Portland State University

PDXScholar

Computer Science Faculty Publications and

Presentations Computer Science

11-2021

Concolic Execution of NMap Scripts for Honeyfarm
Generation

Zhe Li
Portland State University, zZI3@pdx.edu

Bo Chen
Portland State University, chenbo@cs.pdx.edu

Wu-chang Feng
Portland State University, wuchang@pdx.edu

Fei Xie
Portland State University, xie@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

0 Part of the Computer and Systems Architecture Commons

Let us know how access to this document benefits you.

Citation Details
Li, Z., Chen, B, Feng, W. C., & Xie, F. (2021, November). Concolic Execution of NMap Scripts for Honeyfarm
Generation. In Proceedings of the 8th ACM Workshop on Moving Target Defense (pp. 33-42).

This Article is brought to you for free and open access. It has been accepted for inclusion in Computer Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/259?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F300&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/300
mailto:pdxscholar@pdx.edu

Session 3

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

Concolic Execution of NMap Scripts for Honeyfarm Generation

Zhe Li
Department of Computer Science
Portland State University
Portland, Oregon, USA
zI3@pdx.edu

Wu-chang Feng
Department of Computer Science
Portland State University
Portland, Oregon, USA
wuchang@pdx.edu

ABSTRACT

Attackers rely upon a vast array of tools for automating attacks
against vulnerable servers and services. It is often the case that
when vulnerabilities are disclosed, scripts for detecting and exploit-
ing them in tools such as Nmap and Metasploit are released soon
after, leading to the immediate identification and compromise of
vulnerable systems. Honeypots, honeynets, tarpits, and other de-
ceptive techniques can be used to slow attackers down, however,
such approaches have difficulty keeping up with the sheer num-
ber of vulnerabilities being discovered and attacking scripts that
are being released. To address this issue, this paper describes an
approach for applying concolic execution on attacking scripts in
Nmap in order to automatically generate lightweight fake versions
of the vulnerable services that can fool the scripts. By doing so
in an automated and scalable manner, the approach can enable
rapid deployment of custom honeyfarms that leverage the results
of concolic execution to trick an attacker’s script into returning a
result chosen by the honeyfarm, making the script unreliable for
the use by the attacker.

CCS CONCEPTS

« Security and privacy — Software security engineering.

KEYWORDS

Symbolic Execution, Honeyfarm Generation, Nmap, Scripting Lan-
guage

ACM Reference Format:

Zhe Li, Bo Chen, Wu-chang Feng, and Fei Xie. 2021. Concolic Execution
of NMap Scripts for Honeyfarm Generation. In Proceedings of the 8th ACM
Workshop on Moving Target Defense (MTD °21), November 15, 2021, Virtual

Event, Republic of Korea. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3474370.3485660

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8658-6/21/11...$15.00
https://doi.org/10.1145/3474370.3485660

33

Bo Chen
Department of Computer Science
Portland State University
Portland, Oregon, USA
chenbo@pdx.edu

Fei Xie
Department of Computer Science
Portland State University
Portland, Oregon, USA
xie@pdx.edu

1 INTRODUCTION

When it comes to identifying and compromising targets, automa-
tion is essential in making an adversary’s workflow more efficient
and productive. Network tools such as Nmap [22] allow attackers to
efficiently perform reconnaissance while tools such as Metasploit
and sqlmap allow attackers to streamline exploitation of vulnerable
systems that have been identified. Many offensive tools are built
using modular frameworks that support extensibility via scripts,
allowing developers to continuously update the capabilities of the
tool. Such updates are often published immediately after new vul-
nerabilities are disclosed, allowing anyone (both good and bad) to
locate and exploit vulnerable systems. For example, within a month
of the Eternal Blue release [2], updates to attack tools allowed
adversaries to leverage the flaw with devastating effects before
systems could be patched. In an even more severe case, on the day
the Apache Struts vulnerability involved in the Equifax breach was
disclosed, identification and attacking scripts were published for it,
thus allowing adversaries to instantly scan for vulnerable systems
and exploit them soon after [6].

One way to slow down automated tooling is to use fake networks
and servers to either trick automated tools into believing they are
interacting with a real vulnerable system (such as with honeypots
and honeynets) or to selectively terminate the operation of the
script by denying access (such as with web application firewalls).
Unfortunately, due to the massive code bases being used and the
volume of vulnerabilities that are being discovered, it is difficult to
keep such approaches up to date and to scale them to the number
of vulnerabilities that are being disclosed. Thus, it is important that
automated defenses keep up with this arms race and attempt to
make some of the most common tasks an adversary relies upon
more difficult and time-consuming. In particular, as reconnaissance
and targeting are critical in an attack, slowing down or degrading
this capability can provide defenders valuable breathing room in
protecting their networks.

Towards this end, this paper describes an approach for applying
concolic execution on scripts in Nmap that are used for performing
reconnaissance and scanning. The goal is to generate responses that
can allow automated defenses to trick the script into an arbitrary
state within itself. The approach is driven by the observation that
most Nmap scripts for scanning and identifying vulnerable hosts are
well structured and clean. By using concolic execution to generate

https://doi.org/10.1145/3474370.3485660
https://doi.org/10.1145/3474370.3485660
https://doi.org/10.1145/3474370.3485660

Session 3

responses that can fool such scripts into its various execution states,
one can slow down an adversary enough to allow for vulnerabilities
to be remediated. For example, returning a response that causes
a script to identify a service as vulnerable could be used to set up
potemkin honeyfarms [40], while returning an input that causes a
script to identify a service as not vulnerable could be used at the
network edge as an application firewall to stop reconnaissance.
Section 2 provides a survey on embedded scripts, and symbolic
and concolic execution, particularly CRETE [10], the concolic testing
tool which we utilize. Our approach specifically targets Lua, the
scripting language used in Nmap, a commonly used reconnaissance
tool. Section 3 describes our approach for applying concolic exe-
cution to efficiently execute Nmap scripts in order to generate sets
of responses that can reach each execution state of a script. Sec-
tion 5 discusses a preliminary evaluation of our approach. Section 6
provides an overview of related work while Section 7 concludes.

2 BACKGROUND
2.1 Embedded Scripting and Nmap

Scripts are commonly used in attack tools because they allow for
easy and rapid programming at a higher level of abstraction and
can be easily embedded within the tool to extend its functionality
without recompilation [5]. Typically, such scripts are executed by
an interpreter program that is supported by a host program through
system language API calls, often called the glue layer. Most existing
interpreters are designed to be embedded into a glue layer written
in C [17]. Examples include CPython (Python and C) [4], Ricsin
(Ruby and C) [32], and Luabind (Lua and C++) [30].

Lua, in particular, is intended to be embedded into C applications
and provides developers a mature C API to integrate with. As a
result, it has been extensively used with C in many practical ap-
plications such as Apache2 (web server), OpenResty3 (application
server), and Awesome4 (window manager for X). It is also used
within Nmap, an open-source utility for network discovery and se-
curity auditing that is prevalently used by security practitioners
and adversaries alike. Nmap comes with a scripting engine (Nmap
scripting engine or NSE) that is based on Lua, as well as a set of com-
monly used NSE scripts for supporting common reconnaissance
tasks. The scripts are continually updated so that scanning can
include the latest vulnerabilities being discovered. Figure 2 shows
an overall architecture of Nmap.

2.2 Symbolic Execution

The goal of our work is to symbolically execute NSE scripts in order
to determine sets of responses that can trick each script into enter-
ing a particular state in its execution. Such a task is traditionally
supported via symbolic execution tools [1, 36, 39] which can be
applied on target programs to automatically find bugs and vulnera-
bilities along with the inputs that will trigger them [12]. Instead of
running programs with concrete inputs, symbolic execution runs
them with symbolic ones that can be “anything” initially [18]. When
the inputs of a program are symbolic values, the program can hit
any feasible branch during execution and explore all possible execu-
tion paths. Symbolic execution explores feasible paths, guiding the
program to paths that have not been covered yet. Each path of an
execution maintains a set of constraints, called the path condition.

34

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

When a path terminates or hits a desired state, symbolic execu-
tion can generate a test case by solving the current path condition
for concrete values using a constraint solver. Figure 1 shows the
symbolic execution tree and the path conditions of a program. The
constraint in the black box on the right is a path condition and
symbolic execution will eventually cover all 3 branches in the tree.

I = <input>; :
int x = I - 2; x >0
int y = I - 4; s
if(x > 0)(true false
if(y < 8 -
v) y < 8 y >0
}else(true 7 false
if(y > 0) L
te x>0&&y>0 x>0&&y<0
else

path conditions

Figure 1: Symbolic Execution Tree

The main scalability challenge for symbolic execution is path
explosion. Since each conditional branch can potentially fork the
execution, the number of states (and thus paths) grows roughly
exponentially in the size of the program [3]. Often, even small
programs generate tens or even hundreds of thousands of path
conditions during the first few minutes of execution. Path-condition
explosion can cause a symbolic executor to fail or miss execution
paths it is supposed to cover.

prerule scripts Nmap Network Scan
(prerule function)
hosts discovery
port scanning

Script Pre-scanning

0S detection

Main script scan

--script scriptname.nse

Script Scanning J

postrule scripts

(postrule function)
formatting output
result checking

Script Post-scanning

Il

NSE script Library }

\

Lua Interpreter Standard Lua Library

Nmap (the Network Mapper)

Figure 2: Nmap Architecture

Figure 2 shows the overall architecture of Nmap, its NSE and the
library of NSE scripts that are used for network scanning. While
NSE scripts themselves are simple, they are written in Lua and
interpreted dynamically at run-time. With the complexity of inter-
preters, it is currently impractical to symbolically execute the Nmap
program, the NSE, and even the simplest of NSE scripts as a whole
without path explosion.

Session 3

2.3 Concolic Execution

Several approaches exist to ease the problems caused by path ex-
plosion, such as using heuristic path-finding to increase code cov-
erage [23], reducing execution time by parallelizing independent
paths [38], or by simply merging similar paths [19]. However in gen-
eral, one cannot completely avoid the problem, making exhaustive
exploration unrealistic for most systems code.

One fundamental idea to cope with these issues and to make
symbolic execution feasible in practice is to mix concrete execu-
tion and symbolic execution together, also referred to as concolic
execution, where the term concolic is a combination of the words
“concrete” and “symbolic”. For example, as Figure 3 shows, classic
symbolic execution will explore all 5 paths in the figure. Any feasi-

start
make_symbolic(x)
br2 br1
AN
if x <3 if x>5
brs bré br3™" brd
[

tc1/path1 tc2/path2 tc3/path3 tcd/path4 tc5/path5

Figure 3: Symbolic execution covers all paths; Concrete ex-
ecution covers path4; Concolic execution covers path4 and
path5

configuration + target
binary

Symbolic Execution
Engine

CRETE Runner CRETE Replayer
x .

selected traces | new test case!

gemu guest OS

capture traces : v
>

""""""" CRETE Manager

CRETE Tracer
Figure 4: CRETE Architecture

ble path relevant to the input value x is explored, once x is made
symbolic with make_symbolic, which will lead to path explosion
when testing complex programs. Path 4 is a concrete execution
path of a target application driven down by a concrete initial value
x. By forcing execution to take br1 concretely before running the
target application symbolically, a concolic approach would only
execute br3 and br4 symbolically while avoiding br2, br5, and
bré. Thus, concolic execution can reduce the possibility of path
explosion, making it more suitable than symbolic execution for
testing complex applications with an embedded interpreter.

35

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

2.4 Concolic Execution with CRETE

To enable concolic execution of NSE scripts, we leverage CRETE a
binary-level concolic testing framework. CRETE features an open
and highly extensible architecture allowing easy integration of
concrete execution front-ends and symbolic execution engine back-
ends [10].

As shown in Figure 4, CRETE uses a configuration file to mark
symbolic and concrete inputs in what is referred to as the CRETE
runner. As the target program is concretely executed in a modi-
fied QEMU virtual machine, the CRETE tracer, a QEMU extension,
captures concrete execution traces. These traces are in the form of
LLVM bytecode augmented to indicate the execution paths induced
by the concrete inputs [21]. If one path contains a symbolic variable
marked by the configuration file, CRETE feeds the captured trace of
the path to its symbolic execution engine (in this case KLEE [8]),
to run it symbolically via CRETE replayer. CRETE extends KLEE to
generate test cases only for feasible branches confined by concrete
traces so that KLEE will not fork unnecessary states. This results in
fewer path conditions. In addition, CRETE uses a selective binary-
level trace file other than a full trace file to further reduce path
explosion. A full trace contains basic blocks at the assembly level
which represents a concrete execution of a target application. It
is often unnecessary to trace the complete execution. Because the
trace file might be too big for the symbolic engine to consume
and there will always be paths that are irrelevant to the symbolic
values, which will lead to massive path explosions. Thus, CRETE
uses a Dynamic Taint Analysis (DTA) algorithm to implement se-
lective tracing. It only captures the execution traces relevant to
the symbolic values marked by DTA. CRETE uses tainted memo-
ries to represent the relevant memories that are initially assigned
to the symbolic values. For example, if variable “a” is marked as
symbolic, when there is an assignment operation involving “a”,
such as “b=a”, the memory slot that b possesses is also marked
as symbolic. So CRETE will capture any execution trace involving
memories slots of “a” and “b” [34]. CRETE provides a helper inter-
face function “crete_make_concolic” to allow users to mark any
symbolic variable. We will leverage this interface to implement our
approach.

3 OUR APPROACH

3.1 Overview

Our goal is to run NSE scripts using concolic execution to generate
test cases to form decoys against the attackers. Because the nature
of concolic execution is to explore every possible execution state
along a concrete execution trace, this will allow us to focus our
symbolic execution on discovering sets of network responses that
force an NSE script into transitioning into each of its execution
states. This generation is key for honeyfarms as it provides them
with responses that can be used to control the NSE scripts’ execu-
tion behavior. For example, returning an input that leads the script
into believing the host is vulnerable would allow the interaction
to continue in order to further consume an attacker’s time and
energy. Selecting a response that leads the script into believing the
host is not vulnerable or has no resource of interest would send
the attacker away. Randomly selecting from calculated inputs per
connection would allow defenders to actively confuse the attacker.

Session 3

1. Concolic Execution Stage
request

| Host
]

response

Nmap |
Symbolic input:

response.body/size

NSE script:

makeconcolic (response.body)

if not(response.body) or response.status==500 then
return true

end

if response.body:find("SERVER ERROR")
return true

end

then

Test case set

Test cases that cause
false positive

Figure 5: Concolic Execution Stage

2. Defending Stage AN
request Host
Nmap::script.nse IDS |+
I response [

Honey Farm

Test cases that cause
false positive

Figure 6: Defending Stage

Finally, returning inputs that may leverage bugs and errors would
allow defenders to potentially crash the attacking scripts and termi-
nate the scan altogether. All of these synthesized responses would
potentially allow defenders to slow down an attacker’s workflow.

In order to complete this process, the approach we take is broken
into two stages:

e Concolic Execution Stage: As shown in Figure 5, in this
stage, we perform concolic execution on NSE scripts to gen-
erate test cases for honeyfarm synthesis. For the case shown,
we can set response.body and response. size to symbolic
values for the engine to explore.

e Defending Stage: As shown in Figure 6, in this stage, we
use the various test cases generated from concolic execution
to synthesize honeyfarm responses with which we can then
have an Intrusion Detection System (IDS) to respond upon
detecting the corresponding Nmap scan.

36

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

3.2 Concolic Execution Stage

There are several challenges when considering the use of symbolic
and concolic execution on an Nmap script. Most existing symbolic
and concolic execution engines target low-level code compiled
statically. NSE scripts use Lua as the base language and are not
statically compiled, but rather interpreted by Nmap’s built-in Lua
interpreter. The Lua interpreter itself is extended by Nmap with
a library for communication, which is responsible for providing
additional information that NSE scripts need to execute. For example,
nmap . new_socket () function supplied by the library returns a new
socket wrapper object NSE scripts can use. The Nmap library also
takes care of initializing the Lua context, scheduling parallel scripts
and collecting the output produced by completed scripts.

Because NSE scripts can utilize both the extended libraries in
Nmap and the default libraries of the Lua language, they are more
complex than stand-alone Lua scripts. Compounding this complex-
ity is that statements of interpreted languages can encapsulate
complex operations that are implemented in underlying compiled
libraries written in lower-level languages. For example, the Lua
language supports 7 string operations that are implemented in a
string library of the Lua interpreter, which contains thousands of
lines of C code interpretation [20]. Symbolically executing such
code can easily cause path explosion. Consequently, symbolic ex-
ecution of such scripts may require manual intervention to avoid
this problem. Recent work has sought to automate this task, which
involves changing the interpreter and building a new symbolic
execution engine. Unfortunately, the implementation of a dedicated
symbolic execution engine adds a significant amount of work for
each language, requiring constant maintenance if the language is
updated.

Therefore, we need to apply symbolic execution to analyze arbi-
trary NSE scripts in a way that avoids the path explosion problem as
well as continually updating our execution engine when there are
update to the Lua language. To meet this goal, we adapt CRETE, our
concolic execution engine, using API calls in the glue layer of the
built-in interpreter. Specifically, we use the interface provided by
CRETE and modify glue layer in Nmap to allow users to conveniently
inject symbolic values from the scripts. Additionally, we modify
the engine to provide interfaces that allow users to defer concolic
execution of a program as needed in order to further limit the ex-
ecution paths of the script to the minimum. The reason why we
need to defer concolic execution is that we need to keep execution
complete for the whole scanning process to guarantee completeness
of the trace whiling ensuring that we only symbolically execute
the portion of the trace that is of interest. We will show the signifi-
cant reduction in execution time by deferring concolic execution
in Section 5.

Figure 7 shows an example of NSE scripts involved in a Nmap
network scan, which has pre-rule scripts, customized scripts and
post-rule scripts running in three scan phases respectively (script
pre-scan, script scan and script post-scan). In each scan phase, more
than one NSE script will be executed. In the script pre-scan phase,
pre-rule scripts are executed to collect information for customized
scripts which will be executed in the script scan phase. In most cases,
users are interested in testing customized scripts because they can
be modified, allowing the library to be extended. Testing them with

Session 3

NSE Scripts involved | Code Segment

portrule = function (host, port)

Pre-rule scripts

local auth _port = { number=113, protocol="tcp" }

local identd = nmap.get_port_state (host, auth_port

return identd ~= nil and identd.state == "open"
End

action = function(host, port

Customized scripts

local request = port.number .. "™, " .. localport ..
"\r\n"

try(client_ident:send (request))
try(client ident:receive lines (1))

"ERROR") then

owner =
if string.find(owner,
owner = nil
else
owner =
"Sd+%s*, $s*d+ss* S
end
End

string.match (owner,
S*USERID%s*:%s*.+%s*:%s* (.+)\r?\n")

Post-rule scripts postrule ()

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

Corresponding Trace within Nmap

static int portrule (lua_State *L) {

4b7aa3: 53

push $rbx
Target *target;
Port *p;
Port port; /* dummy Port */
4b7aab: 48 89 e7 mov $rsp, $rdi

const char *init; /* to search for a '*s2' inside 'sl' */

while (11 > 0 && (init = (const char *)memchr(sl, *s2, 11)) !=
NULL) {
init++; /* 1lst char is already checked */
537fe0: 4c 8d 7b 01 lea 0x1 (%rbx),%rl5
if (memcmp (init, s2+1, 12) == 0)
537fed: 48 8b 54 24 10 mov 0x10 ($rsp) , $rdx
S87iEELR e8 4a 4b ef ff callg 42cb40 <memcmp@plt>
537££6: 85 c0 test $eax, $eax
537££8: 0f 84 49 01 00 00 je 538147

<str_find_aux+0x317>
return init-1;

else { /* correct 'll' and 'sl' to try again */
11 -= init-sl;
5Y7EEEe 4d 29 fe sub %rl5, %rld

else if (12 > 11) return NULL; /* avoids a negative '11' */

static int postrule (lua_State *L) ({

535616: 48 89 fd mov $rdi, $rbp
535619: 53 push $rbx
5356la: 48 81 ec 48 20 00 00 sub $0x2048, $rsp

}

Figure 7: Explanation of Our Approach

concolic execution requires capturing the execution traces for all
the NSE scripts that have been executed. The last column in Figure 7
gives an example of one such trace that shows the obstacles facing
concolic execution, which is one to many code mapping from script-
ing language to low level code. The figure shows assembly code
snippets for each phase of the scan. As concolic execution works
with low-level code representation, path explosion can happen in
the script pre-scan phase before the concolic engine can even reach
the script scan phase for customized scripts. This situation wors-
ens when the interpreted pre-scan script involves loops or nested
pattern matching operations, which is quite common in NSE scripts
for string manipulation. Therefore, being able to test the scripts
users are actually interested in requires methods to defer symbolic
execution to specific segments in order to prevent path explosion.
As a result, our approach leverages the adapted interface of CRETE
to allow user to customize concolic execution as needed.

In doing so, we make the observation that on such application,
an embedded script conceptually executes both on the high level
(e.g. at the script language) and the low level (e.g. at the host lan-
guage). In most cases, applications use C and its interfaces for the
host language. Figure 8 illustrates a typical structure for embed-
ding scripts as of NmapThe base layer includes the host program
of the application in C. The top layer consists of embedded scripts
prepared by the user. By providing various scripts, the user can
customize the application as wishes without recompiling the entire
program. The glue layer, which is also written in C, contains the
built-in interpreter and glues the gap between C and the scripting
language.

37

We make use of the glue layer to achieve our goal of concoli-
cally executing NSE scripts. To gain control of concolic execution,
we introduce three important interfaces for symbolic execution:
start_analysis(),mark_symbolic(),andend_analysis().These
interfaces will allow us to customize concolic execution in scripts.
Modifying the glue layer to include these interfaces allows users
to start symbolic execution with a function call. At the same time,
starting symbolic execution from the script layer generates a mas-
sive execution trace which leads to path explosion. Hence, we have
start_analysis() and end_analysis() to allow us to delay the
symbolic execution till later in the execution where we want it
and stop it as wish. Therefore, when the target scripts invoke ad-
ditional scripts of no interest to the analysis, we can easily avoid
running unwanted scripts symbolically and only execute the target
scripts symbolically by properly calling the above functions. This
method has a potential to be applied on other application with the
similar structure. In our case (Nmap), embedded scripts and built-in
interpreter refer to NSE scripts and Lua interpreter respectively.
With these interfaces we can go through the entire execution for
pre-rule scripts, customized scripts, and post-rule scripts but only
symbolically execute the traces of customized scripts, thus reducing
possible symbolic paths significantly.

3.3 Defending Stage

With the method explained above, we can apply concolic execution
to any NSE script to get responses that can be leveraged by hon-
eyfarm to control the execution state of the attacking scripts. To
achieve our objectives, a range of selection rules targeting different
application scenarios can be implemented. Two rules, in particular,
include:

Session 3

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

Embedded

Script Layer Script (.nse)

Embedded
Script (.nse)

Embedded
Script (.nse)

Glue Layer

E start sym exe ()
E make symbolic ()
0 end_sym_exe ()

i C code with C API

Base Layer

ny

C code (Host Program: Nmap)

Figure 8: Structure for Applications with Embedded Scripts and Symbolic Execution Interface

e Early Termination Rule. With this rule, responses selected
will be the ones which will cause the attacking script to stop
as soon as possible. We use script coverage as an indicator.
We will consider test cases that achieve lower coverage on a
script with higher priorities for the synthesis of a honeyfarm.

o False Positive Rule. The test cases selected for honeyfarm
generation will be the ones which will cause the attacking
script to believe that it has find a host with certain vulnerabil-
ities. We will consider test cases that reach certain end-points
in a script. These end-points can be annotated manually or
identified through templates.

Upon selecting a response, the next step of the defending stage
is handling the attacking connection and delivering the response
back to the script. Intrusion detection systems (IDS) combined with
templating systems provide a natural mechanism for doing so. For
example, consider an NSE script seeking to find a vulnerable HTML
form submission. An IDS running on a honeyfarm system can
provide us hooks into the request being made by the script, while
an HTML-templating engine such as Mustache [41], can allow us
to use templates that we fill in with the test cases from concolic
execution in order to complete the defending stage response.

4 IMPLEMENTATION

4.1 Concolic Script Execution

To support concolic execution of NSE scripts our implementation
focuses on the glue layer of Nmap. We use CRETE as the concolic
execution back-end engine and modify the glue layer of Nmap to
allow users to customize concolic execution for the target applica-
tion. This includes allowing users to start concolic execution, to
introduce symbolic values and to stop concolic execution as needed.

By default, CRETE performs concolic execution on the entire
execution trace of a program captured by the CRETE front-end in
QEMU. Because we wish to finely control the parts that are symbol-
ically executed, we modify CRETE to decouple concolic execution
with a set of interface functions, namely sendpid(), mconcolic()
and exit(). These functions pass control of concolic execution
from CRETE to NSE scripts. For clarity, the naming convention we
used in our implementation of the glue layer for NSE scripts is to
keep consistent with the CRETE back-end engine: sendpid() is the
interface function to start concolic execution if a symbolic variable
is present (in corresponding to start_analysis()). mconcolic()

38

is the interface function to mark symbolic variable (in correspond-
ing to mark_symbolic()). exit() is to stop concolic execution (in
corresponding to end_analysis()). As a result, we can defer the
concolic execution in Nmap until after the script pre-scan phase and
end it before the post-scan phase. We use this control library to
minimize symbolic execution on execution traces to address the
path explosion problem when concolically executing an interpreted
script as shown in Figure 9. The control library allows us to decide
which segment of the intermediate code we want CRETE to execute
symbolically.

4.2 Lua Interpreter Instrumentation

The embedded Lua Interpreter in Nmap interprets NSE scripts utiliz-
ing the string interning optimization. We disabled string interning
so that CRETE can use taint analysis to make sure all the relative
traces to the symbolic values are captured. Disabling string intern-
ing is relatively simple and can be done through a Lua configuration
macro [20]. We also handled the Lua’s two internal representations
for numbers: float and integer. Specifically, we ignored numbers
whose internal representation are float, as the underlying symbolic
execution engine CRETEuses, namely KLEE, does not support float-
ing point numbers. In addition, we modified Lua math library for
all functions to support making internal integer representations
symbolic. As an example, Listing 1 shows how we call the interface
functions from a NSE script that allows for us to customize concolic
execution. The script performs a form submission on a potential
vulnerable site and obtains a response. It returns true if a null
response body is received or if an error is returned. In this example,
we choose to inject symbolic values and start symbolic analysis
right when the relevant parts of the script are being executed to
minimize path explosion.

4.3 Snort response

Once we have performed concolic execution on the script, we then
use Snort [31], a network-based IDS to deliver the response. Snort
can be configured to detect malicious behaviors over the network
with a set of rules in snort. conf. We leverage one such set of rules
that is maintained, validated, and updated by Proofpoint [29] to
allow Snort to detect Nmap scans. Listing 2 shows the rule used to
detect Nmap web application attacks in the evaluation. As part of the
Snort rule, we configure the rule’s react option to deliver specific
responses that are synthesized using the generated test cases from
our concolic execution when the Nmap scan is detected. For the Web

Session 3

Script Layer

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

Execution Trace

Symbolic Execution

Glue Layer

m‘<‘__‘ Pre-rule J
codel scripts |

| Mark sym value %

Y

| Start Symbolic Execution |4 /

Control library

A

(| customized

| End Symbolic Execution |"

C code with C API

scripts

T

[Intermediate

Base Layer
Figure 9: Control Library for Concolic Execution

1 local function check_response(response)

2 --crete start

3 crete.sendpid()

4 crete.mconcolic(response.body, 12)

5

6 if not(response.body) or response.status==500 then
7 return true

8 end

9 if response.body:find("SERVER ERROR") then
10 return true

11 end

12

13 --exit program

14 crete.mexit(Q)

15

16 return false

17 end

Listing 1: http-form-fuzzer.nse instrumented with CRETE.

Application Scan from Listing 1, an example of the synthesized
response is shown in Listing 3. The string "SERVER ERROR" in line
3 has been generated by CRETE. Note that for this case, while the
string appears in the page’s title, one can place the string anywhere
in the response. body to trick this particular script. The generation
of the response HTML can be done using any automated templating
system such as Mustache [41] that allows us to replace parts of the
content with the test case generated from concolic execution.

Listing 2: Snort detecting rule for Nmap web application scan

alert tcp any any -> any any (msg:"ET SCAN Nmap Scripting
Engine User-Agent Detected (Nmap Scripting Engine)";
flow: to_server,established;

content: "User-Agent|3a| Mozilla/5.0 (compatible|3b| Nmap
Scripting Engine";

react; fast_pattern:38,20; http_header;

nocase; reference:url,doc.emergingthreats.net/2009358;
classtype:web-application-attack; sid:2009358; rev:5;)

1 <!doctype html>

2 <html lang="en">

3 <head><title>SERVER ERROR</title></head>

4 <body>

5 <div style="color:red">

6 </div>

7 <form name="LoginForm" method="post"

8 action="/loginclass/Login.do; jsessionid=
D34B538055462B75E1CD6DFD18B9650E">

9 User Name:<input type="text" name="userName" value="">

10 Password:<input type="password" name="password" value="">

11 <input type="submit" value="Login">

12 </form>

39

code 3

<—)| Post-rule
- scripts_r_i_ﬁ_ =

13 </body>
14 </html>

Listing 3: An Example of Synthesized Response in Snort

5 PRELIMINARY EVALUATION

In this section, we first introduce the NSE scripts we target and the
experimental setup for our approach including the CRETE settings
which are used in the concolic execution stage. Then, we will sum-
marize our preliminary results, which shows the type of test cases
from running NSE scripts with our approach with a set of examples.
Finally, we analyze why we are able to achieve these results.

5.1 Experimental Setup for NSE Scripts

Because a large majority of network protocols such as HTTP are
string-based, string manipulation operations are some of the most
frequently used in NSE scripts. As a result, our experiments mainly
focus on string variables when injecting symbolic values into NSE
scripts. We follow the simple heuristics below to select which vari-
ables are made symbolic:

e For host scan scripts, variables that are involved in if-else
branches in scripts are set as symbolic values. Among string
operations, substring finds and string pattern matching com-
monly appear in branch statements since such functions
return values that are of boolean type.

o For web scripts, response.body and response.size are set
as symbolic since they are commonly involved in branches
as information they return is often of interest to NSE scripts.

To showcase our approach, we use http-form-fuzzer.nse as
an example, which involves the string. find function. With the
above heuristics, we set response.body and response.size as
symbolic variables for the case where response is an HTML page.

5.2 Control Interface Evaluation

5.2.1 Naive Case. Our early attempt of applying concolic execution
on NSE scripts is to run the NSE script concolically using CRETE
without deferring concolic execution until when it is needed. The
experiment setup for this case is that we simply use the interface of
crete.mconcolic() to mark symbolic variables then run the NSE
script directly. As expected, doing so causes the pre-scan stage to

Session 3

be involved in the concolic execution process, leading to excessive
execution time. Across four executions of the script done in this
manner, execution time averages 4519 seconds to explore each new
feasible path in the script.

5.2.2 Customized Concolic Execution Case. The advantage of our
approach is the support for a control interface that allows the NSE
script to defer concolic execution. For example, the segment of
code in Listing 1 is from http-form-fuzzer.nse. It is frequently
used to fuzz the fields of web page that contain <form> tags to
try to find a certain request that will cause an ERROR in the web
page [26]. Listing 1 shows an example of how we use the con-
trol interface to efficiently enable concolic execution when needed.
In the listing, we wish to test line 6 to line 11, which contains
two “if” statements and the symbolic value we wish to evalu-
ate, response. body, whose type is a string. We then call function
crete. sendpid to start symbolic analysis before we mark symbolic
value with crete.mconcolic function. In this way, we have CRETE
defer symbolic execution of the code until after we inject the sym-
bolic value, thus avoiding the symbolic execution of pre-run scripts.
Finally, we terminate symbolic execution using crete.mexit so
that the symbolic execution only targets line 6 to 11 and avoids
running post-run scripts symbolically.

When testing http-form-fuzzer.nse, with otherwise the same
experimental setup as the naive case, execution time is reduced from
4519 seconds on average to around 179 seconds per new feasible
path in the script. This indicates the effectiveness of customized
concolic execution. For the rest of our experiments, we apply this
method for deferring concolic execution when testing NSE scripts.

5.3 NSE Script Evaluation

5.3.1 Test case generation for honeyfarms. Our goal is to concol-
ically execute a variety of NSE scripts in order to produce inputs
that can be used to drive them to particular states. To demon-
strate this, we initially select a collection of NSE scripts for HTTP
shown in Table 1. For the script we have been using as an example,
http-form-fuzzer.nse, concolic execution yields the test case
with the content of “SERVER ERROR” that leads execution to go
into the if branch in Listing 1, demonstrating that our approach
can produce results at the script level despite the massive amount
of interpreted code being executed. We use this test case in a Snort
react defense rule and succeed in fooling Nmap into thinking it
identified a vulnerability, accomplishing the False Positive goal for
the honeyfarm.

A more interesting case is the http-form-brute.nse script,
in which a string.match call tries to validate whether a certain
value exists in a user information form returned by a scan. Fur-
thermore, the script checks that the value v parsed from the form via
string.ma
-tch(form[k], v) has a pattern %d%d’. To match this, concolic
execution generates the test case with two digits in random com-
binations. Our concolic execution approach also uncovers invalid
patterns that lead execution into an error state. For example, the
value of 'username/ (’ crashes the script since magic characters
such as ’(’ need to be escaped in Lua in order to be taken literally
or they must appear in pairs such as ’()’. Such a crashing pattern
can be used to trigger the Early Termination rule for the honeyfarm.

40

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

Listing 4: A code segment of http-title.nse

if display_title and display_title ~= "" then
display_title
= string.gsub(display_title ,
if #display_title > 65 then
display_title
= string.sub(display_title, 1, 62) .. "
end
else ...

"TAMAR\E]", ")

N U R W

NSE scripts Test Cases/Bugs | Defending Rules
http-form-fuzzer | SERVER ERROR False positive

http-form-brute | Invalid patterns Early termination
http-auth Embedded zero Early termination
http-grep Type inconsistency | Early termination

Table 1: Examples of interesting test cases and bugs discov-
ered

For http-auth.nse, we have test cases that have ’\@’ in the
middle of the name variable, e.g., 'name = do\@in’. This causes
an error since '\@’ is not considered as a terminator for a string
in NSE with the Lua interpreter instead treating the character as
an embedded zero instead. Therefore, in NSE the length of variable
name is 6 but in C it is 2. This leads to an inconsistency in length
which forces execution into the Lua error state, triggering another
Early Termination situation.

Finally, our concolic approach exposes another similar bug in
http-grep.nse by generating input that triggers a type inconsis-
tency bug in the script shown in Listing 6. Detailed explanation is
given later in the Anlysis section. Our patch for this crashing bug
has been accepted by the Nmap team !.

We use the generated test cases discussed above to form honey-
farm responses that fool the scripts. These test cases are expected
to trick the scripts or stop them from running. We synthesized
these test cases with templates and deliver them back to Nmap using
Snort configured with appropriate react rules. The test cases suc-
cessfully cause Nmap to reach the desired states, accomplishing the
goals from Section 3: namely Early Termination and False Positive

as summarized in Table 1.
5.3.2 Analysis. We use a few scripts as an example to show how we

generate such test cases. When testing http-form-fuzzer.nse, we
have the desired test case with the content of “SERVER ERROR” that
leads the execution to go into the if branch. We get to this particular
test case at the 80th iteration, and we obtain the test cases that cover
both if and else branches. We disassemble the relevant part of the
Nmap binary and show it in Listing 5. For this case, our approach
only captures the basic block that has the branch (“537ff6”) in
shown in line 12, which matches the branch of string.find in
the NSE script in Listing 1. Only this part of the execution trace is
executed symbolically instead of the entire trace, thus allowing us
to generate the desired test cases efficiently.

For testing of the http-grep.nse script shown in Listing 6, our
approach enabled us to discover a bug in a local function within the
script that implements Luhn, an algorithm that is used to validate
a variety of identification numbers, such as credit card numbers.

Uhttps://github.com/nmap/nmap/issues/1931

Session 3

To understand how the bug works, we first describe the Luhn algo-
rithm [15] in the following 4 steps:

(1) Starting from the rightmost digit, double the value of every
second digit.

(2) If doubling of a number results in a two digit number, then
add the digits of the product to get a single digit number.

(3) Take the sum of all the digits.

(4) If the total modulo 10 is equal to 0 (if the total ends in zero)
then the number is valid according to the Luhn formula;
otherwise it is not valid.

The two loops (in lines 5-7 and in lines 9-15) show the implemen-
tation of steps 2 and 3 in the NSE script and contain a bug. The
bug is triggered by a test case which causes the value of variable
double inside of string.gsub to be 14. When this happens, the
returning value of the string.gsub call in line 12 becomes 5.0.0,
which cannot be coerced to a string by the code in line 13. Thus, our
concolic approach allows us to easily reveal crashing bugs in NSE
scripts that could be used to trigger the termination of the scan. In
this case, however, the bug was reported and the Nmap developers
changed its implementation to fix the issue.

Listing 7 shows the captured execution trace that corresponds to
the loop of the reverse function in C code that triggers the issue. This
trace guides concolic execution to mutate input string backwards
(from the last position instead from the first position). In addition,
it has the information about the two for loops, which increment
i by 2 every iteration. This means only mutating the bytes in odd
positions of the input string after being reversed can trigger the bug
in line 12 due to the step of 2 in each iteration. With this knowledge,
our approach can make changes on the proper position of the string,
which is every other character in the string after being reversed.
And the effective change is to flip the bits of the character to an
ASCII code that can be converted to a number so it can pass line
11 to get to line 12 where the bug resides. The bug is triggered if
the number (doubled) in an odd position is greater than 9. Our
approach was able to make the right mutation after a few iterations
to trigger the bug in line 12.

1 const char xinit; /* to search for a 'xs2' inside 's1' */

2 12--; /x 1st char will be checked by 'memchr' x*/

3 11 = 11-12; /x 's2' cannot be found after that */

4 while (11 > @ (init = (const char *)memchr(sl, *s2, 11))
1= NULL) {

5 init++; /* 1st char is already checked */

6 537fe0: 4c 8d 7b 01 lea 0x1(%rbx),%r15
if (memcmp(init, s2+1, 12) == @)

s 537fed: 48 8b 54 24 10 mov @x10(%rsp),%rdx

9 537fe9: 48 8b 74 24 18 mov Ox18(%rsp),%rsi

10 537fee: 4c 89 ff mov %r15,%rdi

11 537ff1: e8 4a 4b ef ff callg 42cb40 <
memcmp@plt>

12 537ff6: 85 c0 test %eax,%eax

13 537ff8: of 84 49 01 00 00 je 538147 <

str_find_aux+0x317>
4 return init-1;
15 else { /* correct '11'
¢

and 's1' to try again */
11 -= init-s1;
537ffe: 4d 29 fe

1 sub %r15,%r14
18 else if (12 > 11) return NULL;

/* avoids a negative '11' */

Listing 5: Captured trace from http-form-fuzzer.nse script

1 function luhn (matched_ccno)
2 crete.mconcolic(matched_ccno, matched_ccno.len)
3 local n = string.reverse(matched_ccno)

41

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

4 local s1 =0

5 for i=1, n:len(), 2 do

6 s1 = s1 + tonumber(n:sub(i,i))

7 end

8 local s2 = 0

9 for i=2, n:len(), 2 do

10 --conversion from string to double
11 local doubled = n:sub(i,i)*2

12 doubled = string.gsub(doubled, ' (%d) (%d)"',
13 function(a,b)return a+b end)

14 s2 = s2+doubled

15 end

16 end

Listing 6: A code segment of http-grep.nse script with
string.reverse function: a type inconsistency bug is triggered
in line 13 when trying to sum doubled with s2. This function
(luhn) is used to validate credit card numbers

1 static int str_reverse (lua_State *L) {

2 535616: 48 89 fd mov %rdi, %rbp
3 535619: 53 push %rbx
4 53561a: 48 81 ec 48 20 00 00 sub $0x2048,%rsp

5 size_t 1, i;
lualL_Buffer b;
const char *s = lualL_checklstring(L, 1, 1);
8 535621: 48 8d 54 24 08 lea
9 else lua_pushliteral(L, "");
10 return 1;

11}

%rsp, %rdx

Listing 7: The captured trace when testing http-grep.nse
script. This trace segment contributes to finding the type
inconsistency bug

6 RELATED WORK

Most existing symbolic and concolic execution engines target low-
level code representations. For example, symbolic execution engines
such as KLEE [8], BitBlaze [37] and S2E [11] as well as concolic
execution engines such as DART [13], CUTE [35] and SAGE [14]
work with either machine code or LLVM intermediate represen-
tation code [21] that has been statically compiled. The NSEscripts
that we are dealing with, are however, interpreted, not statically
compiled. There has also been efforts in building symbolic engines
targeting script languages. However, such implementation requires
significant amount of work for every single language and constant
maintenance if the target language is updated. NICE [9] for Python
and Kudzu [33] for Javascript are early efforts to directly implement
symbolic execution engines for dynamically interpreted scripts in
high-level languages. Existing symbolic execution engines that can
support Lua only target standalone interpreters such as CHEF [7]
while NSE scripts are interpreted by an interpreter embedded in
Nmap.

There are two ways for deploying honeyfarms: low-interaction
honeyfarm and high-interaction honeyfarm. Low-interaction hon-
eyfarm can monitor activities over millions of IP addresses at a
time, such as KFSensor Honeypot [25] and Conpot [24]. This kind
of scalability is achieved by emulating the network interface ex-
posed by common services and requires low maintenance. However,
such systems do not execute any code from applications; therefore,
they may not be able to block attacks that have multiple phases of
communication [40]. On the other hand, high-interaction honey-
farms run native application code, and therefore, is able to catch
code behavior in its full complexity [28]. As a consequence, the

Session 3

implementation cost is quite high. Systems of high interaction hon-
eyfarms include Honeynets [28], Sebek [16], Argos [27], etc. Our
method is a light way of achieving the purpose of high-interaction
honeyfarms.

7 CONCLUSIONS

This paper presented an approach to test NSE scripts via concolic
execution and to use the result to generate honeyfarms that can
slow down attackers. Preliminary results have shown its efficiency
in generating test cases that can stop Nmap scans or return false
positive responses. Our approach is effective with complicated pro-
grams such as Nmap which runs embedded scripts where traditional
concolic execution does not work at all. Our approach does so by
avoiding path explosion by supporting customized concolic exe-
cution at specific locations in order to generate useful test cases
efficiently. The implementation for our approach makes use of the
glue layer that most embedded scripting languages provide to inte-
grate the concolic execution engine and the interface functions for
customizing concolic execution. In this way, the approach does not
need to modify the built-in interpreter each time the language is
updated. In the future, we aim to test more libraries in NSE since
the effective concolic execution of more NSE scripts is the key to
building diverse honeyfarms.

8 ACKNOWLEDGEMENT

This research received financial support in part from National Sci-
ence Foundation (Grant #: 1908571).

REFERENCES

[1] Angr Developers. 2016. Angr, a Binary Analysis Framework. http://angr.io/.
[2] Ars Technica. 2017. NSA-leaking Shadow Brokers Just Dumped Its Most Damag-
ing Release Yet. https://arstechnica.com/information-technology/2017/04/nsa-
leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/.
Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657
Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Sel-
jebotn, and Kurt Smith. 2011. Cython: The Best of Both Worlds. Computing in
Science Engineering 13, 2 (2011), 31-39. https://doi.org/10.1109/MCSE.2010.118
Tegawendé F. Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Lau-
rent Réveillere. 2013. Popularity, Interoperability, and Impact of Programming
Languages in 100,000 Open Source Projects. In 2013 IEEE 37th Annual Com-
puter Software and Applications Conference. 303-312. https://doi.org/10.1109/
COMPSAC.2013.55

Bloomberg Technology. 2017. Equifax Suffered a Hack Almost Five Months Earlier
Than the Date It Disclosed. https://www.bloomberg.com/news/articles/2017-09-
18/equifax-is-said-to-suffer-a-hack- earlier-than-the-date-disclosed.

Stefan Bucur, Johannes Kinder, and George Candea. 2014. Prototyping sym-
bolic execution engines for interpreted languages. In Proceedings of the 19th
international conference on Architectural support for programming languages and
operating systems. 239-254.

Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted
and automatic generation of high-coverage tests for complex systems programs..
In OSDI, Vol. 8. 209-224.

Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kosti¢, and Jennifer Rexford.
2012. A NICE Way to Test OpenFlow Applications. In 9th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 12). USENIX Association,
San Jose, CA, 127-140. https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/canini

Bo Chen, Christopher Havlicek, Zhenkun Yang, Kai Cong, Raghudeep Kannavara,
and Fei Xie. 2018. CRETE: A Versatile Binary-Level Concolic Testing Framework.
In Fundamental Approaches to Software Engineering, Alessandra Russo and Andy
Schiirr (Eds.). Springer International Publishing, Cham, 281-298.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A
platform for in-vivo multi-path analysis of software systems. Acm Sigplan Notices
46,3 (2011), 265-278.

(3

=

[10

(11

42

[12

[13

[14

[15

[16

=
]

S
)

'S
=

®
3

™
=)

[35

[36

(37]

[38

[39

[40

[41]

MTD ’21, November 15, 2021, Virtual Event, Republic of Korea

DARPALtv. 2017. DARPA’s Cyber Grand Challenge: Final Event Program. https:
//www.youtube.com/watch?v=n0kn4mDXY6I.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation. 213-223.

Patrice Godefroid, Michael Y Levin, and David Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Commun. ACM 55, 3 (2012), 40-44.

Hans Peter Luhn. 2021. Luhn algorithm. https://en.wikipedia.org/wiki/Luhn_
algorithm.

Pei-Sheng Huang, Chung-Huang Yang, and Tae-Nam Ahn. 2009. Design and
implementation of a distributed early warning system combined with intrusion
detection system and honeypot. In Proceedings of the 2009 International Conference
on Hybrid Information Technology. 232-238.

Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Waldemar Celes. 2011.
Passing a Language through the Eye of a Needle. Commun. ACM 54, 7 (July 2011),
38-43. https://doi.org/10.1145/1965724.1965739

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (July 1976), 385-394. https://doi.org/10.1145/360248.360252

Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. 2012.
Efficient State Merging in Symbolic Execution. SIGPLAN Not. 47, 6 (June 2012),
193-204. https://doi.org/10.1145/2345156.2254088

LabLua. 2021. Lua Reference Manuals. https://www.lua.org/manual/.

C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong
program analysis transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75-86. https://doi.org/10.1109/CGO.2004.
1281665

Gordon Lyon. 2021. Nmap: the Network Mapper. https://nmap.org/.
Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. 2011. Di-
rected Symbolic Execution. In Static Analysis, Eran Yahav (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 95-111.

Microsoft. 2021. CONPOT ICS/SCADA Honeypot. http://conpot.org/.
Microsoft. 2021. KFsensor: Advanced Windows Honeypot System. http://www.
keyfocus.net/kfsensor/.

Piotr Olma and Gioacchino Mazzurco. 2021. NSE Script description. https:
//mmap.org/nsedoc/scripts/http-form-fuzzer.html.

Georgios Portokalidis, Asia Slowinska, and Herbert Bos. 2006. Argos: an emulator
for fingerprinting zero-day attacks for advertised honeypots with automatic
signature generation. ACM SIGOPS Operating Systems Review 40, 4 (2006), 15-27.
Honeynet Project. 2001. Know Your Enemy: Revealing the Security Tools, Tactics,
and Motives of the Blackhat Community. Addison-Wesley Professional.
Proofpoint. 2021. Proofpoint Emerging Threats Rules. https://rules.
emergingthreats.net/.

Rasterbar Software. 2005. Luabind. http://www.rasterbar.com/products/luabind.
html.

Martin Roesch et al. 1999. Snort: Lightweight intrusion detection for networks..
In LISA. 229-238.

K Sasada. 2009. Ricsin: A System for *Mix-in to Ruby’. IPSF Transactions on
Programming 2, 2 (March 2009), 13-26.

Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant,
and Dawn Song. 2010. A Symbolic Execution Framework for JavaScript. In 2010
IEEE Symposium on Security and Privacy. 513-528.

Edward]J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In 2010 IEEE Symposium on
Security and Privacy. 317-331. https://doi.org/10.1109/SP.2010.26

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing
engine for C. ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 263-272.
Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SOK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In 2016 IEEE Symposium on Security and Privacy (SP). 138-157.
https://doi.org/10.1109/SP.2016.17

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A new approach to computer security via binary analysis. In
International Conference on Information Systems Security. Springer, 1-25.

Matt Staats and Corina Pundefinedsundefinedreanu. 2010. Parallel Symbolic
Execution for Structural Test Generation. In Proceedings of the 19th Interna-
tional Symposium on Software Testing and Analysis (Trento, Italy) (ISSTA ’10).
Association for Computing Machinery, New York, NY, USA, 183-194. https:
//doi.org/10.1145/1831708.1831732

Trail of Bits. 2017. Manticore: Dynamic Binary Analysis Tool. http://github.com/
trailofbits/manticore.

M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren, G. Voelker, and
S. Savage. 2005. Scalability, Fidelity, and Containment in the Potemkin Virtual
Honeyfarm. In ACM SOSP. 148-162.

Chris Wanstrath. 2009. Mustache Processor. https://mustache.github.io/.

http://angr.io/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://doi.org/10.1145/3182657
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/COMPSAC.2013.55
https://doi.org/10.1109/COMPSAC.2013.55
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.bloomberg.com/news/articles/2017-09-18/equifax-is-said-to-suffer-a-hack-earlier-than-the-date-disclosed
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/canini
https://www.youtube.com/watch?v=n0kn4mDXY6I
https://www.youtube.com/watch?v=n0kn4mDXY6I
https://en.wikipedia.org/wiki/Luhn_algorithm
https://en.wikipedia.org/wiki/Luhn_algorithm
https://doi.org/10.1145/1965724.1965739
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2345156.2254088
https://www.lua.org/manual/
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://nmap.org/
http://conpot.org/
http://www.keyfocus.net/kfsensor/
http://www.keyfocus.net/kfsensor/
https://nmap.org/nsedoc/scripts/http-form-fuzzer.html
https://nmap.org/nsedoc/scripts/http-form-fuzzer.html
https://rules.emergingthreats.net/
https://rules.emergingthreats.net/
http://www.rasterbar.com/products/luabind.html
http://www.rasterbar.com/products/luabind.html
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/1831708.1831732
https://doi.org/10.1145/1831708.1831732
http://github.com/trailofbits/manticore
http://github.com/trailofbits/manticore
https://mustache.github.io/

	Concolic Execution of NMap Scripts for Honeyfarm Generation
	Let us know how access to this document benefits you.
	Citation Details

	Abstract
	1 Introduction
	2 Background
	2.1 Embedded Scripting and Nmap
	2.2 Symbolic Execution
	2.3 Concolic Execution
	2.4 Concolic Execution with CRETE

	3 Our Approach
	3.1 Overview
	3.2 Concolic Execution Stage
	3.3 Defending Stage

	4 Implementation
	4.1 Concolic Script Execution
	4.2 Lua Interpreter Instrumentation
	4.3 Snort response

	5 Preliminary Evaluation
	5.1 Experimental Setup for NSE Scripts
	5.2 Control Interface Evaluation
	5.3 NSE Script Evaluation

	6 Related Work
	7 Conclusions
	8 Acknowledgement
	References

