), v) for all v ∈W .(19)

The error space W is chosen so that V ∩ W = {0}, W is defined on the same mesh as V , and V ⊕ W
is a richer approximation space on this mesh. We adopt the approach suggested in [12] for problems in
2D, which we describe at the level of elements. If element functions of degree m are used on an element
T in V , then element functions of degree m + 2 are used on this same element in W . If edge functions
of degree m are used on an edge e in V , then edge functions of degree m + 1 are used on this same edge
in W . We slightly rephrase [12, Theorem 1.4] in our context for the energy norm. We take E to be the
set of edges of the mesh that are not on the Dirichlet part of the boundary, and define the volumetric
residual, RT = f − (−∇ · A∇û(f) + bû(f))|T . When e ∈ E is an interior edge, we define the edge residual
as re = (A∇û(f) · nT )|T + (A∇û(f) · nT ′)|′T , where T and T ′ are the cells sharing this egde, and nT
and nT ′ are their outward unit normals. For a Neumann boundary edge, we define the edge residual as
re = (A∇û(f) · nT )|T . With these definitions in hand, we can state the theorem.

Theorem 3.1. There is a constant c, depending on the shape-regularity of T and the polynomial degree p
such that

|||ε(f)||| ≤ |||u(f)− û(f)||| ≤ c (|||ε(f)|||+ osc(R, r, T )) ,

where the residual oscillation is defined by

[osc(R, r, T )]2 =
∑
T∈T

h2
T inf
κ∈Qp−1(T )

‖RT − κ‖2L2(T ) +
∑
e∈E
|e| inf

κ∈Qp−1(e)
‖re − κ‖2L2(e) ,

where hT and |e| are the diameter of T and length of the edge e, respectively.

The proof given in [12] was given for simplicial meshes, but its performance was rigorously tested for more
general meshes containing both (curvilinear) triangles and quadrilaterals in 2D, and hexahedral meshes in
3D. Although [12] provides compelling numerical evidence that c is independent of p, such independence has
not been theoretically established.

Remark 3.2. If A is piecewise constant on Ω, and constant on each T ∈ T , then the residual oscillation term
in Theorem 3.1 simplifies to

[osc(R, r, T )]2 =
∑
T∈T

h2
T inf
κ∈Qp−1(T )

‖bû(f)− κ‖2L2(T ) .

9



(a) Mesh at 100%. (b) Central portion of mesh at 1200%.

Figure 3. A strongly graded mesh on the Slit Disk, and a close-up.

In our examples, b = 0 as well. In this case, there is no residual oscillation at all, and the error estimate of
Theorem 3.1 becomes

|||ε(f)||| ≤ |||u(f)− û(f)||| ≤ c|||ε(f)||| .(20)

In the eigenvalue context, suppose we have computed approximate eigenpairs {(µ̂i, φ̂i) : 1 ≤ i ≤ r} in V ,
with B(φ̂i, v) = µ̂i(φ̂i, v) for all v ∈ V and (φ̂i, φ̂j) = δij . Our approximation H̃ of the matrix H in (7) is
given by

H̃ij = B(εj , εi) , εk = ε(fk) , fk = µ̂kφ̂k .(21)

The matrix G is diagonal, G = diag(µ̂1, . . . , µ̂r). Assuming piecewise constant A and b = 0, as in Remark 3.2,
in order to state eigenvector and eigenvalue error estimates without residual oscillation terms, we have

sup
v̂∈Ê

|||(I − S)v̂|||2

|||v̂|||2
≤ c2[C(Λ̂,Λ)]2

r∑
j=1

|||εj |||2

µ̂j
,(22)

r∑
j=1

(µ̂j − µj) ≤ c2[C(Λ̂,Λ)]2
r∑
j=1

|||εj |||2 .(23)

For convenience, the corresponding estimates for the approximation errors associated with a single (r = 1),
simple, eigenvalue µ1 = λk with eigenvector φ1 = ψk and the computed eigenpair (µ̂1, φ̂1) = (λ̂k, ψ̂k) are

inf
v∈span{ψk}

|||ψ̂k − v||| ≤ Ck |||ε(λ̂kψ̂k)||| , λ̂k − λk ≤ C2
k |||ε(λ̂kψ̂k)|||2 ,(24)

where Ck = cC(λ̂k, λk).

Example 3.3. We revisit the Slit Disk example, Example 1.1 from Section 1, computing the approximate
eigenpairs (λ̂k, ψ̂k), 1 ≤ k ≤ 60, on a sequence of p-version and hp-version finite element spaces associated
with a family of meshes that are strongly graded toward the origin (see Figure 3). These meshes/spaces,
which provide good approximation of features (e.g. singularities) of eigenmodes near the origin, but for
smaller p do not capture oscillatory behavior farther away from the origin nearly as well, were deliberately
designed to demonstrate phenomena such as the mixing of modes observed in Figure 1.
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We first consider the potential effects of this phenomena on the quality of our computable estimates of
eigenvalue and eigenvector error. Our measures of “quality” are the effectivity ratios (effectivities),

|||ε(λ̂kψ̂k)|||2

λ̂k − λk
,
‖ε(λ̂kψ̂k)‖0
‖ψk − ψ̂k‖0

,
|||ε(λ̂kψ̂k)|||
|||ψk − ψ̂k|||

.(25)

Although our error estimates were only established for the energy norm, we consider function error in L2 as
well. The choice of ψk is normalized by taking ‖ψk‖0 = ‖ψ̂k‖0 = 1 and αk

.
= (ψk, ψ̂k) ≥ 0. We note that

Sψ̂k = αkψk in this case, so ‖ψk − ψ̂k‖ 6= ‖ψk − Sψ̂k‖ in either of the two norms. However, in either norm,
we have ‖ψk − Sψ̂k‖ ≤ ‖ψk − ψ̂k‖ ≤

√
2‖ψk − Sψ̂k‖, with equality in the upper bound achieved for the

L2-norm when αk = 0, and equality approached in the lower bound (for either norm) as αk approaches 1.
For these sequences of discretizations, αk approached 1 very quickly, so there were no appreciable differences
between effectivities using ‖ψk − ψ̂k‖ in the denominator versus using ‖ψk − Sψ̂k‖. In Figure 4, we provide
plots of the effectivities for both families of discretizations, and k = 1, 52, 53, recalling that the computed
eigenmodes ψ̂52 and ψ̂53 do not begin to meaningfully approximate ψ52 and ψ53, respectively, until p = 7.
The case k = 1, for which nothing unexpected happens, is considered merely as a comparative baseline. The
poor effectivities of the estimates of the eigenmode approximation errors for k = 52, 53 when p < 7 stand
out, and are not surprising, because ψ̂k is actually approximating ψj for some j 6= k when p < 7. In light of
this, we also provide plots of the ratios ‖εk(λ̂kψ̂k)‖/‖ψj − ψ̂k‖ for both norms, where ψj is also normalized
as described above, as well as plots of |||ε(λ̂kψ̂k)|||2/(λ̂k−λj) for the eigenvalue λj corresponding to ψj ; these
plots are given in gray in Figure 4. Complementary eigenvalue and eigenmode convergence graphs are given
in Figure 5. Since the convergence histories for both the p and hp-families were very similar, only those for
the p-family are shown. For p ≥ 6, we observe a “staircase” pattern to the errors, where at first it would
appear that the error decreases only at odd p. This kind of staircase convergence phenomenon has been
observed elsewhere for p-method approximations on large elements (cf. [1, Figures 2.4 and 2.5]). In our case,
we expect that this effect is present for k = 52, 53 because the corresponding eigenmodes oscillate within the
large elements away from the origin—the behavior of the eigenmodes near the origin is resolved well by the
highly graded mesh. Since ψ̂k does not approximate ψk for k = 52, 53 when p ≤ 6, the corresponding errors
in Figure 5 are really only meaningful for p ≥ 7, at which point the errors take their first significant drop
and begin the odd-even staircase pattern.

Before moving on to an empirical investigation of Proposition 2.5, we provide a few more remarks con-
cerning the gray curves in Figure 4. Recalling (5), we have that |||ε(λ̂kψ̂k)||| approximates |||ψ̂k −A−1(λ̂kψ̂k)|||
which, in turn, approximates |||(I − S)ψ̂k|||, where S is the spectral projector for some subset of eigenvalues
Λ. The theory does not force any particular choice of Λ. For example, one may choose Λ = {λj} for some
j 6= k. The consequences of different choices are reflected in the “constant” C(λ̂k,Λ), which will blow up
as λ̂k → λk if λk 6∈ Λ. Informally, we can say that |||ε(λ̂kψ̂k)||| provides a reasonable estimate of the error
|||ψ̂k − ψj ||| for some eigenmode ψj (after suitable normalization), but ψj might not be an eigenmode for λk
until the discretization is sufficiently rich.

Recalling the notation K = Spec(H,G) and K̃ = Spec(H̃,G), we now illustrate the Bauer-Fike esti-
mate (17), using the matrix 2-norm for the upper bound. Note that ‖G−1/2‖22 = (µ̂1)−1, where µ̂1 is the
smallest approximate eigenvalue for the cluster of interest. More specifically, we will empirically compare
both sides of the inequality

dist(K, K̃) ≤ ‖H − H̃‖2/µ̂1 ,(26)

i.e. we compare the quantities dist(K, K̃) and ‖H − H̃‖2/µ̂1. The behavior of the Hausdorff distance
dist(K, K̃) demonstrates that our computable H̃ provides a spectrally accurate approximation of H, and is
therefore suitable for more nuanced estimates than those of trace-type (e.g. (15)). Comparison of the both
sides of the inequality indicates that the norm bound is not a gross overestimate, and may in fact provide a
relatively tight bound.

We first consider the scenario in which the cluster of interest is fixed, namely {λ52, λ53}, and we observe
the behavior of both sides of (26) as the discretization parameter p is increased. In this case, µ̂1 decreases
toward λ52 as p increases. The results of these experiments are summarized in Figure 6. We observe the
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(a) p-version: Eigenvalue effectivity.
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(b) hp-version: Eigenvalue effectivity.
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(c) p-version: Eigenvector effectivity in
L2-norm.
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(d) hp-version: Eigenvector effectivity
in L2-norm.
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(e) p-version: Eigenvector effectivity in
H1-seminorm.
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(f) hp-version: Eigenvector effectivity
in H1-seminorm.

Figure 4. Slit disk; Eigenvalue and eigenvector effectivity ratios for (λ1, ψ1) (solid lines),
(λ52, ψ52) (dashed lines), (λ53, ψ53) (dotted lines), for both the p- and hp-version. Gray
curves correspond to the effectivities of the estimates when the computed eigenmode ψ̂k is
compared with the true eigenmode ψj that it most closely resembles, and the computed
eigenvalue λ̂k is compared with the corresponding λj .
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(b) Eigenvector error in squared L2-norm.
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(c) Eigenvector error in squared H1-seminorm.

Figure 5. Slit disk; Eigenvalue and eigenvector convergence for (λ1, ψ1) (solid lines),
(λ52, ψ52) (dashed lines), (λ53, ψ53) (dotted lines) for the p-version.
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(a) dist(K, K̃) (solid) and ‖H−H̃‖2/µ̂1
(dashed); visually indistinguishable.
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(b) Relative error |a − b|/b, where a =

dist(K, K̃) and b = ‖H − H̃‖2/µ̂1.

Figure 6. Illustrating (26) for the Slit Disk eigenvalue cluster {λ52, λ53}, with 7 ≤ p ≤ 12.

same stairstep convergence of both quantities as before, and note that ‖H − H̃‖2/µ̂1 provides a very tight
upper bound on dist(K, K̃) in this case.

We next consider the scenario in which the discretization parameter p is fixed, and the size of cluster is
increased. More specifically, we consider two fixed discretizations, with p = 7 and p = 12, and investigate
both sides of (26) as the cluster of interest, {λ1, . . . , λr}, grows with r, 1 ≤ r ≤ 60. In this case, µ̂1 ≈ λ1

is fixed as r varies, so we expect the upper bound ‖H − H̃‖2/µ̂1 to become more pessimistic as r increases.
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Figure 7. Illustrating (26) for the Slit Disk eigenvalue cluster {λ1, . . . , λj}, j = 1, . . . , 60,
for p = 7 (left) and p = 12; dist(K, K̃) (solid) and ‖H − H̃‖2/µ̂1 (dashed).

This expectation is confirmed in Figure 7, where we nonetheless observe that both quantities exhibit very
similar qualitative behavior. Without going so far as to make a conjecture, we note the correlation between
the more significant jumps in these graphs and the inclusion in the cluster of interest of the eigenfunctions
having the strongest singularities, ψ ∼ r1/2 as r → 0, namely {ψ1, ψ6, ψ17, ψ32, ψ53}.

Remark 3.4 (Mode Detection). The exact eigenmodes (3) have a tensor product structure. This simplifies
greatly the task of identifying the closest mode ψm,n to some computed ψ̂. The indices m and n represent
the radial and angular parts, respectively, of ψm,n and thus the mode detection approach is to find m and n
that best correspond to the computed eigenmode. For identifying the angular part m, ψ̂ is evaluated along
circles at two randomly chosen radii r1 and r2, and the wave number along these circles is computed using
the discrete Fourier transform (DFT). In the unlikely case of the two values being different, a third radius is
chosen for tie-breaking. We proceed similarly for the radial direction. However, in the absence of equivalent
to the DFT, we project onto a set of admissible radial profiles and choose the one that is closest in the L2

sense.

4. A Posteriori Estimates for Clusters: Numerical Experiments

In this section the focus is on a set of problems where the spectrum has a structure rich in clusters that
can be identified a priori with high confidence. In this setting, it is best to estimate eigenvalue error and
associated invariant subspace error over the clusters either with trace estimates such as (22)-(23) or via
looking directly at Spec(H̃,G). As a starting point, we consider a pair of complementary problems posed on
half-disks, first studied by Jacobson et al. [15], where they were shown to have identical spectra. We then
consider two sets of configurations derived from the original pair by connecting these half-disks with narrow
bridges, see Figure 9. This family of configurations is such that pairs of nearby eigenvalues are expected
around each of the eigenvalues of the isospectral problems.

4.1. Isospectral Problems. Let Ω = {(x, y) : x2 + y2 < 1 , y > 1} be the half-disk, with boundary ∂Ω
split into four parts, ∂Ω = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1 = {(r cos θ, r sin θ) : θ = 0 , 0 ≤ r ≤ 1} ∪ {(r cos θ, r sin θ) : r = 1 , 0 ≤ θ ≤ π/4} ,
γ2 = {(r cos θ, r sin θ) : r = 1 , π/4 ≤ θ ≤ 3π/4} ,
γ3 = {(r cos θ, r sin θ) : r = 1 , 3π/4 ≤ θ ≤ π} ,
γ4 = {(r cos θ, r sin θ) : θ = π , 0 ≤ r ≤ 1} .

The domain and boundary decomposition are shown in Figures 8a and 8b. We consider a pair of comple-
mentary problems in which we alternately apply Dirichlet and Neumann conditions on the even and odd
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Table 1. Isospectral problems. Reference values for the lowest 15 eigenvalues for prob-
lems (27)-(28).

i λi i λi i λi
1 4.50351270364 6 4.63221446587×101 11 8.34387148427×101

2 1.35208410401×101 7 5.13074786442×101 12 9.11669451784×101

3 1.98639263212×101 8 6.24572729970×101 13 1.04631385585×102

4 3.04933490983×101 9 6.74067396593×101 14 1.09930498884×102

5 3.51893179474×101 10 7.87626319950×101 15 1.11846648035×102

Case A B C D E F G H I J K L
1 D X D N D D N X D N D N
2 D X D N D N D X D N D N
3 D X N D N N D X D N D N
4 D X N D N D N X D N D N
5 N X D N D D N X N D N D
6 N X N D N N D X N D N D
7 N X N D N D N X N D N D
8 N X D N D D N X D N D D
9 N X N D N N D X D N D D
10 D X N D N N D X N D N N

Table 2. Bridge domain configurations. Edges marked D correspond to Dirichlet con-
ditions, and those marked N correspond to Neumann conditions. The Dirichlet bridge
configurations correspond to X=D, and the Dirichlet bridge configurations correspond to
X=N

parts of the boundary,

−∆ψ = λψ , ψ = 0 on γ1 ∪ γ3 , ∂ψ/∂n = 0 on γ2 ∪ γ4 ,(27)
−∆ψ = λψ , ψ = 0 on γ2 ∪ γ4 , ∂ψ/∂n = 0 on γ1 ∪ γ3 .(28)

As was proved in [15], these problems are isospectral. In other words, the eigenvalues of (27) are identical to
those of (28). In Figure 8, we show a few eigenvectors associated with both problems. These were computed
using refinement strategy that ensures that the lower part of the spectrum is accurately resolved. Reference
values for the first fifteen eigenvalues are given in Table 1.

4.2. Bridge Configurations. By joining two of the isospectral drums above with a narrow bridge, we
can create a family of configurations in which there are clusters of eigenvalues throughout the spectrum
near predictable numbers, i.e. near the eigenvalues of the isospectral domains. We take the domain to
be two half-disks of raduis 1 connected by a 1/10 × 1/4 rectangular bridge, see Figure 9a. In this figure,
we have labeled segments of the boundary A-L, and we obtain different configurations by assigning either
homogeneous Dirichlet or Neumann conditions to these edges. Taking both sides of the bridge to have the
same type of boundary condition, either both Dirichlet or both Neumann, there are 20 such configurations
that are associated with the isospectral pair from Section 4.1, 10 having the Dirichlet bridge and 10 having
the Neumann bridge. These are tabulated in Table 2, and two such configurations are shown in Figures 9c
and 9d. For each eigenvalue of (27)-(28), we expect to have a pair of eigenvalues on the Bridge domain
that are close to it, regardless of which of the 20 configurations of boundary conditions that we use. This is
illustrated in Table 3, where we give reference values for the first 12 eigenvalues of the configurations pictured
in Figure 9, together with the first 6 eigenvalues of the isospectral domains for comparison. Contour plots
of the ninth and tenth eigenvectors for both of these configurations are given in Figure 10. As above, we
employ refinement strategies for our experiments that ensure that the lower part of the spectrum is accurately
resolved and the observed phenomena are not simply artifacts of the discretization, see Figure 9b.
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(a) Problem (27) (b) Problem (28)

(c) ψ1 for Problem (27) (d) ψ1 for Problem (28)

(e) ψ5 for Problem (27) (f) ψ5 for Problem (28)

(g) ψ11 for Problem (27) (h) ψ11 for Problem (28)

Figure 8. Isospectral problems. The components of the boundary having Dirichlet and
Neumann conditions are drawn with solid and dotted lines, respectively, in (a) and (b).
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(a) Bridge domain with labeled segments.
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(b) p-type mesh used in experiments.

(c) Dirichlet bridge, Case 2. (d) Neumann bridge, Case 9.

Figure 9. Bridge domain, a computational mesh and two configurations.

Isospectral Dirchlet Case 2 Neumann Case 9
i λi i λi i λi
1 4.50351270364 1 4.50348976806 1 4.50318419853

2 4.50348977820 2 4.50836662912
2 13.5208410401 3 13.5207888798 3 13.4263953994

4 13.5207889083 4 13.5657193361
3 19.8639263212 5 19.8636968115 5 19.5509676421

6 19.8636969659 6 19.8768798947
4 30.4933490983 7 30.4931397957 7 30.2012278561

8 30.4931399453 8 30.5972353211
5 35.1893179474 9 35.1878233714 9 35.0596433246

10 35.1878245124 10 35.2057946583
6 46.3221446587 11 46.3208464060 11 45.7623966583

12 46.3208474584 12 46.4364126764
Table 3. The lowest 12 eigenvalues for two of the Bridge domain configurations compared
with the lowest 6 eigenvalues for the isospectral domains.

For our first set of experiments with these two configurations, we consider the Hausdorff distance,
dist(Λ, Λ̂), between the reference eigenvalues Λ = {λ1, . . . , λr} and the computed eigenvalues Λ̂ = {λ̂1, . . . , λ̂r}
over a range of discretizations, for different values of 1 ≤ r ≤ 12. More specifically, we compare this Hausdorff
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(a) λ9 = 35.1878233714. (b) λ10 = 35.1878245124.

(c) λ9 = 35.0596433246. (d) λ10 = 35.2057946583.

Figure 10. Contour plots of ψ9 and ψ10 for Case 2 of the Dirichlet bridge (top), and Case
9 of the Neumann Bridge (bottom). Compare with Figures 8e and 8f. Reference eigenvalues
are given with each plot.

distance with our a posteriori error estimate of it,

dist(Λ, Λ̂)
.
= max

{
max
λ∈Λ

min
λ̂∈Λ̂
|λ− λ̂| , max

λ̂∈Λ̂
min
λ∈Λ
|λ− λ̂|

}
≈ λmax(H̃) ,(29)

where H̃ ∈ Rr×r is given in (21). This choice of estimate is motivated as follows. Let λi ∈ Λ and λ̂j ∈ Λ̂

be such that dist(Λ, Λ̂) = |λi − λ̂j |, and let ψ̂j ∈ V be the discrete eigenvector associated with λ̂j ; as usual,
we assume (ψ̂k, ψ̂`) = δk` for 1 ≤ k, ` ≤ r. Let S be the orthogonal projector onto E(λi). We have the
well-known identity

|||(I − S)ψ̂j |||2 − λi‖(I − S)ψ̂j‖20 = λ̂j − λi .

If λ̂j ≥ λi, which is certainly the case if j ≥ i, then dist(Λ, Λ̂) ≤ |||(I − S)ψ̂j |||2. Note that if the method is
converging, then, asymptotically, we expect i = j. In any case, we have dist(Λ, Λ̂) ≤ C|||(I − S)ψ̂j |||2. Now,

|||(I − S)ψ̂j |||2 ≤ max
v∈Ê
‖v‖0=1

|||(I − S)v|||2 = max
v∈Rr

vtv=1

vtHv = λmax(H) .

Here, we have identified v ∈ Ê with its coefficient vector v ∈ Rr with respect to the discrete eigenbasis of
Ê. Finally, λmax(H) is estimated by λmax(H̃). We highlight the difference between this sort of estimate and
the trace-type estimate (23),

r∑
j=1

(λ̂j − λj) ≈ trace(H̃) .(30)

18



Note that, for the trace-type estimate, we only need computable approximations of the diagonal entries
of H, and these may be obtained using any number of a posteriori techniques for source problems. We
have opted for the auxiliary subspace approach discussed in Section 3.1, because it also naturally provides
approximations of the off-diagonal entries of H, thereby permitting estimates of the form (29). Using the
reference eigenvalues computed in a rich finite element space (p = 16), the errors and error estimates and
error estimates for 2 ≤ p ≤ 12 and some choices of r are given in Figure 11. Computations were done for
2 ≤ r ≤ 12, and the plots shown in Figure 11 are representative. The effectivities of the error estimate, over
all values 2 ≤ p, r ≤ 12, ranged between 0.574 and 2.469 for Dirichlet Case 2, and between 0.289 and 3.671
for Neumann Case 9.

Letting E = span{ψ1, . . . , ψr} be the eigenspace of interest (computed using p = 16), and Ê = span{ψ̂1, . . . , ψ̂r}
be computed approximations for various discretization parameters 2 ≤ p ≤ 12, we consider the subspace gap
(cf. Remark 2.3 and (12)) and our computable estimate of it,

gap(E, Ê) =
√
λmax(G−1H) ≈

√
λmax(G−1H̃) ,(31)

where the first equality holds provided λmax(G−1H) < 1, as is the case for all of our computations. Here, we
take S to be the orthogonal projector onto E in the definition of H. The complementary plots to Figure 11
for convergence in subspace gap is given in Figure 12. As before, the computable estimates faithfully
reflect the actual subspace gaps, with effectivities ranging between 0.747 and 0.879 for Dirichlet Case 2, and
between 0.527 and 0.874 for Neumann Case 9. For comparison, we have also included the trace-type estimate√

trace(G−1H̃) indicated in (22) in Figure 12. For this estimate, the effectivities ranged between 1.071 and
2.058 for Dirichlet Case 2, and between 1.001 and 2.052 for Neumann Case 9.

Remark 4.1. The estimates in (29) and (31) employ the heuristics λmax(H̃) ≈ λmax(H) and λmax(G−1H̃) ≈
λmax(G−1H). At present, we only have emprical evidence that the computable quantities, i.e. those involving
H̃, really do approximate their typically uncomputable counterparts well.

5. Conclusions

We have presented computable a posteriori estimates of the subspace gap between computed and target
eigenspaces of the same size, as well for two measures of error between the corresponding computed and
target eigenvalues—namely, the typical sum of eigenvalue errors and the Hausdorff distance between the
computed and target eigenvalues. More rigorous theoretical footing is provided for the trace-type estimates
of the subspace gap (22) and sum of eigenvalue errors (23), whereas the estimate of the Hausdorff distance
between the computed and target eigenvalues (29) and the alternate estimate of the subspace gap (31) is
based on the heuristic that the eigenvalues of H and H̃ are close, for which we currently have only empirical
support. These estimates have been tested extensively on a collection of problems that include both natural
clusters of eigenvalues and singularities in many eigenfunctions.
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(g) Dirichlet bridge, Case 2; r = 12. (h) Neumann bridge, Case 9; r = 12.

Figure 11. Eigenvalue errors dist(Λ, Λ̂) (solid) and error estimates λmax(H̃) (dashed) for
two Bridge domain configurations, Λ = {λ1, . . . , λr}.20
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(a) Dirichlet bridge, Case 2; r = 2.
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(b) Neumann bridge, Case 9; r = 2.
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(c) Dirichlet bridge, Case 2; r = 7.
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(d) Neumann bridge, Case 9; r = 7.
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(e) Dirichlet bridge, Case 2; r = 8.
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(f) Neumann bridge, Case 9; r = 8.
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(g) Dirichlet bridge, Case 2; r = 12.
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(h) Neumann bridge, Case 9; r = 12.

Figure 12. Subspace gaps gap(E, Ê) (solid) and estimates
√
λmax(G−1H̃) (dashed) and√

trace(G−1H̃) (dotted) for two Bridge domain configurations, E = span{ψ1, . . . , ψr}.
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