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Abstract

Wind energy is a growing sector of renewables, and small wind is a key area for

growth. In Portland, Oregon small scale vertical axis wind turbines (VAWTs) will

be installed on the Tilikum Crossing bridge. Prior to turbine installation, a wind

resource assessment was conducted to provide details about the wind environment

turbines will placed in. For seven months, 12 instruments collected wind and weather

data for analysis. Data was analyzed between different locations and over various

time scales. Trends pointed to wind dominantly coming from the South and also

frequently from the North, generally following the channel of the Willamette River.

Month to month, wind speeds fluctuated minimally; however, day to day, wind

speeds increase significantly during the daytime hours. For several measuring sta-

tions, close proximity to a structure caused reductions in speed compared to stations

further away. On the bridge, high levels of turbulence are present, but wind speeds

tend to be very low. Based on these findings it will be difficult to generate power

from VAWTs because turbines require higher wind speeds.
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Chapter 1

Introduction

1.1 Motivation and Background

In 2015 renewable energy provided the US with 10% of its consumed energy, and

only 1.9% of energy came from wind [2]. By comparison, Denmark consumed 42%

of its energy from wind power in the same year [3]. Globally, installed wind capacity

has increased by nearly 25 times from 2000 to 2015, and it grows by larger amounts

each year [4]. Wind energy plays a vital role in the global push for a renewable

energy future, and there is vast opportunity for growth in the United States.

Most often wind energy comes from wind farms with horizontal axis wind tur-

bines (HAWT) approaching 100 m in height. These are located in rural areas away

from cities; however, wind energy can also be produced in urban environments.

Cities by nature do not have a lot of open space, so for turbines to be used they

must become smaller. These types of turbines form a segment of wind energy called

small wind, where turbines are between 9 and 40 m tall with capacity ratings less-

than-or-equal-to 100 kW [5,6]. Traditional turbines generally have capacities in the

multi-megawatt range.

For small wind applications vertical axis wind turbines (VAWTs) become an
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increasingly popular option. They have blades that spin around a vertical axis

(Figure 1.1) eliminating the need for complex yaw control systems used by HAWTs

to rotate their blades into the wind [7]. VAWTs can receive wind from any direction

to produce power. This is important in urban environments because urban obstacles

like plants, cars, and buildings work to create turbulence and irregularities in wind

flow patterns. Being able to accommodate wind from any direction helps VAWTs

perform better in turbulent wind conditions [8]. In Portland, Oregon, TriMet is

considering these advantages in its most recent public transit expansion project.

Figure 1.1: UGE HoYi! vertical axis wind turbine

Late in 2015 the Tilikum Crossing (Figure 1.2) opened in Portland as a part

of the TriMet Portland-Milwaukie Light Rail Transit Project. It is a transit-only

bridge open to buses, light rail trains, streetcars, cyclists, and pedestrians. TriMet
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is the regional public transit provider and holds ownership of the bridge. At the

heart of the project is a theme of sustainability, and this includes implementing

technologies in new ways like installing VAWTs on the Tilikum Crossing [9].

Figure 1.2: Tilikum Crossing spanning Willamette River looking south

Prior to implementing VAWTs though, it is also important to consider the wind

resource powering these wind turbines. Wind behavior changes depending on the

physical location and the time that it is being observed. Time-wise, there are

synoptic variations due to passing storms, diurnal, seasonal, and even variations over

many years [10]. Geographical impacts at a global scale and a local scale change

wind behavior. Wind is driven mostly by energy from the sun and the associated

temperature differences that cause circulation of air in the atmosphere. Coastal

regions are often windier because of the way land and sea are heated differently by

the sun. Hilltops can experience accelerated wind speeds due to their higher reaches

into the surface boundary layer, and valleys can act as funnels for wind to gain

speed [10]. Even urban and rural locations differ with complex urban structures

and obstacles adding turbulence to wind flow. All of these contribute to uncertainty
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in wind behavior. When working to quantify the wind resource available to VAWTs

on the Tilikum Crossing, a wind resource assessment is conducted.

1.2 Previous Wind Resource Assessments

Wind studies in recent years have concluded a variety of different findings. A study

of Chalus County in Iran, incorporating 14 months of data, looked into the feasibility

of using a Bergey XL.1 turbine. Finding that monthly mean wind speeds reached

the cut-in speeds seven months out of the year, the authors concluded that the

location is not good for wind energy generation [11]. Jowder studied the Kingdom

of Bahrain using a vertical extrapolation computation to extend measurements from

10 m height to 30 and 60 m. Then power and capacity factor predictions for several

different turbines were calculated, leading to conclusions that the Mod-0 turbine

and Gamesa G58 turbines are recommended for installation heights of 30 and 60

m, respectively [12]. Janajreh et al. performed a similar study in Masdar City

of the United Arab Emirates and found that a smaller 3.5 KW Windspot turbine

would perform better than a much larger Nordtank 500/41 turbine. This is based on

capacity factors of 7.39% for the Windspot at 30 m versus 5.15% for the Nordtank

[13]. A study of Kirklareli, Turkey represents wind data using frequency distribution

and cumulative probability distribution based on observed data. It concludes that

Kirklareli is a marginal area for wind power generation [14]. Ucar et al. studied

six locations in turkey and found that Erzurum and Elazig are the best regions for

power generation when considering implementation of the De Wind D8 turbine [15].

Several articles conducted wind assessments while also looking into the perfor-

mance of certain computations. A 2010 study of central Finland by Saengyueny-
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ongpipat employs measure-correlate-predict (MCP) methods to determine their ef-

fectiveness. Measure-correlate-predict methods use a short term data set, attempt

to correlate it to another long term data set, and use that correlated relationship

to predict long term wind data for the original site. Two methods were used to

determine missing data between two locations and results showed that MCP can

successfully predict missing data. For the sites however, they were determined best

suitable for small-scale power production [16]. Rehman et al. conducted a study

in Dhulom, Saudi Arabia and focused part of their wind assessment on wind shear

coefficients and how they change. They found no seasonal pattern to wind shear

coefficient variation, and for wind turbines, they concluded at 40 m hub-height

turbines with a 4 m/s cut-in speed can produce energy nearly 75% of the time [1].

Wind studies have also been performed with a focus on urban environments.

A wind assessment in the Braşov region of Romania compared an urban site and

a rural site. Average wind speeds were 1.13 m/s and 2.03 m/s, respectively [17].

Sunderland et. al. study of urban wind in Dublin, Ireland compared the predicted

power outputs of an airport, an urban location, and a suburban location. The

comparisons were based on a Wind Energy Solutions Tulipo turbine rated at a

capacity of 2.5 kW with a 3m/s cut-in speed. They found that at the airport it could

produce 5892 kWh with a capacity factor of 42%, exceeding the 5000 kWh average

Irish domestic energy need. The urban and suburban locations performed half as

well with capacity factors of 20% and predicted outputs of 2445 kWh and 2672

kWh, respectively [18]. Another study in the heavily urban city-state of Singapore

studied three locations with building-anemometers at heights between 64 and 83 m.

By focusing on 10-minute interval observations of wind speed, turbulence intensity
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(TI) was able to be calculated from the mean and standard deviation for those

intervals, leading to the finding that TI decreases as wind speed increases. Also

using LiDAR to detect TI at different heights, it was uniform between 2 and 8 m/s,

and then increased with greater wind speeds [19].
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Chapter 2

Computations

2.1 Frequency and Cumulative Probability Distributions

A frequency distribution is useful for identifying which wind speeds occur most

often. It is created by separating wind speed into equally sized bins. Then the

probability of occurence for each bin is computed using Equation 2.1::

pi =
mi

Nt

∗ 100, (2.1)

where i represents bins corresponding to wind speed values (0, 1, 2 etc.), mi is the

number of measurements per bin, Nt is the total number of measurements recorded,

and pi is the probability of occurrence for each bin. Probability is plotted on the

vertical axis versus wind speed on the horizontal axis.

A cumulative probability distribution builds on the frequency distribution show-

ing the percentage of the time wind will blow at a speed less-than-or-equal-to a

given value. Individual probabilities used in the frequency distribution are summed

from 0 m/s up to the specific wind speed bin through Equation 2.2:

ci =

n=j∑
j=0

pi, (2.2)
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where ci is the cumulative probability for each bin. As an example, this plot would

show that wind speed is ≤ 2 m/s approximately 50% of the time. By nature, at the

highest wind speed bin there will be a cumulative probability of 100%.

2.2 Wind Rose

A wind rose plots the frequency distribution for wind blowing with equally spaced

wind direction sectors. Figure 2.1 shows wind direction bin sizes of 30◦. In this

study, wind direction bins of 22.5◦ will be used creating 16 sectors. The radial

arms of the wind rose vary in length and correspond to the total fraction from that

direction. Within each radial arm are segments representing wind speed bins shown

in the legend. The radial length of these bins corresponds to the total fraction of

wind in that bin.

Figure 2.1: Sample wind rose from [1]
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2.3 Correlation Matrix

Incorporating wind and weather variables, a correlation matrix highlights important

relationships between them. It is defined by Equation 2.3 where two variables x and

y are compared, and given by,

r =

∑n
j=1(xj − x̄)(yj − ȳ)√

(
∑n

j=1(xj − x̄)2)(
∑n

j=1(yj − ȳ)2)
. (2.3)

r is the correlation coefficient, n is the number of samples, xj and yj are the iterative

samples, and x̄ and ȳ are the means of each sample. The correlation coefficient iden-

tifies the extent to which two variables have a positive or negative linear correlation.

An r of +1 is a perfect positive linear correlation with both variables increasing in

magnitude together. Conversely, an r of −1 is a perfect negative linear correla-

tion where one variable decreases as the other increases. When implemented, the

correlation matrix utilizes a color-bar legend to represent the strength of correlation.

2.4 Average Wind Speeds

Computing average wind speeds helps quickly describe any differences between mea-

suring locations. Breaking down further to monthly averages highlights changes that

occur between locations as the year progresses (Equation 2.4 [12]):

V̄ =
1

N

[ N∑
j=1

Vj

]
(2.4)

In the equation above V̄ is the average wind speed for a specified time frame, N is

the total number of measurements for that time frame, and Vj is the wind speed



10

recording.

2.5 Diurnal Cycle

The diurnal cycle shows the average wind cycle for a 24-hour period. Hour of the

day is plotted on the horizontal axis and wind speed is plotted on the vertical axis.

As time progresses through a day temperature is known to change with the exposure

of sunlight, and it has been shown that wind speed tends to do the same [17]. As air

warms during the day, convection begins to have a greater impact on wind patterns

with hot air rising and cold air sinking. For this computation, Equation 2.4 can be

adapted to recurring daily measurements. One bin is created for each hour of the

day, and all wind speed measurements recorded for that hour are averaged together

for all days that data is measured.

2.6 Turbulence Intensity

Turbulence intensity (TI) is a measurement of the turbulence in a wind stream [10].

It provides a metric of how aggressive the changes in wind speed are. Higher TI

corresponds to larger magnitude fluctuations in the wind [1]. It is caused mainly

by friction due to obstacles across the surface of the earth and thermal effects.

Turbulence has been shown to increase in urban environments [17], and it may also

account for decreased power production in wind turbines, making it an important

quantity to track [20]. Because turbulence is a very complex quantity to measure it

is more efficient to use a statistical approach. Turbulence intensity can be measured

by Equation 2.5 [10]:
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TI =
σ

µ
(2.5)

where σ is the wind speed standard deviation and µ is the average wind speed. In

this study TI is computed using hourly intervals, and then these are averaged to a

final turbulence intensity value. TI is computed most accurately with smaller time

intervals.
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Chapter 3

Instrumentation and Data

3.1 Location and Instrumentation

The Tilikum Crossing spans the Willamette River near its mouth, where it emp-

ties into the Columbia River. The Willamette Valley is surrounded by two large

mountain ranges: The Cascades to the east and the Coastal Range to the west (Fig-

ure 3.1). Situated about 105 km from the Pacific Ocean, Portland is impacted by

weather systems from the Pacific year-round. Often these systems are mild bring-

ing light to moderate rains and cloudy weather during the winter months. Summers

have little rain and are often very sunny [21]. Tornadoes and extreme weather events

are rare.
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Figure 3.1: Satelite image of Willamette Valley and surrounding moutains

Narrowing to the city limits many hills and buttes with heights ranging from 120

m to several hundred meters spread across Portland east of the Tilikum Crossing. To

the west, a range known as the Tualatin Mountains runs north and south along the

western bank of the Willamette River and the Columbia River for many kilometers.

The range reaches heights as large as 320 m and comes to within a kilometer of

the bridge at its southern end [22]. The bridge itself is about 500 m long. On the

western end, the Collaborative Life Sciences Building is a large structure just to the

North (Figure 3.2(A)), and on the eastern approach the Portland Opera building is

just to the south.



14

(A) All measuring stations

(B) West stations (C) East stations

Figure 3.2: Measuring station locations on Tilikum Crossing

During the summer of 2015 TriMet installed 12 measuring devices on the bridge,

all produced by Davis Instruments. They are installed on 10 m tall support poles.

Each approach is equipped with a Vantage Vue weather station (Figure 3.3(A))

capable of measuring wind speed, wind direction, temperature, humidity, and rain

amounts. Five additional Anemometer for Vantage Pro2 cup anemometers (Figure
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3.3(B)) are located on either side of the bridge recording wind speed and wind direc-

tion. Weather stations are shown as green markers in Figure 3.2 and anemometers

are yellow markers.

(A) Vantage Vue (B) Anemometer for Vantage Pro2

Figure 3.3: Measuring instruments installed on Tilikum Crossing

Data from the measuring devices is routinely uploaded to Davis’ WeatherLink

server. Instrument resolution and accuracy for the weather stations and anemome-

ters is located in Table 3.1 and Table 3.2 for the Vantage Vue and Anemometer

for Vantage Pro2, respectively. For both measuring devices, the major wind and

weather variables are listed with the resolution that the measurements are recorded

in and their range of accuracy. These instruments are inexpensive solutions com-

pared to those implemented in other studies. High quality instruments with wind

speed resolutions of 1 mm/s have been used in studies like [18], however, the study

also used the Vantage Vue. [16] used the Davis Vantage Pro as their primary in-

strument. Ultimately the current instruments are good selections for an initial wind

study.
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Table 3.1: Vantage Vue instrument resolution and accuracy

Variable Resolution Accuracy
Wind Speed 1 mph ±2 mph or 5%, whichever

is greater
Wind Direction 1◦, recorded as,16 points

on compass rose
±3◦

Temperature 0.1◦F ±1◦

Humidity 1% ±3% relative humidity or
±4% when above 90%

Pressure 0.01 in-Hg ±0.03 in-Hg

Table 3.2: Anemometer for Vantage Pro2 instrument resolution and accuracy

Variable Resolution Accuracy
Wind Speed 1 mph ±2 mph or 5%, whichever

is greater
Wind Direction 1◦, recorded as16 points

on compass rose
±3◦

3.2 Data Collection

Data is downloaded weekly using proprietary WeatherLink software from Davis In-

struments. It is then exported into a tab-delimited format for processing. Data is

recorded in 5-minute time-average intervals. During a 5-minute time-averaged pe-

riod multiple measurements are taken and averaged together; the time gap between

them depends on the variable. For the Vantage Vue, wind speed and direction read-

ings are taken every 2.5-3 s. Temperature readings are taken every 10-12 s, while

humidity and pressure readings are taken every minute. Anemometer for Vantage

Pro2 readings are taken approximately every 3 seconds. Figure 3.4 provides a visual

of the data presentation interface incorporated into the software. In the graph, time

is along the horizontal axis for one month of data. The axis can be expanded or

shrunk to display different time scales. On the vertical axis wind speed is plotted.
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The bottom bar contains multiple variables that can be selected for display in the

interface. Data records begin with measurements from August 29, 2015, and all

measuring devices were collecting data by September 11, 2015.

Figure 3.4: Weatherlink interface

Each of the 12 data sets is named so it is easily identified based on location and

measuring device type. This naming convention comes in useful when discussing

data omission. SWF represents South Water Front and corresponds the western

approach to the Tilikum Crossing; OMSI represents Oregon Museum of Science and

Industry and corresponds to the eastern approach to the Tilikum Crossing.
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Table 3.3: Measuring station naming conventions

Instrument type Western approach Eastern approach
weather station SWF-1w OMSI-2e
anemometer SWF-3w OMSI-3e
anemometer SWF-4w OMSI-4e
anemometer SWF-5w OMSI-5e
anemometer SWF-6w OMSI-7e
anemometer SWF-8w OMSI-8e

3.3 Data Signal

Data is exported from WeatherLink and imported into MATLAB for analysis. Fig-

ure 3.5 shows an example of the raw wind speed signal.

Figure 3.5: Raw wind speed signal over sevel months of data collection

When the data signal is received, it is recorded in English units. Wind speed

is recorded in integer units of miles-per-hour. All further computations work with

wind speed in Metric units of meters-per-second. Wind direction data is recorded

in 16 compass rose directions. It is converted to degrees for use in computations.
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3.4 Data Omission

Ten measuring stations experienced errors leading to the omission of data from

analysis. SWF-4w is excluded from all analysis because a significant amount of

data is missing in the months of February and March due to data recording failures.

Additionally, during September and October wind speed was not recorded. Direction

data for SWF-3w and OMSI-2e are omitted. The wind vane for SWF-3w appears

to have been stuck in one position for several months, and OMSI-2e does not report

wind directions due North or due South.

Data recording failures are also heavily present in the western measuring stations

with multiple failures spanning several days or more. There are some data recording

failures for eastern measuring stations as well. Table 3.4 shows the percentage of

total data records omitted for each measuring station.

Table 3.4: Vantage Vue instrument resolution and accuracy

Measuring Station Percentage of Data Failures
SWF-1w 14.6
SWF-3w 14.6
SWF-4w N/A
SWF-5w 15.6
SWF-6w 14.9
SWF-8w 15.6
OMSI-2e 0
OMSI-3e <<1
OMSI-4e <<1
OMSI-5e 0
OMSI-7e 1
OMSI-8e 0.4
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Chapter 4

Results and Discussion

4.1 Frequency Distribution

Frequency distributions consider all valid data records. Figure 4.1 shows frequency

distributions for west and east measuring stations. Wind speed magnitude is

recorded on the horizontal axis and frequency of occurrence on the vertical axis

in terms of percentage. Each profile represents a different station. Western stations

experience peak frequencies for wind speeds between 0 and 2 m/s, with the excep-

tion of SWF-6w peaking between 2 and 3 m/s. Calm conditions occur infrequently,

about 3% of the time for the anemometers. Eastern measuring stations also expe-

rience peak frequencies between 0 and 2 m/s. Calm conditions occur infrequently

between 2 and 6% of the time, depending on the anemometer. For the weather

stations, calm conditions occured more frequently at 9 and 15% for the west and

east sides, respectively. Overall, wind speeds are rarely above 6 m/s.
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Figure 4.1: Frequency distributions
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4.2 Cumulative Probability Distribution

Similar to the frequency distribution, Figure 4.2 shows cumulative probability distri-

butions for the west and east sides of the bridge. Plotted are cumulative probability

in percentage versus wind speed, with each profile representing a measuring station.

For the western stations, SWF-3w, SWF-5w, and SWF-8w follow the same proba-

bility path. This points to consistency between measuring stations and emphasizes

that they are experiencing the same wind conditions.

On the east side, OMSI-3e, OMSI-7e, and OMSI-8e have the same probability

path. These stations are located on the Northern side of the approach (Figure

3.2(C)). OMSI-2e and OMSI-4e follow a secondary path and are on the southern

side. Figure 3.2(C) shows these two stations are in very close proximity to one

another and the Portland Opera building. OMSI-5e is also on the southern half of

the eastern approach, but uniquely it does not follow the probability path of the

other two stations until wind speeds increase beyond 3.0 m/s. There is a distinct

division in cumulative probability trends on the eastern approach, separating the

stations on the northern and southern side. The southern stations are immediately

next to the Portland Opera building near roof-top height, and this is likely providing

the cause for the difference.

Common conditions for the western stations show that about 90% of the time

wind speeds are 4 m/s or less. On the east, about 90% of the time wind speeds are

3 m/s or less, with some variation depending on the station. The northern stations

see 90% of their wind speeds ≤ 3.5 m/s. The southern stations proximity to the

Portland Opera building may work to reduce wind speeds.
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Figure 4.2: Cumulative probability distributions
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4.3 Wind Rose

Wind roses are shown in Figure 4.3 for nine measuring stations. There is an over-

all trend for wind to come from the North and South for western stations. The

five northern-most wind directions, NW, NNW, N, NNE, and NE, contain between

32 and 37% of total wind events, depending on the measuring station. The five

southern-most wind directions, SW, SSW, S, SSE, and SE, contain between 41 and

48% of wind events, depending on the measuring station. Wind rarely comes from

the East or West. Eastern wind roses show large radial arms coming from directly

South. Between 49 and 53% of wind events come from the five southern-most wind

directions. There are also small peaks in the NNW direction for the eastern stations

containing between 9 and 11% of total wind events. Wind direction tends to follow

the direction of the Willamette River channel.
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(A) SWF-1w (B) SWF-5w (C) SWF-6w

(D) SWF-8w (E) OMSI-3e (F) OMSI-4e

(G) OMSI-5e (H) OMSI-7e (I) OMSI-8e

Figure 4.3: Wind roses for nine measuring stations, four western and five
eastern

4.4 Correlation Matrix

Figure 4.4 shows correlation matrices for west and east sides of the bridge, respec-

tively. Western data comes from the weather station SWF-1w and eastern data
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from OMSI-2e. Plotted in the matrices are wind speed, temperature, pressure, and

relative humidity along both the horizontal and vertical axis. Where variables inter-

sect there is a color corresponding to their degree of correlation. Along the diagonal

variables are correlated with themselves, resulting in a perfect positive correlation.

Therefore, correlations above the diagonal are mirrored below.

Both matrices show a moderate negative correlation between relative humidity

and temperature. As one variable increases, the other tends to decrease. This

correlation is -0.46 on the west side and -0.48 on the east side. It is not a unique

trend; relative humidity naturally decreases as temperature increases. There is also

a small negative correlation for the eastern approach between relative humidity and

wind speed with a value of -0.34. The correlation is not present on the western

approach.

(A) West stations (B) East stations

Figure 4.4: Correlation matrix
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4.5 Average Wind Speeds

The average wind speed for all stations is recorded in Figure 4.5. Stations are

placed on the horizontal axis and average wind speed on the vertical axis. Eastern

averages range from 1.3 to 2.0 m/s while western averages range from 1.9 to 2.5 m/s.

Earlier observations pointed to OMSI-2e and OMSI-4e experiencing reduced speeds

compared to northern stations on the eastern approach. Figure 4.5(B) confirms this

observation showing about a 20% speed reduction for these two stations. On the

west, SWF-6w uniquely experiences the highest average speed of all.
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Figure 4.5: Average wind speeds

Figure 4.6 breaks down average speed further into monthly intervals. Months

of the year are plotted in the major segments of the horizontal axis and average

wind speed on the vertical axis. Each major horizontal segment is further divided

into minor segments representing individual measuring stations. From September to

October there is a moderate drop in average monthly wind speed. But in November

and December wind speeds increase once again. Then in January and February they
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drop to speeds similar to October, and in March, return to higher levels.

Focusing again on SWF-6w, Figure 4.6(A) shows it having the highest average

speeds for each month. The western approach to the bridge is a relatively unab-

structed wind environment, making the high speeds observed at SWF-6w less likely

due to geographic and structural obstacles. It is more likely that it has manufac-

turing or calibration differences not present in the other instruments.
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Figure 4.6: Monthly average wind speeds
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4.6 Diurnal Cycle

For the diurnal cycle shown in Figure 4.7, wind speed is plotted versus time in hours

of the day. Each line represents a single measuring station: western stations shown

as solid lines, eastern stations as dash-dotted lines. A uniform trend is present for

all stations. From midnight to 6:00 wind speeds decrease slightly. Then, from 6:00

to about 10:00 wind speed begins to increase rapidly, and continue to increase until

about 14:00 when highest magnitudes are reached. From there wind speed drops

at a constant rate until 19:00, with some stations picking up a little speed on the

way to 24:00. On average wind speeds will be higher during the day than during

the night, usually increasing by about 44% over the nighttime low. Similar to the

average wind speeds, the diurnal cycles for western stations have higher wind speeds

than eastern stations.

Hours of Day
00:00 06:00 12:00 18:00

W
in

d 
Sp

ee
d 

(m
/s

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
SWF-1w
SWF-3w
SWF-5w
SWF-6w
SWF-8w
OMSI-2e
OMSI-3e
OMSI-4e
OMSI-5e
OMSI-7e
OMSI-8e

Figure 4.7: Diurnal cycle
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4.7 Turbulence Intensity

Generally for turbulence intensity, values of 0.1 or less correspond to low turbulence,

0.1 to 0.25 to moderate turbulence, and greater than 0.25 to high turbulence for a

location [20]. Based on these ranges, Figure 4.8 shows that all stations experienced

high turbulence. For both graphs, the weather stations have the highest TI values,

as large as about 0.6 on the east. Conversely the anemometers are much more

consistent with TIs between 0.35 and 0.40. This disparity highlights a potential

difference in how the two instrument models measure wind.
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Figure 4.8: Turbulence intensity
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Chapter 5

Conclusion

TriMet intends to install VAWTs on the Tilikum Crossing bridge in Portland, Ore-

gon. Prior to installation a wind resource assessment was performed on the bridge

to characterize the wind resource available for energy production. 12 measuring

devices were placed on the approaches to the bridge with six on either side. Each

approach was equipped with a weather station and five cup anemometers. Data

was recorded for seven months from September 2015 through May 2016. Anemome-

ters on the western side of the bridge experienced data recording issues resulting in

omission of 15% of total data recordings. Wind speed, wind direction, and weather

variables were analyzed in order to understand the present wind environment.

Frequency distributions showed the most frequently occuring wind speeds were

between 0 and 2 m/s, with calm conditions occuring about 3% of the time. Wind

speeds were below 4 m/s about 90% of the time and rarely increased above 6 m/s.

For measuring stations on the east side of the bridge, average wind speeds were

between 1.3 and 2.0 m/s, for the west they were between 1.9 and 2.5 m/s. Average

speeds were relatively constant from month to month with minimal decreases in

speed during October, January, and February. For the daily wind cycle however,

speeds were lowest during the nighttime hours and increased by about 44% during
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the daytime hours. Peaks were reached around 2:00 PM in the afternoon. Regarding

turbulence, all measuring stations show high average levels of turbulence intensity

meaning speeds were frequently changing. Wind direction came primarily from

the South, accounting for between 41 and 53% of all wind recordings. Western

stations also experienced a high volume of wind from the North, about 35% of wind

recordings. Weather variables like temperature, humidity, and air pressure showed

no distinct correlation with wind speed.

Focusing on the eastern measuring stations, there is an observable speed differ-

ence between stations on the northern and southern half of the approach. Southern

stations experience 20% lower wind speeds than the northern stations. The Port-

land Opera building is adjacent to the eastern approach, in very close proximity to

the southern measuring stations, and the building acts as an obstruction to wind

causing the reduced speeds.

Considering all aspects, the wind resource on the Tilikum Crossing is lacking.

Average wind speeds are low. This presents a significant obstacle when planning

for the available wind resource to power wind turbines. Even small wind turbines,

with low cut-in speeds, will seldom encounter wind speeds strong enough to generate

power.
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