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a b s t r a c t

We perform a followup computational study of the recently proposed space–time first
order system least squares ( FOSLS ) method subject to constraints referred to as CFOSLS
where we now combine it with the new capability we have developed, namely, parallel
adaptive mesh refinement (AMR) in 4D. The AMR is needed to alleviate the high memory
demand in the combined space time domain and also allows general (4D) meshes
that better follow the physics in space–time. With an extensive set of computational
experiments, performed in parallel, we demonstrate the feasibility of the combined
space–time AMR approach in both two space plus time and three space plus time
dimensions.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

This study is a continuation of previous work, [1–3] for discretizations and solvers of time-dependent problems
discretized in combined space–time domain. We pursue a constrained first order systems least-squares approach, referred
to as CFOSLS [4], which in addition to the more classical FOSLS [5–7], imposes certain equations (such as divergence) as
constraints for better conservation properties of the discretized problem.

There has been a substantial interest for combined space–time approaches, especially in the solvers community
motivated by the parallel-in-time approach for solving time-dependent PDEs, which is viewed as a feasible approach
for better utilization of the computational power of the next generation (exascale) parallel computers.

We build upon the developed general classes of 4D finite element spaces (in fact for the whole 4D de Rham sequence)
available in the highly scalable finite element software library MFEM [8]. The results in the present paper are natural
followup extension of the results from [3] where now we utilize our newly developed capability of AMR (adaptive mesh
refinement) for the same general classes of 4D finite element spaces. The AMR allows the use of general meshes in 4D
without having the notion of time-stepping, thus having high resolution only in directions of high variation of the physical
quantities modeled by the time dependent PDEs of interest. In this study, we consider parabolic and hyperbolic (transport)
PDEs. In the CFOSLS formulation we also exploit the use of weaker, negative Sobolev norms to impose less smoothness
requirements on the solution.

Overall, our results indicate that the combined space–time AMR CFOSLS approach is feasible; it does capture the physics
for problems with anisotropy and generates meshes with no time-stepping behavior, which in principle is an indication
for alleviating the global CFL-condition (in the case of transport equation).
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The CFOSLS approach though, as noted in [3], poses the challenge to the solvers since the FOSLS functionals are not
uniformly elliptic and standard multigrid (with geometric coarse spaces) is not algorithmically scalable although our tests
do show reasonable performance (in timings). This challenge needs to be addressed further, with possibly exploiting ideas
from adaptive AMG that can detect problem anisotropies (cf., e.g., [9] and [10])

The remainder of the paper consists of the following sections. In Section 2 we briefly describe the model problems we
consider in this paper. In Section 3, we define the space–time CFOSLS problem and derive a variational formulation. In
Section 4, we discretize the variational problems, and introduce the negative norm CFOSLS formulation. In Section 5, we
present solvers for the linear systems arising from the finite element discretization. Section 6 contains three numerical
experiments we conducted, two examples for the parabolic model problem and one for the transport problem. Finally, in
Section 7, we draw some conclusions and provide an outlook on future work.

2. Model time dependent PDEs used in our study

Throughout this paper, we consider the following model evolution problem: Find u such that

∂tu + divx(Lx(u)) = f , in Q = Ω × (0, T )
u = u0 on Σ0, tr(u) = g on Σ,

(1)

where Σ0 = Ω × {0}, Σ = ∂Ω × (0, T ), Lx(·) is a spatial differential operator, and tr(·) represents a trace operator
corresponding to the boundary condition(s). We rewrite this problem using the space–time divergence divx,t into

divx,t (L(u)) = f , in Q
+ B.C.,

(2)

with the space–time differential operator L(u) = [Lx(u) u]⊤ and a (possibly combined) space–time boundary condition
(B.C.). We will consider two applications of the model problem (1), the parabolic heat equation

∂tu − divx(∇xu) = f , in Q ,

u = u0 on Σ0, u = g on Σ,
(3)

i.e., Lx(u) = −∇xu, and the hyperbolic transport equation

∂tu + divx(βu) = f , in Q ,

u = u0 on Σ0, βu · n⃗x = g on Σin,
(4)

i.e., Lx(u) = β u, and where Σin = {x ∈ ∂Ω : β(x) · n⃗x(x) < 0} × (0, T ).

3. Space–time CFOSLS

In this section, we will describe the space–time least squares formulations, following the work of Voronin et al. [3].
In the following, we will make use of the function spaces: the space of square integrable functions L2(Q ), H1(Q ) = {u ∈

L2(Q ) : ∇x,tu ∈ [L2(Q )]d+1
}, H(div,Q ) = {σ ∈ L2(Q ) : divx,t (σ) ∈ L2(Q )}. Moreover, we need the following spaces with

boundary conditions

R = {τ ∈ H(div,Q ) : trσ (τ) = 0 on Σσ
ess},

V = {v ∈ H1(Q ) : tru(v) = 0 on Σu
ess},

where

Σσ
ess = ∅ and Σu

ess = Σ0 ∪ Σ

for the heat equation (3), and

Σσ
ess = Σin and Σu

ess = Σ0,

for the transport problem (4). Introducing a new variable σ = L(u), we rewrite the model problem (2) as a first order
system,

σ − L(u) = 0,
divx,t (σ) = f .

(5)

The corresponding FOSLS-functional is given by

J (σ, u) := ∥σ − L(u)∥2
0 + ∥divx,t (σ) − f ∥2

0,

that is well defined if f ∈ L2(Q ). Then, the constrained first order system least squares (CFOSLS) problem is given by: find
(σ, u) ∈ R × V such that

(σ, u) = argmin
(τ,v)∈R×V

J (τ, v),

subject to (s.t.)
{
divx,tσ = f .

(6)

2
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Note that, as we have the divergence constraint, an option could be to omit the second term in the FOSLS functional J .
We keep though the second term of J for two reasons.

First is that for the remainder of the paper we impose the constraints weakly. Secondly, we use the localized functionals
as indicators for adaptive refinement since the information from the data f is beneficial in that case.

3.1. Variational CFOSLS formulation

We introduce the notation (σ, u) = σ − L(u). The first order, or Karush–Kuhn–Tucker (KKT), optimality conditions for
the constrained optimization problem (6) are given by the saddle point problem: find (σ, u, λ) ∈ R× V ×W , W = L2(Q ),
such that

(A(σ, u),A(τ, v)) + (λ, divx,t (τ)) = 0 ∀(τ, v) ∈ R × V
(divx,tσ, µ) = (f , µ) ∀µ ∈ W .

(7)

We assume that the primal formulation (1) is well-posed, hence the above saddle point problem will possess at least
one solution in appropriate function spaces for the solution u and σ, as well as for the Lagrange multipliers λ. The finite
element discretization problem will also have at least one solution (if we do not overconstrain it), since it is a nonnegative
quadratic constrained minimization problem in a finite dimensional space. To ensure uniqueness of the solution of the
discrete problems, we can add some regularization, a topic touched upon later in Section 4.2. We note that these important
theoretical issues are not addressed any further in the present paper.

We note that in (7), we look for a solution u ∈ V ⊂ H1(Q ), which may be too restrictive. For instance in case of the
transport equation, the operator L(u) does not include any derivatives, hence it is enough to look also for solutions u ∈ W .
Moreover, we can eliminate one variable from the system. In order to do that, we first deduce that we can express u in
terms of σ by a simple manipulation of the first equation in (5), i.e.,

u =
1

b⊤b
b⊤σ,

with b =
[
β 1

]⊤. Inserting the above term into the FOSLS-functional J (σ, u) results in a slightly modified CFOSLS
problem: find σ ∈ R such that

σ = argmin
τ∈R

J (τ)

s.t.
{
divx,t (σ) = f

(8)

with J (τ) := ∥Kτ∥2
0 + ∥divx,t (τ) − f ∥2

0 and

K = I −
1

b⊤b
bb⊤.

The resulting variational saddle point problem reads: find (σ, λ) ∈ R × W such that

(Kσ, τ) + (λ, divx,t (τ)) = 0 ∀τ ∈ R
(divx,tσ, µ) = (f , µ) ∀µ ∈ W .

(9)

Remark. As already remarked in [3], we have to be careful with the above matrix K . The matrix is rank-deficient in any
point (x, t) (as K · b ≡ 0), but the corresponding global operator is non-singular on the kernel of the divergence operator.
This is due to the assumption that the underlying differential problem is well-posed. However, the rank deficiency will
definitely influence the condition number of the resulting linear system.

4. Finite element discretization

In this section, we will discretize the saddle point systems from the previous section using the finite element method
(FEM). We need a conforming subdivision Th of the space–time cylinder Q into (d + 1)-dimensional simplices, i.e.,

Q =

⋃
τ∈Th

τ ,

and we define the space–time element diameter hτ = diam(τ ), τ ∈ Th, and h = maxτ∈Th hτ . Moreover, we need the
following finite element function spaces: Vh ⊂ V is the space of globally continuous and piecewise polynomial functions,
Rh ⊂ R is the space of H(div)-conforming functions, and Wh ⊂ W is the space of piecewise polynomial functions. The
space Rh is also referred to as a Raviart–Thomas (RT) space. Applying the usual (mixed) finite element discretization to
the systems (7) and (9) results in the linear systems[

M G⊤ D⊤

G X
D

][
σh
uh
λh

]
=

[0
g
f

]
(10)

3
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and [
K D⊤

D

][
σh
λh

]
=

[
0
f

]
(11)

respectively. Here σh, uh,λh are the coefficient vectors associated with the finite element functions σh, uh, λh, respectively.
The matrices M, G,X , and K result from the discretization of the operators A(σ, u) and Kσ , respectively, and D is the
discrete space–time divergence operator.

4.1. Negative norm CFOSLS

Instead of minimizing the L2-norm of the two equations in the first order system (5), we can define an alternative
FOSLS-functional, while keeping the constraint, i.e.,

min
(σ,u)∈R×V

J̃ (σ, u) := ∥σ − L(u)∥2
−s + ∥divx,t (σ) − f ∥2

−s,

s.t.
{
divx,tσ = f ,

(12)

where ∥.∥−s denotes the norm of the negative index Sobolev space H−s, 0 < s < 1. The finite element counterpart of (12)
reads similarly, i.e.,

min
(σh,uh)∈Rh×Vh

J̃ (σh, uh),

s.t.
{
divx,tσh = f ,

(13)

with J̃ as above. In order to obtain a computationally feasible problem, we introduce two additional constraints,

Qh(σh − L(uh)) = 0, (14a)

Qh(divx,t (σh) − f ) = 0, (14b)

where Qh is the L2-projection on the space of piecewise constants w.r.t. the elements of the mesh Th, i.e.,

Qh(σh − L(uh)) :=

∫
τ

(σh − L(uh)) d(x, t) for all τ ∈ Th.

Note that the second additional constraint (14b) is automatically satisfied by the already existing divergence constraint,
hence we can omit it. We refer to (13)–(14a) as negative norm CFOSLS. We will now derive a computationally feasible
formulation of (13)–(14a). Using (14a) and the well known standard error estimate, we obtain for the first term in the
negative norm functional

∥σh − L(uh)∥2
−s = ∥(I − Qh)(σh − L(uh))∥2

−s ≤ C
∑
τ∈Th

h2s
τ ∥σh − L(uh)∥2

0,τ . (15)

Furthermore, as we are dealing with finite element functions, we can apply the inverse inequality [11, Thm. 4.6] with
α = 0, and obtain

∥hs(σh − L(uh))∥0 ≤ C∥σh − L(uh)∥−s.

This estimate holds for L(uh) = [−∇xuh, uh]
T , and it also holds for L(uh) = [βuh, uh]

T for β being a polynomial (as it is
in our test Example 2). The derivations in what follows are used as a motivation to introduce the locally weighted least
squares functional (18).

Summing up over all τ ∈ Th, we can deduce the bound∑
τ∈Th

h2s
τ ∥σ − L(u)∥2

0,τ = ∥hs(σh − L(uh))∥2
0 ≤ C∥σh − L(uh)∥2

−s. (16)

Deriving analogous bounds for the divergence constraint, and combining them with (15) and (16), we obtain an equivalent,
but computationally feasible formulation of (13), i.e.

(σh, uh) = argmin
(τh,vh)∈Rh×Vh

J̃h(τh, vh)

s.t.
{

divx,tσ = f
Qh(σh − L(uh)) = 0 ,

(17)

with the locally scaled least squares functional

J̃h(τh, vh) :=

∑
τ∈Th

h2s
τ

(
∥τh − L(vh)∥2

0,τ + ∥divx,t (τh) − f ∥2
0,τ

)
. (18)

4
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The saddle point problems corresponding to the negative norm formulations of (6) and (9) read then⎡⎢⎣Mh G⊤

h D⊤

h E⊤

h
Gh Xh F⊤

h
Dh
Eh Fh

⎤⎥⎦
⎡⎢⎣σh
uh
λh
µh

⎤⎥⎦ =

⎡⎢⎣ 0
gh
fh
0

⎤⎥⎦ (19)

and ⎡⎣Kh D⊤

h E⊤

h
Dh
Eh

⎤⎦[
σh
λh
µh

]
=

[0
fh
0

]
(20)

respectively. Here, subscript h indicates that the local element matrices and vectors have been scaled by h2s
τ , and E , F

originate from the discretization of the additional constraint (14a).

4.2. Alternative formulation for the transport problem

We already mentioned in Section 3.1, that in general there is no guarantee that the discretized problem has a unique
solution. However using regularization, we can indeed find a unique solution. In particular, we look for a solution with
minimal oscillations, i.e., minimal L2 norm of its gradient, which can also be interpreted as adding artificial viscosity to
the least squares functional ∥ divx,t (bv)− f ∥2

0, which leads to the following constrained least squares problem: find u ∈ V
such that

u = argmin
v∈V

∥∇x,tv∥
2
0,

s.t.
{
divx,t (b u) = f ,

(21)

with the constraint enforced weakly. Later, we will introduce some positive regularization parameter ε > 0. The choice of
ε is not much of an issue, as we will show in a moment. We comment, that more sophisticated regularization approaches
are of interest, such as for example, the L1 minimization of the gradient of u, which however leads to a nonlinear method.
We do not pursue the L1–norm minimization in the present paper.

The weak first order optimality system corresponding to (21) reads

(∇x,tu, ∇x,tv) + (λ, divx,t (bv)) = 0, for all v ∈ V ,

(divx,t (bu), µ) = (f , µ), for all µ ∈ W .

Now, given an ε > 0, we let µ = divx,t (bv) in the second equation, multiply it by 1/ε and add it to the first equation,
which gives

(∇x,tu, ∇x,tv) +
1
ε
(divx,t (bu), divx,t (bv)) + (λ, divx,t (bv)) =

1
ε
(f , divx,t (bv)),

(divx,t (bu), µ) = (f , µ),

for all v ∈ V and all µ ∈ W . Rescaling the Lagrange multiplier, i.e., λ := ελ, we finally arrive at

ε(∇x,tu, ∇x,tv) + (divx,t (bu), divx,t (bv)) + (λ, divx,t (bv)) = (f , divx,t (bv)),
(divx,t (bu), µ) = (f , µ),

for all v ∈ V and all µ ∈ W . The last problem corresponds to the constrained minimization problem: find u ∈ V such
that

u = argmin
v∈V

Ĵε(v),

s.t.
{
divx,t (b u) = f ,

(22)

with the LS functional

Ĵε(v) := ε∥∇x,tv∥
2
0 + ∥divx,t (b v) − f ∥2

0,

for a given positive regularization parameter ε. Again, it is clear that the choice of ε only affects the scaling of the Lagrange
multiplier.

At any rate based on formulation (21), proceeding as before, we define the bilinear forms, derive the KKT system, and
after discretization, we obtain the saddle point system of equations[

L D⊤

D

][
uh
λh

]
=

[
0
f

]
,

where L is a discrete Laplace operator, which we can locally scale by ε.

5
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5. Linear solvers for CFOSLS

In contrast to FOSLS-discretizations, which result in a system of linear equations with a positive definite system matrix,
we have to deal with an indefinite system matrix in the case of CFOSLS. Hence, in general we cannot use the conjugated
gradient method (CG), but we have to use some solver suitable for indefinite problems, e.g. the minimal residual method
(MINRES) or the (flexible) generalized minimal residual method (GMRES). In order to speed up the convergence of the
iterative solver, we will employ different preconditioning strategies, which we describe in the following subsections.

5.1. Block diagonal preconditioners

One straightforward method of preconditioning the linear systems (7) and (9) is to use the following block diagonal
preconditioners⎡⎣B−1

M
B−1
X

B−1
S(M)

⎤⎦ , and,
[
B−1
K

B−1
S(K)

]
,

respectively, where S( · ) = Ddiag( · )−1D⊤. The choice for the block preconditioners can be made w.r.t. the discretized
problem, i.e., for the heat equation, we choose BM to be a Jacobi-smoother, and BX and BS(M) to be algebraic multigrid
(AMG) preconditioners.
In case of negative norm CFOSLS, the saddle point system (19) has an additional block. We again formulate a Schur
complement preconditioner for the last block, i.e.⎡⎢⎣BMh

BXh
BS1

BS2

⎤⎥⎦
with BS1 the locally scaled equivalent of BS(M) and S2 = Ediag(M)−1E⊤

+ Fdiag(X )−1F⊤. We can derive an analogous
preconditioner for (20), given by[

BKh
BS1

BS2

]
with BS1 and BS2 defined correspondingly.

5.2. Monolithic geometric multigrid preconditioners

Instead of treating the preconditioning of each block in (7) separately, we can apply a geometric multigrid method to
the whole system. Let {P (k)

Rh
}
l
k=0, {P

(k)
Vh

}
l
k=0 and {P (k)

Wh
}
l
k=0 be the sequences of prolongation operators between the hierarchy

of corresponding finite element spaces. Then the prolongation operators for the block system (7) are given by

P(k) =

⎡⎢⎣P (k)
Rh

P (k)
Vh

P (k)
Wh

⎤⎥⎦ .

Moreover, as we apply the solver in an adaptive scheme, we reuse the already assembled block system matrices from the
coarser refinement levels in our multigrid hierarchy. We describe the application of one multigrid V-cycle in the following
algorithm.

Algorithm 5.1. Assume we have a hierarchy of matrices {A(k)}
l
k=0, prolongation operators {P(k)}

l
k=0 and smoothers

{M(k)}
l
k=0. At level k for given v, the computation of B(k)

GMGv consists of:

• Pre-smooth, i.e., solve M(k)x = v

• Restrict residual, i.e., compute rc = P⊤

(k)(v− A(k)x)
• Coarse grid correction, i.e.,

if k + 1 = l, solve exactly, i.e, set xc = A−1
(l) rc

else, apply the multigrid recursively, i.e, set xc = B(k+1)
GMG rc

• Prolongate and update, i.e., x = x + P(k)xc ,
• Post-smooth, i.e., solve M(k)(y − x) = v− A(k)x.
• This results in B(k)

GMGv := y.

6
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We still need to choose a smoother, or sequence of smoothers. A suitable choice is to use some least squares method,
e.g. MINRES, preconditioned by the BDP-preconditioner from Section 5.1 as a smoother. We stop the iterative smoother
either after reducing the relative residual by a factor γ (k), or after reaching a fixed, but small number of maximum
iterations n(k)

M . In Section 6 we solve the linear system (7) be means of flexible GMRES with one V-cycle of the multigrid
described above, using γ (k)

≡ 0.01 and n(k)
M ≡ 100. We can derive analogous preconditioners for the systems (9), (19),

and (20).

5.3. Divergence free solvers

An alternative way of solving systems (7) and (9) is to reformulate the problem already on the continuous level into a
divergence-free setting. We will briefly summarize the method, for details see [3, Section 3]. The key idea is to split the
function

σ = σ̃ + σ (23)

into a function σ̃ satisfying the divergence constraint, i.e.,

(divx,t (̃σ), µ) = (f , µ) ∀µ ∈ W ,

and a divergence free function σ fulfilling trσ (σ) = 0. Next, we recall the properties of the de Rham sequence, i.e., there
exist a differential operator d and a Sobolev space N , such that for any ψ ∈ N with trd(ψ) = 0, the image is in R, i.e., dψ ∈ R
and, in addition, divx,t (dψ) ≡ 0. For example, in 3D space–time, we use the canonical choice d = curl and N = H(curl,Q ),
whereas for 4D space–time, we use d = Div and N = H(Div,Q ,K), with Div the row-wise matrix divergence, and

H(Div,Q ,K) = {κ ∈ L2(K) : Div(κ) ∈ L2(R4)},

where K is the vector space of 4-by-4 skew-symmetric matrices; see [1] for details on this space. Now we can formulate
the solving procedure in two steps:

Step 1 Find any σ̃ ∈ R satisfying

(divx,t (̃σ), µ) = (f , µ) ∀µ ∈ L2(Q )

Step 2 Find the divergence free correction σ = dψ. We use the decomposition (23) to rearrange system (7) into

(A(σ, u),A(τ, v)) + (λ, divx,t (τ)) = − (A(̃σ, u),A(τ, v)) ∀(τ, v) ∈ R × V (24)(
divx,tσ, µ

)
= (f − divx,t σ̃, µ) = 0 ∀µ ∈ W . (25)

Now we insert σ̃ from Step 1, and replace σ = dψ, which automatically fulfills the second equation. Moreover, it
is sufficient to only test with τ = dφ, φ ∈ N . Thus, we have to solve the following problem: Find (ψ, u) ∈ N × V
such that

(A(dψ, u),A(dφ, v)) = −(A(̃σ, u),A(dφ, v)) ∀(φ, v) ∈ N × V .

Then the solution σ is obtained by summing up σ̃ + σ.

We can again derive an analogous scheme for system (9).

6. Numerical experiments

6.1. Implementation and experimental setup

We implemented the finite element methods described in Section 4 by means of the finite element library MFEM [8],
which has also an implementation for 4D adaptive finite elements in a development branch.1 In order to realize the solvers
described in Section 5, we use the AMG implementation boomerAMG provided by the linear solver library hypre.2 Both
libraries are developed at LLNL. All of our numerical experiments are performed on the Quartz cluster, also located at
LLNL.
We tested the following combinations of functionals, constraints and spaces in the numerical experiments:

• CFOSLS (6) for the heat equation (3)

min
(σh,uh)∈Rh×Vh

J (σh, uh),

s.t.
{
divx,tσh = f ,

(P1)

1 https://github.com/mfem/mfem/tree/4d_dev
2 http://www.llnl.gov/casc/hypre/
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• CFOSLS (8) for the transport equation (4)

min
σh∈Rh

J (σh),

s.t.
{
divx,tσh = f .

(P2)

• Negative Norm CFOSLS (13) for the transport equation (4)

min
σh∈Rh

J̃h(σh),

s.t.
{

divx,tσh = f ,
Qh(Kσh) = 0.

(P̃2)

• Regularized constrained LS functional (22) for the transport equation (4)

min
uh∈Vh

Ĵε(uh),

s.t.
{
divx,t (b uh) = f ,

(P3)

In all numerical experiments we use the localized least squares functional Jτ as an indicator for refinement, e.g., for (P1)
we define Jτ (σh, uh) = J (σh, uh)|τ , τ ∈ Th. The elements then are marked using Dörfler’s marking strategy [12], i.e., we
mark all elements τ ∈ T̃h ⊆ Th, where T̃h is the set with minimal cardinality, which, for given θ ∈ (0, 1), fulfills

θJ (σh, uh) ≤

∑
τ∈T̃h

Jτ (σh, uh).

In particular, we implemented the algorithm recently proposed by Pfeiler et al. [13], which in addition is very easy to
parallelize. Once we have a set of marked elements, we apply the bisection algorithm by Arnold et al. [14] in 3D space–
time, and the bisection algorithm by Stevenson [15] in 4D space–time, to subdivide the marked elements. Both algorithms
ensure that the family of adaptive refined meshes (Th)h stays conforming, i.e. we do not introduce any hanging nodes,
and that the mesh elements do not degenerate, i.e. there is a lower bound for the interior angles for all h. Unless stated
otherwise, we will always use a bulk parameter θ = 0.25.
We also compared the convergence rates for different polynomial degree of the finite element ansatz functions. With
p = 0 we denote the lowest order finite elements, i.e., piecewise constants for L2-conforming elements, and piecewise
linear, globally continuous functions for H1-conforming elements. The use of next-to-lowest-order elements is denoted
by p = 1.
When we refer to the solvers and preconditioners presented in Section 5, we will use the following abbreviations: BDP
for MINRES preconditioned by the block diagonal preconditioner described in Section 5.1, MGMG for flexible GMRES
preconditioned by the monolithic geometric multigrid introduced in Section 5.2, and MG for the divergence free solver
defined in Section 5.3.

6.2. Example 1: Parabolic evolution problem

We consider the computational domain Q = (0, 1)d+1, d = 2, 3, and use the manufactured solution

u(x, t) = t2et
d∏

i=1

sin
(
(4 − i)xiπ

)
.

We consider only the heat equation (3), thus we use formulation (P1). The manufactured solution is very smooth and has
no distinct features, so adaptive refinement will improve the overall convergence rate only by a constant factor. In Table 1,
we present the total number of iterations needed to reduce the initial residual by a factor of 10−6, with the elapsed time
in parentheses, using 8 nodes (or 288 cores) on Quartz. While we can observe stable iteration counts for the monolithic
geometric multigrid, the cost per iteration is significantly higher than for the other solvers.
For the sake of completeness, we also include plots of the convergence rates; see Figs. 1 and 2. As expected, for problems
without singularities or without localized (anisotropic) features, adaptive refinement improves the convergence rates only
by a constant factor.

6.3. Example 2: The transport equation

For our second example, we will consider only the transport equation (4). Here, the space–time cylinder is given by
Q = {x ∈ Rd

: ∥x∥ℓ2 < 1} × (0, 2). We choose the vector fields

β = 2
[
−x2
x1

]
, and β = (1 − x23)

[
−x2
x1
0

]
,

8
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Table 1
Example 1: Iteration numbers and solving times.
(a) p = 0, d = 2

#dofs BDP MGMG MG

80 177 105 (0.45 s) 5 (1.33 s) 32 (0.53 s)
631 905 145 (0.83 s) 6 (2.31 s) 46 (0.79 s)
5 017 793 193 (2.22 s) 7 (5.33 s) 65 (1.53 s)
39 993 729 262 (12.49 s) 8 (24.68 s) 92 (6.97 s)
319 357 697 366 (145.67 s) 8 (241.61 s) 135 (74.50 s)

(b) p = 0, d = 3

#dofs BDP MGMG MG

169 281 229 (0.64 s) 3 (1.49 s) 28 (2.22 s)
332 481 256 (0.71 s) 3 (3.15 s) 23 (1.99 s)
668 097 234 (0.99 s) 3 (5.00 s) 31 (2.96 s)
1 336 881 274 (1.59 s) 3 (8.13 s) 33 (3.64 s)
2 656 865 298 (2.15 s) 3 (12.30 s) 34 (4.93 s)
5 268 065 312 (3.23 s) 4 (24.66 s) 30 (5.98 s)
10 594 913 293 (4.71 s) 3 (28.19 s) 32 (10.13 s)
21 195 809 339 (9.86 s) 4 (60.93 s) 34 (19.16 s)
42 133 569 376 (20.46 s) 4 (101.56 s) 35 (38.19 s)
83 912 769 410 (45.29 s) 5 (231.08 s) 31 (69.64 s)
168 798 273 437 (99.63 s) 5 (467.87 s) – (–)
337 645 377 490 (237.41 s) – (–) – (–)

Fig. 1. Example 1: Convergence rates of uniform and adaptive refinements, for d = 2.
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Fig. 2. Example 1: Convergence rates of uniform and adaptive refinements, for d = 3.

and the initial data

u0(x) = e−100
(
(x1−0.5)2+x22

)
, and u0(x) = e−100

(
(x1−0.5)2+x22+x23

)
,

for d = 2 and d = 3, respectively. We prescribe no source terms, i.e., f ≡ 0. Hence, we expect that the profile of the initial
data should only be transported along the vector field β. Moreover, as we consider a hyperbolic evolution equation, there
should be no dissipation. This solution is very localized and has sharp gradients, thus we expect a significant improvement
in the convergence rates by using adaptive refinement. We will compare formulations (P2)–(P3), as well as different values
of the index s for formulation (P̃2).
First we consider the case d = 2. Here, the spatial domain is the unit circle and the flow field is a counter-clockwise,
circular motion. In Fig. 3(a), we plot the relative L2-error in the variable u. We can observe that, in comparison with
uniform refinement, more than one order of magnitude less #dofs is needed to reach a certain threshold with adaptive
refinement. Moreover, comparing formulations (P2) and (P̃2), we deduce that the additional constraint does not really
improve the convergence behavior for this example. In Fig. 4, we present cuts through the space–time mesh at certain
times t . The mesh was obtained after 17 adaptive refinements. We can clearly see that the mesh is very fine along the
movement of the peak, whereas stays relatively coarse where nothing happens. Next we consider the case d = 3, where
the spatial domain is the unit ball, and the flow field is again a circular motion in the x1-x2-plane, with a varying intensity
depending on the x3 variable. In Fig. 3(b), we also plot the relative L2-error in u. Again, the adaptive refinement results in
a huge improvement in the convergence rates. However, here, formulations (P2) and (P̃2) differ more than previously. The
adaptive refinement for negative norm CFOSLS seems to result in worse convergence behavior than adaptivity for standard
CFOSLS. In Fig. 5, we present the finite element solution obtained after 13 adaptive refinements. The 4D hyper-cylinder
Q was cut at times t , and the finite element solution was then projected on these 3D cuts.
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Fig. 3. Example 2: Error rates in ∥u − uh∥0/∥u∥0 for uniform and adaptive refinements.

6.4. Example 3: Adaptive benchmark

For the third example we consider the NIST adaptive benchmark problem3 ‘‘Moving Circular Wave Front’’. The
space–time cylinder is given by Q = (0, 10) × (−5, 5) × (0, 10), i.e., d = 2. We again use a manufactured solution

u(x, t) =
B(x) arctan(t)

(
π
2 − arctan

(
α

(
∥x − xc∥ℓ2

)))
C

,

with a bubble function

B(x) = x1(x1 − 10)(x2 + 5)(x2 − 5)

and where xc is the origin of the wavefront, α controls the steepness of the wave, and C is a constant to scale the function
value. For this example, we choose α = 20, C = 10000, and xc = 0. The original benchmark is for a parabolic model
problem, i.e., the heat equation (3). However, we can use the manufactured solution u also for the transport problem (4),
with the flow field

β =

[
sin( π

5 x1) cos(
π
5 (x2 + 5))

− cos( π
5 x1) sin(

π
5 (x2 + 5))

]
.

We again compare the convergence rates in the L2-norm of uh and σh for the different formulations (P1)–(P3), as well as
different values of s. For lowest order elements, i.e. p = 0, we observe an improvement in the convergence rates for both,
the parabolic and the hyperbolic problem. In particular, for the heat equation, we need more than one order of magnitude

3 https://math.nist.gov/amr-benchmark/index.html

11

https://math.nist.gov/amr-benchmark/index.html


A. Schafelner and P.S. Vassilevski Computers and Mathematics with Applications xxx (xxxx) xxx

Fig. 4. Example 2: Finite element solution uh plotted over the space–time mesh after 17 adaptive refinements, for d = 2, cut at times t .

Fig. 5. Example 2: Finite element solution uh plotted over the space–time mesh after 13 adaptive refinements, for d = 3, cut at times t .
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Fig. 6. Example 3: Finite element solution uh obtained by formulation (P1) with p = 1, plotted over the whole space–time mesh after 15 adaptive
refinements with bulk parameter θ = 0.1, cut off at t .

Fig. 7. Example 3: Convergence rates for d = 2, p = 0.

less dofs to reach a certain threshold compared to uniform refinement; see Fig. 7(b). For the hyperbolic problem, we can
observe a similar behavior, where we also save roughly one order of magnitude of dofs when comparing adaptive and
uniform refinement.
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Fig. 8. Example 3: Convergence rates for d = 2, p = 1.

For next-to-lowest-order elements, i.e. p = 1, we now in addition compare different values of the negative norm index
s. The parabolic problem again shows a sharp improvement in the convergence rates for adaptive refinement, e.g., in
order to reach an relative L2-error of 10% for σ, we need around 5 × 106 dofs for adaptive refinement, compared to >108

dofs needed in the case of uniform refinement; see Fig. 8(b). In Fig. 6, we present plots of finite element solution uh
to formulation (P1) over the whole space–time mesh Th, where cut off parts of the space–time cylinder to visualize the
spatial profile of the solution for non-zero times t are shown. The hyperbolic transport problem behaves a little different
from in the lowest order case. In order to see an improvement in the convergence rates, we first need to reach certain
amount of dofs. Then we again need around one order of magnitude less #dofs to reach a certain threshold in the errors.
When comparing the standard CFOSLS to negative norm CFOSLS, we can further reduce the needed number of degrees of
freedom by a factor of 2, depending on the choice of s; see Fig. 8.

7. Conclusion

The overall conclusion of the presented computational study is that the space–time FOSLS technique poses in addition
to the main constraint of high memory demand the challenge of finding scalable solvers which is due to the lack of full
ellipticity of the FOSLS functionals. As we have demonstrated, that with the help of AMR, the severe memory constraints
can be alleviated and also with the AMR we can benefit in terms of generating meshes (not necessarily exploiting time-
stepping) that follow the physics and not posing a global CFL constraint on the discretization. Future research is needed in
the direction of designing more scalable solvers and one possible venue for that is to exploit recent advances of adaptive
AMG methods that can take advantage of specialized coarsening to detect possible anisotropy [9,10] and not necessarily
require ellipticity of the bilinear forms. Moreover, in order to take full advantage of the parallel AMR, we need to introduce
some kind of load balancing to ensure that the work is equally distributed among the cores.

14



A. Schafelner and P.S. Vassilevski Computers and Mathematics with Applications xxx (xxxx) xxx

Acknowledgments

We would like to thank the anonymous referees for their helpful remarks.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344. One author was supported by the Austrian Science Fund (FWF) under
the grant DK W1214-04.

LLNL Release Number: LLNL-JRNL-806077

References

[1] J. Gopalakrishnan, M. Neumüller, P.S. Vassilevski, The auxiliary space preconditioner for the de Rham complex, SIAM J. Numer. Anal. 56 (6)
(2018) 3196–3218.

[2] M. Neumüller, P.S. Vassilevski, U.E. Villa, Space-time CFOSLS methods with AMGe upscaling, in: Domain Decomposition Methods in Science
and Engineering XXIII. Proceedings of the 23rd International Conference, Jeju Island, South Korea, July 6–10, 2015, Springer, Cham, 2017, pp.
253–260.

[3] K. Voronin, C.S. Lee, M. Neumüller, P. Sepulveda, P.S. Vassilevski, Space-time discretizations using constrained first-order system least squares
(CFOSLS), J. Comput. Phys. 373 (2018) 863–876.

[4] J.H. Adler, P.S. Vassilevski, Error analysis for constrained first-order system least-squares finite-element methods, SIAM J. Sci. Comput. 36 (3)
(2014) a1071–a1088.

[5] J.H. Adler, T.A. Manteuffel, S.F. McCormick, J.W. Nolting, J.W. Ruge, L. Tang, Efficiency based adaptive local refinement for first-order system
least-squares formulations, SIAM J. Sci. Comput. 33 (1) (2011) 1–24.

[6] M. Berndt, T.A. Manteuffel, S.F. McCormick, Local error estimates and adaptive refinement for first-order system least squares (FOSLS), Electron.
Trans. Numer. Anal. 6 (1997) 35–43.

[7] T. Manteuffel, S. McCormick, J. Nolting, J. Ruge, G. Sanders, Further results on error estimators for local refinement with first-order system
least squares (FOSLS), Numer. Linear Algebra Appl. 17 (2–3) (2010) 387–413.

[8] MFEM: Modular finite element methods library, mfem.org, 2018.
[9] P. D’Ambra, P.S. Vassilevski, Adaptive AMG with coarsening based on compatible weighted matching, Comput. Vis. Sci. 16 (2) (2013) 59–76.

[10] B.Q. Quiring, P.S. Vassilevski, Properties of the Graph Modularity Matrix and Its Applicaions, Tech. Rep. LLNL-TR-779424, Lawrence Livermore
National Laboratory, 2019.

[11] W. Dahmen, B. Faermann, I.G. Graham, W. Hackbusch, S.A. Sauter, Inverse inequalities on non-quasi-uniform meshes and application to the
mortar element method, Math. Comput. 73 (247) (2004) 1107–1138.

[12] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (3) (1996) 1106–1124.
[13] C.-M. Pfeiler, D. Praetorius, Dörfler marking with minimal cardinality is a linear complexity problem, Math. Comput. 89 (326) (2020) 2735–2752.
[14] D.N. Arnold, A. Mukherjee, L. Pouly, Locally adapted tetrahedral meshes using bisection, SIAM J. Sci. Comput. 22 (2) (2000) 431–448.
[15] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comput. 77 (261) (2008) 227–241.

15

http://refhub.elsevier.com/S0898-1221(20)30339-4/sb1
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb1
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb1
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb2
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb2
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb2
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb2
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb2
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb3
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb3
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb3
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb4
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb4
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb4
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb5
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb5
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb5
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb6
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb6
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb6
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb7
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb7
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb7
https://mfem.org
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb9
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb10
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb10
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb10
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb11
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb11
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb11
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb12
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb13
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb14
http://refhub.elsevier.com/S0898-1221(20)30339-4/sb15

	Numerical Results for Adaptive (negative norm) Constrained First Order System Least Squares Formulations
	Let us know how access to this document benefits you.
	Citation Details

	Numerical results for adaptive (negative norm) constrained first order system least squares formulations
	Introduction
	Model time dependent PDEs used in our study
	Space–time CFOSLS
	Variational CFOSLS formulation

	Finite element discretization
	Negative norm CFOSLS
	Alternative formulation for the transport problem

	Linear solvers for CFOSLS
	Block diagonal preconditioners
	Monolithic geometric multigrid preconditioners
	Divergence free solvers

	Numerical experiments
	Implementation and experimental setup
	Example 1: Parabolic evolution problem
	Example 2: The transport equation
	Example 3: Adaptive benchmark

	Conclusion
	Acknowledgments
	References


