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Figure 1. We extend the standard image-based implicit neural representation to a motion-adjustable neural implicit video
representation by incorporating temporally varying phase-shift information into Fourier-based positional encoding. By
changing the phase-shift values at inference time, our method can not only reconstruct video data but can also re-synthesize
videos with modified motion properties. This paper contains video figures which can be viewed on our project website
https://mai-t-long.com/Phase_NIVR/index.html. We also strongly encourage our readers to download and view the
video-enabled version of this paper (https://mai-t-long.com/Phase_NIVR/paper.pdf) using Adobe Reader.

Abstract

Implicit neural representation (INR) has been suc-
cessful in representing static images. Contemporary
image-based INR, with the use of Fourier-based posi-
tional encoding, can be viewed as a mapping from si-
nusoidal patterns with different frequencies to image
content. Inspired by that view, we hypothesize that it
is possible to generate temporally varying content with
a single image-based INR model by displacing its input
sinusoidal patterns over time. By exploiting the rela-
tion between the phase information in sinusoidal func-
tions and their displacements, we incorporate into the
conventional image-based INR model a phase-varying
positional encoding module, and couple it with a phase-
shift generation module that determines the phase-shift
values at each frame. The model is trained end-to-end
on a video to jointly determine the phase-shift values
at each time with the mapping from the phase-shifted
sinusoidal functions to the corresponding frame, en-
abling an implicit video representation. Experiments
on a wide range of videos suggest that such a model
is capable of learning to interpret phase-varying posi-
tional embeddings into the corresponding time-varying

content. More importantly, we found that the learned
phase-shift vectors tend to capture meaningful temporal
and motion information from the video. In particular,
manipulating the phase-shift vectors induces meaning-
ful changes in the temporal dynamics of the resulting
video, enabling non-trivial temporal and motion editing
effects such as temporal interpolation, motion magnifi-
cation, motion smoothing, and video loop detection.

1. Introduction
Implicit neural representation (INR) has recently

emerged as a powerful paradigm for representing visual
data [19,20,29,30,34]. Notably, INR has recently been
successfully adopted to represent 2D images for image
processing and synthesis [1,5,6]. Image-based INR em-
ploys coordinate-based multi-layer perceptron (MLP),
typically along with Fourier-based positional encoding,
to map 2D pixel coordinates to the corresponding color
values. Existing works also studied video-based INR
and considered it as a natural extension of their image-
based counterpart [15,29]. Such an approach uses time
as an additional input coordinate to the coordinate-
MLP model, effectively treating a video as a 3D volume
without explicitly modeling inherent temporal connec-
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tion among video frames.
Alternatively, a video is often considered as a se-

quence of images evolving over time in computer vision
research [23,32]. This work explores a video-based INR
from that perspective. We investigate if it is possible
to leverage an image-based INR to generate temporally
varying video content motivated by two observations.
First, image-based INR, with the use of Fourier-based
positional encoding [34], operates as a mapping from
sinusoidal patterns of different frequencies to 2D image
content. Varying the input sinusoids would necessarily
cause the generated output to vary accordingly. There-
fore, in principle a time-evolving image sequence can be
generated from a single image-based INR by varying its
sinusoidal functions over time. Second, displacements
of sinusoidal functions can be modeled mathematically
by the shifts in their phase angles. Time-varying sinu-
soids can therefore be achieved by assigning different
phase shifts at different times.

We develop an implicit neural representation for
videos based on these observations. We model the
pixel generation process in a frame-wise manner with
an image-based INR, and leverage the phase infor-
mation in its positional encoding to generate tempo-
rally varying video content. Our model consists of two
components, a frame generation module and a phase-
shift generation module. Our frame generation module
maps each pixel coordinate c = (x, y) to the color value
Mf (c) at the corresponding coordinates in the image
plane. This frame generation module is a standard
image-based INR model with a minimal yet important
modification to its positional encoding (PE) operation.
Different from a standard INR, each sinusoidal func-
tion in our PE is not static but to be shifted at each
time t by a phase-shift vector ϕ(t). The mapping ϕ is
generated by the phase-shift generation module Mp,
jointly trained end-to-end with Mf to fit the input
video. After training, Mp can provide the per-frame
phase-shift vector at each corresponding frame in the
video. Those learned phase-shift vectors can be exter-
nally manipulated before entering the frame generation
stage, potentially enabling new generated content with
modified dynamics. That makes our neural implicit
video representation motion-adjustable.

With the proposed neural implicit video representa-
tion, we center our study around two questions. First,
can the model learn to fit a video? Compared to a
standard INR approach where the spatial coordinate
encodings are fixed across frames, the input coordi-
nate encodings to our frame generation model con-
stantly change from frame to frame, making it more
challenging to memorize pixel value at each location.
Second, does the learned phase space have any mean-

ingful structures? As the image content at each time
is associated with a phase-shift vector, it is inter-
esting to see whether manipulating the learned per-
frame phase-shift sequence can result in meaningful
changes in the generated video. Our experiments on
diverse video content suggest positive answers. We
found that the model can learn to interpret the learned
phase-varying positional encoding into the correspond-
ing time-varying video content. Interestingly, we found
that the resulting phase space corresponds to meaning-
ful information in the video. Manipulating the gener-
ated phase-shift vectors can enable different temporal-
dynamics effects such as temporal interpolation, mo-
tion magnitude adjustment, and motion filtering from
the video as shown in Figure 1.

This paper makes the following contributions.

• We introduce a motion-adjustable neural implicit
video representation. Instead of treating the time
dimension equally as the spatial dimensions, our
representation maps time to a driving signal to
modulate the frame-generation process, effectively
adapting regular image-based INR to generate tem-
porally varying video content.

• We report the interesting finding that the phase in-
formation in Fourier-based positional encoding can
be flexibly leveraged to capture temporal dynamics
in a video. Our work adds to the growing litera-
ture on the use of Fourier-based positional encoding
in INR, complementing prior works that study the
roles of frequency information in Fourier-based po-
sitional embeddings.

• We experiment on a variety of real-world videos and
demonstrate that our neural implicit video repre-
sentation can not only represent a video but can
also allow for modifying certain temporal-dynamics
aspects of the video content, enabling a motion-
adjustable neural implicit video representation po-
tentially useful for video processing applications.

2. Related Work
Implicit Neural Representation has been shown a
powerful approach to represent visual data, such as 3D
data modelling [2–4, 13, 16, 19, 20, 25, 26, 30, 36, 41, 42]
and image representation [14, 15, 29, 33, 34]. Image-
based INR frameworks have been developed for nu-
merous applications, including image compression [6],
super-resolution [5], and image synthesis [1,31]. In this
paper, we focus on exploring a motion-adjustable neu-
ral implicit video representation. Different from the
standard approach which extends image-based INR to
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Figure 2. Motion-Adjustable Neural Implicit Video Representation. We extend image-based implicit neural representation
(left) to model a video. Our method determines the phase-shift ϕ(t) at each time t using the phase-shift generation network
Mp. The frame generation network Mf synthesizes the video frames corresponding to the positional embeddings with the
phase shifted by ϕ(t). At inference time, ϕ(t) can be manipulated to generate new videos with modified dynamics.
fit a 3D video volume [15,29], we leverage the phase in-
formation in the Fourier-based positional encoding to
learn temporally varying video content with a regular
2D image-based INR.
Implicit Neural Representation for 3D Dynamic
Scenes. Following the immense success of Neural
Radiance Fields (NeRF) [19], many methods extend
NeRF to model temporally varying 3D scenes from
video data [8,9,12,21,24,35,40]. Existing works along
this line typically treat video frames as the projection of
a dynamic 3D scene onto the image plane. These meth-
ods explicitly model 3D scenes and per-frame camera
poses. This paper works on a more relaxed setting
without any 3D scene or camera information and fo-
cuses on adapting image-based INR model to capture
the temporally evolving content in a video.
Fourier-Feature Based Positional Encoding. Po-
sitional encoding (PE) refers to the mechanism
to represent position information by mapping low-
dimensional input coordinates to higher-dimensional
vectors, typically through a collection of sinusoidal
functions. Initially made popular by Vaswani et al.
through their Transformer paper [37], positional en-
coding has also proved critical for implicit neural rep-
resentation models [19]. Recent works have studied the
importance of the frequency components in PE to the
model’s fitting quality [29, 34]. Our work adds to the
growing literature on Fourier-feature-based positional
encoding in INR, demonstrating that besides the fre-
quency information, the phase information in Fourier-
based PE can also be used to enable video modelling.
Phase-Based Motion Modelling. Our work is
inspired in part from the rich literature on phase-
based motion processing [7, 10, 17, 18, 38]. These
works built on the connection between motion infor-
mation in a video and its phase information extracted

through frequency domain analysis [39] to enable var-
ious motion editing applications such as motion esti-
mation [7, 10], motion magnification [38], and frame
interpolation [17,18]. In this paper we explore the pos-
sibility of leveraging phase information embedded in
the Fourier-based positional encoding to help implicit
neural representation models learn temporal dynamics
information in video data.
3. Neural Implicit Video Representation

We first review image-based INR and motivate the
use of phase shifts for generating temporally varying
content. Image-based INR represents an image as a
continuous function f : c → v, where c = (x, y) are
2D coordinates on the normalized image plane, and
v = (R, G, B) is the corresponding color value. The
mapping function f is parameterized by the weights
of a multi-layer perceptron (MLP) Mf . In practice,
the input coordinates c are first mapped to higher-
dimension vectors γ(c) through a positional encoder
module γ. Mf then maps the resulting positional en-
codings to the final color value v (Figure 2 left).

We adopt the widely used Fourier-based positional
encoding scheme [13,19,37] that forms the encoding by
concatenating sinusoidal functions of c

γ(c) = [γ0(c), ...γN−1(c)] (1)
γi(c) = [sin(2i−i0πc), cos(2i−i0πc)] (2)

where N denotes the number of frequencies. γi(c)
represents the encoding corresponding to the i-th
frequency. The sin and cos functions are defined
coordinate-wise. i0 controls the lowest frequency com-
ponent to use, which is typically set to 0 in most INR
models. With the positional encoding incorporated,
the resulting model can be viewed as mapping the si-
nusoidal patterns arranged in 2D planes to the corre-
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sponding image content. From that view, we hypoth-
esize that an image-based INR model can be made to
generate temporally varying content by displacing its
input sinusoidal patterns over time.

3.1. Neural Implicit Video Representation

The displacement of the sinusoidal functions can be
achieved by shifting their phase angles. Accordingly,
we jointly determine the phase-shift values at each time
and the image-based INR model that maps the phase-
shifted positional encodings to the corresponding video
frames as shown in Figure 2 right. This leads to our
Neural Implicit Video Representation. Below we detail
its two main components.
Frame Generation. The frame generation module
Mf generates each 2D video frame. As in conventional
image-based INR, Mf maps each 2D coordinate c to
the corresponding pixel value using a coordinate-MLP
with Fourier-based positional encoding. To make it
generate different video content at different time, we
modify its positional encoding module to enable phase-
varying positional encoding. Specifically, we incorpo-
rate an explicit phase-shift term into each sinusoidal
function. As a result, the per-frequency positional em-
bedding in Equation 2 is modified to

γϕ(t)i
(c) = [sin(2i−i0 πc + ϕi(t), cos(2i−i0 πc + ϕi(t)] (3)

where ϕi(t) is a two-dimensional vector representing
the i-th component of the phase shift at time t. With
this minimal change, Mf can generate different values
for the same (x, y) coordinate at different time, adapt-
ing an image-generation model for video generation.
Phase-Shift Generation. We parameterize the map-
ping from time t to phase shift ϕ(t) with a neural net-
work Mp. As the mapping has continuous nature, we
implement Mp as a 1-D implicit neural representation.
Specifically, the input t is first mapped to a positional
embedding γ(t) using the regular positional encoding
procedure following the one-dimensional instantiation
of Equation 1. The resulting positional embedding
is then processed by an MLP to generate the output
phase-shift vector ϕ(t).
Model Training. At each training iteration, we ran-
domly sample one video frame Vi along with its frame
index i, which is normalized to [−1, 1] and passed
through our model to generate the frame V̂i. The model
is trained with the reconstruction-based loss function

L(V̂i, Vi) = ||V̂i − Vi||1 + λ||Φ(V̂i) − Φ(Vi)||2 (4)

where Φ(.) denotes the feature maps extracted from the
pre-trained VGG-19 network [28]. The loss function is
composed of two loss terms: the conventional L1 loss

Input Direct-VINR Phase-NIVR (Ours)
Figure 3. Video-fitting examples. Our method can fit video
content with comparable visual quality as Direct-VINR.
This suggests that incorporating phase-varying positional
encoding preserves the ability to fit video data. Please see
video results at https://tinyurl.com/NIVR-VidFit.
and the perceptual loss to encourage preserving better
image details. λ = 0.2 is a weighing factor.

During training, we found it beneficial to update
Mf and Mp in an asymmetric manner. In particu-
lar, we update the parameters of both networks only
on half the number of frames evenly sampled across
the video. For the remaining frames, we only update
the parameters of the phase-shift generation network
Mp while freezing the parameters of Mf during back-
propagation. In that way, Mf is prevented from over-
fitting to all the frames while still able to guide the
update of Mp such that the predicted phase-shifts that
can be correctly interpreted to generate the hold-out
frames. We found such asymmetric training procedure
critical for learning well-structured phase space.

4. Experiments
4.1. Implementation Details

We implement both Mf and Mp as MLPs with 5
hidden layers and 256 neurons per hidden layer. Fol-
lowing [29], we use the sine activation function in all
hidden layers. For Mf , the output layer has three neu-
rons, corresponding to the RGB color values. Each
neuron has a tanh activation function to constrain the
output value to [−1, 1]. For Mp, the number of out-
put neurons is equal to twice the number of frequency
channels in the positional encoding module of Mf . The
number of frequency channels N in positional encoding
is determined by the number of samples L along each
dimension of the input video as N = [log2(L) + i0] to
account for the Nyquist sampling rate. L is taken to be
the length of the video for the temporal dimension and
the smaller side of the frame for the spatial dimension.
We use i0 = 1 in Eq. 3 and 2 for all experiments. We
trained our model using the ADAM optimization al-
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Interpolated Videos

Interpolated Video Interpolated frame Frame averaging Ground-truth frame
Figure 4. Temporal interpolation examples. The frame generation model can synthesize plausible interpolated frames with
interpolated phase-shift vectors during inference time. The interpolation results often show plausible motion transition
rather than copying nearby frames or taking frame-wise average (2nd row). Video results can be viewed at https://
tinyurl.com/NIVR-VidInterp.

gorithm [11] with learning rate 0.0001 for 6,000 passes
over an input video. It takes about 18 hours to train
on a video of 120 frames with resolution 256 × 452 on
one NVIDIA 2080Ti GPU.

4.2. Learning to Fit Video Data

We examine whether incorporating the phase-
varying positional encoding and the generated phase
shifts hurts the ability of the model to fit the video
data well. Compared to standard INR formulation, it
is more challenging for our model to fit the coordinate-
to-color mapping as the positional embeddings of the
input spatial coordinates constantly change across
frames. We test our neural implicit video representa-
tion (Phase-NIVR) on 25 videos from the WAIC-TSR
dataset [22] that covers different content and motion
types. For each video, we use the first 120 frames and
resize them so that the small side is 128-pixel.

For comparison, we also train a direct extension of
INR to video, named Direct-VINR, that incorporates
t as an additional input coordinate. We use the same
model architecture as in our model to experiment with
Direct-VINR. We train both models on each video in
the dataset and compute the PNSR/SIIM reconstruc-
tion scores from their reconstructed videos. The results
(32.05/0.905 vs 31.98/0.897) indicate that our method
performs comparably with Direct-VINR. This suggests
that incorporating phase-varying positional encoding,
while making the learning problem more challenging
for the mapping network, does not prevent the model
from fitting the videos. Figure 3 shows 30-frame seg-
ments of some example reconstructed videos. Consis-
tent with the numerical scores, we observe the recon-
structed videos from two methods often have compa-
rable visual quality.

4.3. Phase-based Motion Manipulation

The previous experiment shows the ability of our
model to map per-frame phase information into the
frame content. However, it is not clear whether the
learned phase captures meaningful temporal dynamics
structure or simply serves as an index for the model to
memorize the frame content. In this section, we inspect
how manipulating the generated phase-shift sequence
ϕ(t) influences the change in the output frames.
Temporal Interpolation. We examine if interpo-
lating two phase-shift vectors corresponds to a mean-
ingful interpolation in the video domain. We sample
five videos in the WAIC-TSR dataset that cover differ-
ent scene types and have good reconstruction quality
(PSNR ≥ 28.5) from the previous experiment. We re-
train our model on 120 frames from each video sampled
at half the original frame rate. For this test, we train
the model on video frames resized to 256 × 452 so that
more details can be observed. After training, we use
Mp to generate the phase shift vectors at each time
t and perform interpolation between each pair of con-
secutive phase-shift vectors to obtain the interpolated
phase-shift sequence. We use spherical linear interpo-
lation to account for the circular nature of phases [27].
The resulting phase-shift sequence is used in the frame
generation module Mf to generate the final frames.

Figure 4 shows the interpolated video results. The
videos were set to be played back at two frames per sec-
ond in the figure for easier inspection. First, it can be
observed that the interpolated frames have compara-
ble visual quality as the original frames. This indicates
that the model can indeed interpret the positional em-
bedding from the interpolated phase-shift vectors into
plausible video content rather than treating them as
out-of-distribution samples. Second, the appearance of
the frames continuously changes, indicating that the
model can associate the change in the phase-shift vec-
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Input Reconstruction Motion Smoothing
Figure 5. Motion filtering. Low-pass filtering the phase-shift sequence ϕ(t) at inference time can make the frame generation
model to generate a new video with smoother object motion. Note the concrete base becomes more stable while its larger-
scale motion is preserved. Video results can be viewed at https://tinyurl.com/NIVR-MoFilt.

tors to the change in the video domain rather than
simply copying the content from the nearest frames.
Finally, we inspect whether the interpolated frames
are the results of the pixel-space average of the corre-
sponding neighboring frames. We found that in general
the interpolated frames are different from the frame-
wise average results (Notice the ghosting around the
ice cube in the averaging result in Figure 4 (bottom
row)). We observe that when the motion is sufficiently
small, the interpolated video does capture the inter-
polated motion. However, with a larger inter-frame
motion, the model may not identify the corresponding
large-moving regions across frames as part of a single
motion. In those cases, interpolation tends to reduce
to a blending operation, resulting in occasional ghost-
ing artifacts as can be observed in the “running men”
sequence (the third examples in Figure 4’s top row).
Motion Filtering. The previous interpolation test
suggests that the learned phase-shift vectors can be
associated with the temporal states of the video con-
tent. We furthermore perform a simple experiment
to test whether low-pass filtering the learned phase-
shift sequence can smooth motion in the video. For
this test, we collect videos that have some jiterring ob-
ject motion on top of a longer-range motion trajectory
such as a tunning fork vibrating while moving (Fig-
ure 1 (bottom-right)). After training our model on each
video, we treat the generated phase-shift sequence as a
multi-dimensional time series and apply a median fil-
ter with a temporal window-size of 7 to it. The filtered
phase-shift sequence is used with the frame generation
model Mf to synthesize the new video.

Figure 1 (bottom-right) and Figure 5 show two mo-
tion filtering results. More examples can be found in
our supplementary video1. We observe that filtering
the learned phase-shift sequence leads to the resulting
videos with reduced high-frequency jittering while the
larger-scale motion is preserved. Note the overall up-
down motion of the tuning fork in Figure 1 (bottom-
right) is retained while its vibration is largely removed.
Also, the base concrete platform in Figure 5 is stabi-
lized while its overall motion direction is preserved.

1https://tinyurl.com/NIVR-Supp

Motion Magnitude Adjustment. Inspired by
phase-based motion processing works [38, 39], we are
curious if manipulating the phase-shift vectors in our
framework can alter the motion magnitude in videos.
Specifically, we test whether adjusting the magnitude
of the difference between neighboring phase-shifts can
result in motion magnitude change.

We test our method on different videos with ob-
ject fluctuating in space. For phase-shift adjustment,
we first scale the difference between each consecutive
phase-shift vectors ˆ∆ϕ(t) = α(ϕ(t + 1) − ϕ(t)). We
then fix the phase-shift vector at the first frame and
re-compute the phase-shift sequence with the modified
pair-wise difference ˆ∆ϕ(t). The new videos are syn-
thesized from the modified phase-shift sequence. Fig-
ure 6 and Figure 1 (bottom left) show two example
videos with different scaling factor α values. When
α is smaller than one, the resulting video shows re-
duced motion magnitude, leading to the motion mini-
fication effect. The magnification effect was obtained
with α > 1. Note that while the motion magnitude
was modified, the overall motion structure such as the
direction of motion and different motion stages were
preserved. We observe that the motion minification ef-
fect can be robustly obtained with any α < 1 while the
magnification effect tends to be more restricted as the
model may not be able to extrapolate far beyond the
motion range available in the input video.
Video Loop Detection. Hypothesizing that the
phase-shift vectors encode the states of dynamics, we
investigate if we can detect loops in videos with re-
peated motion by analysing the phase-shift sequence.

We adopt a simple approach to detect loops in
a video from the learned phase-shift sequence. Let
{ϕ(k)}k=0..N represent the learned phase vectors from
the video with N frames. We identify the looping point
by determining the pair of frame indices î and ĵ that
minimize the cost function

min
i,j|j≥i+τ

∥ϕ(i) − ϕ(j)∥ + β∥∆ϕ(i) − ∆ϕ(j)∥ (5)

where ∥.∥ denotes the L1 distance, ∆ϕ(i) = ϕ(i) −
ϕ(i−1) represents the phase-difference vector, and β is
a weighing factor to balance between phase matching
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Original (α = 1.0) α = 0.5 α = 1.5
Figure 6. Motion magnitude adjustment. Scaling the phase-shift sequence ϕ(t) at inference time can alter the motion
magnitude in the synthesized video. Varying the scaling factor allows for both motion minification and motion magnification.
Video results can be viewed at https://tinyurl.com/NVIR-MoAdj.

and motion matching terms. τ determines the desired
minimum length for the extracted loop. The idea is to
determine the pair of as-similar-as-possible phase shifts
that also have similar phase transition. After solv-
ing for î and ĵ, the sub-sequence {ϕ(k)}k=î..ĵ forms
the candidate loop. The new video synthesized with
this sequence would ideally transition from the ĵ-th
frame back to the î-th frame which has similar dynam-
ics state, forming the illusion of looping.

In practice, we observe that perfect matching is only
possible for simple mechanical motion where objects
perfectly repeat themselves. For more organic motion
such as human action, slight variation in object poses
can cause a perceivable jump at the looping point. To
address that problem, we further modify the phase-
shift sequence with a simple phase blending process.
We modify the first l phase-shifts by blending them
with ϕ(ĵ) using spherical linear interpolation with the
blending weight α(n) of the n-th vector defined as
α(n) = n

l .
Figure 7 shows example loop extraction results from

two potentially looping videos. Please check our sup-
plementary video2 for more examples. In general,
the loop points can be successfully detected by phase
matching. This indicates that the similar phase-shift
vectors reflect similar scene states reappearing at differ-
ent times. We note that phase blending helps improve
the perceived looping noticeably. The wind-chime ex-
ample (Figure 7 (bottom)) is particularly challenging
to handle as the original video contains small camera
motion. For that reason, no perfect loop point exists
that can match both the background and the object
motion, resulting in the noticeable temporal seam in
the looping result. Surprisingly, with phase blending it
is possible to achieve a seamless looping video. This in-
dicates that manipulating in the phase-shift space can
lead to plausible modification in the video domain.

5. Discussion
Our experiments suggest that the learned phase-

shifts ϕ(t) can be associated with meaningful transi-

2https://tinyurl.com/NIVR-Supp

tion in videos. We visualize ϕ(t) as a function over
time. Figure 8 shows such a visualization for our model
trained on a video with structured and symmetric na-
ture while containing some complex motion. We show
the phase-shift visualization for 5 out of 14 phase-shift
series (corresponding to 14 Mf ’s frequency channels).

Inspecting the visualized phase shifts, we can see
that the phase-shift series evolve smoothly over time
rather than forming a sequence of uncorrelated states.
More interestingly, we found that the phase-shift se-
ries are well structured. The phase-shift plots contain
highly symmetric patterns, reflecting the symmetric
nature of this particular input video. In most videos
that we experimented with we also observe that the
transition in the phase-shift series often corresponds in
meaningful ways to the transition in the visual domain.

Occasionally, we also observe a localized-control ca-
pability. For this example, we found that the fifth
phase-shift series (the red curve in Figure 8) correlates
with the movement of the hair-lock region. Keeping
the fifth phase-shift evolving over the whole temporal
range while freezing the phase-shift values of all other
frequency channels at certain keyframes results in the
re-synthesized scenes frozen at the selected keyframes
while keeping the hair lock moving in similar ways
(Figure 8 (bottom)). This localized-control behavior
is interesting as it suggests the simple MLP networks
can potentially learn non-trivial spatial-temporal re-
lations from raw visual data without explicit motion,
correspondence, or semantic supervision. However, we
would like to note that our current model does not ex-
hibit this localized-control ability on all videos. In gen-
eral cases, one phase-shift series often correlates with
more global motion, and the motion of one visual ele-
ment is often influenced by multiple phase-shift chan-
nels. Explicitly encouraging such localized-control ca-
pability by incorporating specialized training strategy
would be an interesting direction for future exploration.
Limitation and Future Work. Our study demon-
strates the surprising effectiveness of using phase-
varying positional encoding in image-based INR to
capturing temporal dynamics. However, our method
has several limitations. First, while our model can
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Original Looping w/o Phase Blending
Figure 7. Video loop detection. Potential repeat point in a video can be detected by simple phase-matching strategy in the
learned phase-shift sequence ϕ(t). Applying phase blending improves the looping results especially for challenging scenarios,
such as when both the wind chime and the background move due to subtle camera motion (bottom row). See video results
can be viewed at https://tinyurl.com/NIVR-VidLoop.

Reconstructed Video Freq 5 only Freq 5 only
(keyframe at t = 0) (keyframe at t = 40)

Figure 8. We visualize five channels of the learned phase-
shift values ϕ(t) as a function of time (top). The structure
of the phase-shift series reflects the symmetric nature of the
video (bottom-left). In addition, the fifth phase-shift series
(the red curve) correlates with the hair-lock movement even
when other channels are frozen to one keyframe. Please see
video results at https://tinyurl.com/NIVR-PhaseViz.
fit a video, the reconstruction quality is not perfect.
Our reconstructed videos are often slightly more blurry
and sometime noisy compared to input videos, as can
be seen from the video results. Incorporating more
advanced frequency selection principles in positional
encoding layers [29, 34] or employing local implicit
function models [5, 14, 15] are promising directions to

improve the visual quality. Second, as our frame-
work requires example-specific training, it takes many
hours to process one video. Extending our method
to multiple-video settings with hyper-networks mod-
els [30] or meta-learning [33] can be fruitful directions
to explore in future work. Finally, while our motion-
adjustable neural implicit video representation shows
promising results for various motion editing tasks, our
method is not optimized for each specific application
and the achievable effects may depend on the content
and motion in the original input video. We believe
that incorporating application-specific domain knowl-
edge specialized for each task can potentially improve
the robustness of our method.

6. Conclusion
In this work we introduced a motion-adjustable neu-

ral implicit video representation. We extended image-
based implicit neural representation to model video
data by making the positional encoding component
phase-varying, coupled with the jointly learned phase-
shift generator. We showed that such extensions can
retain the ability to learn from video data. Interest-
ingly, the resulting representation also allows for mod-
ifying temporal dynamics in a video through phase-
shift manipulation, enabling meaningful effects such as
temporal interpolation, motion-magnitude adjustment,
motion filtering, and video-loop extraction. We hope
our findings can motivate further research on explor-
ing the potential of Fourier-based positional encoding
and its phase information in learning visual dynamics
within the context of implicit neural representation.
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