
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

2015

Modular Timing Constraints for Delay-Insensitive Modular Timing Constraints for Delay-Insensitive

Systems Systems

Hoon Park
Portland State University, parkhoon@gmail.com

Anping He
Lanzhou University

Marly Roncken
Portland State University

Xiaoyu Song
Portland State University

Ivan Sutherland
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Park, Hoon; He, Anping; Roncken, Marly; Song, Xiaoyu; and Sutherland, Ivan, "Modular Timing Constraints
for Delay-Insensitive Systems" (2015). Electrical and Computer Engineering Faculty Publications and
Presentations. 306.
https://pdxscholar.library.pdx.edu/ece_fac/306

This Pre-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and
Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar.
Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F306&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F306&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/306
https://pdxscholar.library.pdx.edu/ece_fac/306?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F306&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

Pre-
pu

bli
ca

tio
n JC

ST
20

15

Modular Timing Constraints
for Delay-Insensitive Systems

Hoon Park1,2, Anping He3, Marly Roncken1, Xiaoyu Song2, and Ivan Sutherland1

1Asynchronous Research Center, Portland State University, 97201, U.S.A.
2Department of Electrical & Computer Engineering, Portland State University, 97201, U.S.A.

3School of Information Science & Engineering, Lanzhou University, 730000, China

E-mail: parkhoon@gmail.com, heap@lzu.edu.cn, marly.roncken@gmail.com, {song@ece, ivans@cecs}.pdx.edu

Abstract—This paper introduces ARCtimer, a framework for
modeling, generating, verifying, and enforcing timing constraints
for individual self-timed handshake components. The constraints
guarantee that the component’s gate-level circuit implementation
obeys the component’s handshake protocol specification. Because
the handshake protocols are delay insensitive, self-timed systems
built using ARCtimer-verified components are also delay insen-
sitive. By carefully considering time locally, we can ignore time
globally. ARCtimer comes early in the design process as part
of building a library of verified components for later system
use. The library also stores static timing analysis (STA) code
to validate and enforce the component’s constraints in any self-
timed system built using the library. The library descriptions of
a handshake component’s circuit, protocol, timing constraints,
and STA code are robust to circuit modifications applied later
in the design process by technology mapping or layout tools. In
addition to presenting new work and discussing related work,
this paper identifies critical choices and explains what modular
timing verification entails and how it works.

Keywords—self-timed circuits, delay-insensitive systems, model
checking, timing analysis, design patterns

I INTRODUCTION

Nearly all modern digital computers march to the beat of
a “clock.” The computer clock divides each second into a
few billion “clock periods” just as a school bell divides each
day into fixed-length class periods. A fifty-five minute class
period is so useful for scheduling students and classrooms that
educators rarely ask if it is best for learning. In reality, fifty-
five minutes is either too short or too long.

We are one of a few research groups who study how to replace
the rigid clock with more flexible “self-timed” regimes. Self-
timed systems allow each small task to take its own natural
time just as “self-paced” learning allows each student to learn
at his or her own pace. Easy tasks finish quickly and take little
energy. Difficult tasks require more time and energy.

We design our self-timed systems using circuit components
connected through local communication channels. The com-
ponents use handshake protocols to coordinate their activities
and to exchange data through the communication channels.
The “self-paced” operations of the system are delay insensitive
provided the components follow the handshake protocols.

We partition the verification of such a system into two parts:
• a higher-level system part, at the protocol level, to

verify that the network of handshake components and
their protocols meet the requirements of the system, and

• a lower-level component part, at the circuit level, to
verify that the network of logic gates and wires and their
delays meet the component’s protocol description.

This paper describes how we do the lower-level verification
in advance of system design to build a library of verified
components for later system use.

The higher-level system verification part applies to digital cir-
cuits broadly. A general-purpose analysis system, such as the
ACL2 modeling and theorem proving system1, can model and
verify this part in terms of cooperating finite state machines,
as is done in the formal verification of microprocessors [1].
This approach is scalable to very large systems, as shown on
contemporary x86 systems [2]. The key message in the context
of this paper is that the lower-level component verification
allows the higher-level system verification part to ignore all
circuit and timing information. By carefully considering time
locally we can ignore time globally.

We further partition the lower-level component verification
part into three sub-parts, the last of which is the main focus of
this paper. The first sub-part verifies transistor-level implemen-
tations against their gate-level descriptions. The second sub-
part verifies analog behavior as logical signal transitions. The
third sub-part verifies the gate-level logical signal transitions
against the component’s handshake protocol description.

The first sub-part, verifying at the transistor level, is quite
general. For this sub-part, we can re-use existing methods in
logic verification for synchronous datapath and control cir-
cuits, like [2]. The second sub-part, verifying analog behavior,
is addressed in [3]. This sub-part is of lesser importance for
our self-timed circuits, because we design our circuits using
the theory of Logical Effort [4]. As a result, our circuits come
with an “analog health” waiver: their signal rise and fall times
are sufficiently good to skip analog circuit analysis and move

1See ACL2 home page http://www.cs.utexas.edu/users/moore/acl2/.

Pre-
pu

bli
ca

tio
n JC

ST
20

15

from analog to switch level verification. The third sub-part,
verifying handshake behavior, is the main focus of this paper.

This last sub-part, verifying the gate-level transitions against
the component’s handshake protocol description, is unique to
systems of self-timed circuits2 because such circuits omit the
“clock” that might otherwise provide a global timing reference.
Self-timed circuits replace the global clock network that would
support synchronous behavior with a distributed network of
local handshake protocols to support asynchronous or, more
specifically, self-timed behavior. Thereby they also replace
setup and hold time constraints between the global clock and
local signals with timing constraints between local signals.

The crux of verifying gate-level signals against a handshake
protocol is to identify and verify the essential internal tim-
ing constraints that make or break the component’s protocol
description. This task is the subject of this paper.

This paper introduces ARCtimer, a framework set up pre-
cisely to identify internal timing constraints. ARCtimer targets
pattern-based circuit families of handshake components —
circuit families that use design patterns to describe the circuit
implementations of their components. Families that do so
include Micropipeline [5], Tangram and Balsa and Handshake
Solutions [6], [7], [8], GasP [9], [10], QDI with precharge
buffers [11], [8], [12], Mousetrap [13], and Click [14].

ARCtimer plays a crucial role in the overall design flow of an
integrated circuit (chip), but its role comes early in the design
process, as part of building a library of handshake components.
We run ARCtimer once per library, and use the results over
and over again for each and every chip design. Thus, even
though ARCtimer plays a crucial role in establishing design
correctness, its run times play only a small role in the chip’s
overall design time-to-market. We therefore have the leisure to
“pattern” the timing constraints after the design patterns of the
handshake components, making the constraints understandable
to the component’s designer, easy to maintain, and robust to
circuit modifications applied later in the design process.

We have used ARCtimer successfully on the circuit families
for Click and GasP, and characterized the “timing patterns”
for deterministic, nondeterministic and data-driven handshake
components in these families.

The goal of this paper is to build a shared understanding
of what a framework like ARCtimer entails, so that others
can embellish it or make their own version or improve the
underlying tools. The Click and GasP results, relevant though
they may be, require a full exploration of the circuits and of
the various bundled-data protocols that they use, both of which
are outside the scope of this paper. But we will indicate where
and how the bundled data and data-driven control fit into the
framework, and we will identify related work.

The outline of this paper follows the diagram in Figure 1.
Section II explains the context of ARCtimer in the design

2In the rest of this paper we will use either of the terms system, design,
and circuit to refer to systems designed using circuits.

flow. Section III explains the series of steps a framework like
ARCtimer must perform for each handshake component. We
distinguish four steps, which are discussed in Sections III-A to
III-E. In Section IV, we compare ARCtimer to related work,
and summarize what is new. Section V concludes the paper.

II TIMING VERIFICATION CONTEXT

Figure 1 (left-column) shows three stages in a typical chip
design flow for self-timed circuits. The stages are marked
with the keywords GUI (Graphical User Interface), Parser,
and STA (Static Timing Analysis). Other stages, for instance
simulation and testing and layout placement and routing, are
omitted. Each stage receives information from the yellow-
colored center column of Figure 1, called the Design Library.

The sub-sections below give a short explanation of these three
stages in the chip design flow, the information stored in the
Design Library, and their relation to the topic of this paper —
timing verification of handshake components.

II-A GUI

Using a GUI (Graphical User Interface) or an equivalent writ-
ten user interface, one can formulate a network of components
connected by handshake channels. The GUI design in the top-
left corner of Figure 1 connects four components assembled
to generate the Fibonacci sequence 1, 2, 3, 5, 8, etc.

The GUI formulation operates partly at a structural and
partly at a functional level, higher than the circuit. Our
GUI-formulated designs use function calls to represent data
operations. and a handshake protocol based on full and empty
channels with data types. A full channel has valid data; an
empty channel has data not yet valid or no longer used. The
Storage components in the Fibonacci design act when their
incoming channels are full and their outgoing channels are
empty. When they act, they:

• copy the incoming data and forward the copied data,
• fill their outgoing channels, making them full, and
• drain their incoming channels, making them empty.

The Join component adds the numeric data on its two incoming
channels and forwards the sum. Having no storage facility
for data, it waits to drain its incoming channels until all its
outgoing channels are empty. This ensures that the incoming
data remain stable until the sum is stored and acknowledged.

The Fibonacci design starts with all channels empty except
for channels ch1, ch2 and ch3 that start full with initial data
values respectively 1, 1, and 0 — as indicated in Figure 1. The
Join forwards the sum of 0 and 1, i.e. 1, both to the results
channel and to channel ch4 going into Storage component C4.
Storage C4 forwards the Fibonacci result to Storage C1, and
in doing so it fills ch5 and drains ch4. This enables the Join
to drain channels ch2 and ch3, thus enabling Storage C2 to
act. C2 acts by storing the data value 1 proffered over ch1
and sending it on to ch3, thereby making ch3 full and ch1
empty. This in turn enables Storage C1 to store and forward

2

Pre-
pu

bli
ca

tio
n JC

ST
20

15

the new Fibonacci result 1 onto ch1 and ch2, fill ch1 and ch2,
and drain ch5. The design is now back in a state similar to its
initial state, with all channels empty except for ch1, ch2, and
ch3 that have the next set of data values: 1, 1, 1 respectively.
The Join’s next Fibonacci result will be 2.

II-B Parser

The Parser takes as input a component network from the GUI
and expands it into a gate-level netlist for the protocol and
circuit family selected by the user.

For the Fibonacci design in Figure 1, we chose a bundled-data
two-phase non-return-to-zero (non-RTZ) handshake protocol,
using a request wire, an acknowledge wire, and a bundle of
wires with data. The gate-level netlist for Storage C4, shown
in the center of the left column in Figure 1, belongs to the
Click circuit family [14].

There are several choices for expanding data functions, like
the add function in the Join. One choice is to keep them as
function calls. Standard hardware description languages, such
as Verilog, can mix structural and functional descriptions [15].
Another choice is to expand the datapath circuits separately
and organize the GUI formulation to optimize the flow of data.
Standard design compilers excel at automatically synthesizing
combinational functions into gate-level netlists. Automatically
synthesizing sequential functions is more difficult, but pos-
sible when the goal is to optimize worst-case performance.
However, a major promise of self-timed design is the ability
to optimize average-case performance — in terms of latency,
throughput, power, energy, or any combination thereof. Parti-
tioning sequential functions into combinational functions that
optimize average-case rather than worst-case performance has
thus far eluded design automation. Such partitioning remains a
collaborative effort between the designer and his or her design
compiler [16], [17], [18], [19], [20].

II-C Design Library

An ideal design flow would support a variety of circuit
families that could be mixed and matched based on the desired
speed, power, energy efficiency, time-to-market or backward
compatibility needs for the system or sub-systems. The Design
Library for such a flow should store GUI, circuit, and protocol
descriptions for the components of each family. Such a library
should also store the timing constraints for each component.

The yellow-colored center column of Figure 1 illustrates
the Design Library. It shows a Click Storage circuit (top),
its protocol (middle), and a static timing analysis (STA)
code description of its timing constraints (bottom). Figure 1
omits component, data type, and function descriptions for
the GUI. Although the Design Library supports descriptions
parametrized for multiple incoming and outgoing channels, the
Storage example in the center column has only one incoming
and outgoing channel. Section III of this paper uses this
single-in single-out Storage component to explain how one can
generate timing constraints to fit parametrized components.

II-D STA

Static timing analysis (STA) [21] allows one to validate and
repair timing constraints in the gate-level netlist generated by
the Parser. Well-known examples of timing constraints for
latches and flipflops are minimum clock pulse width, setup
time, and hold time. A self-timed Design Library also holds
relative timing constraints between end signals on paths that
start at the same point but must arrive at their end points in
a pre-established sequence. The delay slack in each constraint
is parametrized and filled in during technology mapping.

A Technology Library for the chosen fabrication process will
fill in further details on gate and wire delays, minimum clock
pulse widths, etc. By using timing information stored in the
Technology Library with physical information obtained from
the chip, STA tools can compute and compare actual clock
pulse widths against required minimum clock pulse widths,
and add extra delay to repair inadequate pulse widths. The
repairs go into the next chip layout iteration. STA tools can
also repair relative timing constraints by adding sufficient
delay to the “late path” with the pre-established later arrival.

There are several STA decisions that one must make, each with
its own choices. Below, we will emphasize three important
STA decisions, and indicate the choices that we have made.

The first STA decision to make is where to insert delay
to repair an invalid timing constraint. One could insert the
delay at the end point of the pre-established later end signal.
Alternatively, one could insert the delay at a design-friendly
location that might be exercised less frequently per protocol
cycle and therefore retard the circuit performance less. Or one
could choose a repair point that is shared by multiple invalid
constraints, thus reducing the need to insert multiple delays.

We have chosen to specify a design-friendly delay insertion
point for each timing constraint. Each constraint stored in our
Design Library identifies a delay insertion point to use for
its repair. The Design Library may indicate that the delay is
symmetric or that it retards only rising or only falling signals.

We formulate timing constraints from the viewpoint of a
handshake component, even though the constrained paths may
start or briefly wander outside the component. The STA code
for a timing constraint stored in the Design Library records
when and where a constrained path enters and exits the
component. The “when” relates to a pre-established path signal
sequence. The “where” is always a handshake signal because
all components connect only through handshake channels. The
STA code can identify a constraint with an external start
point by identifying the two handshake signals that jointly
started there.3 Armed with this information, an STA tool can
instantiate the STA code stored in the Design Library, fill in
the sub-paths that are outside the component instance in the

3We use this, for instance, to formulate bundled-data setup time constraints.
Data flipflop FF D in the Storage component in Figure 1 (center-column-top)
has a setup time constraint with an external start point identified as the point
where handshake signals in1 R and in1 D jointly started.

3

Pre-
pu

bli
ca

tio
n JC

ST
20

15

gate-level netlist, and complete the path-finding process in a
modular fashion.

The second and equally important STA decision to make is
when to insert delay. The many timing constraint instances
associated with a gate-level netlist might not be independent
to each other. Inserting delay to repair one invalid constraint
instance may repair or invalidate others.

We use an iterative process similar to [14] for delay insertion.
During STA, we group timing constraint instances that share
the same delay insertion point instance4 for repair. For each
delay insertion point and its group of constraints, we maintain:

• a list with delays of the constraints in the group,
• the maximum delay in the list, and
• the sum of the delays in the list.

The delay value of a constraint indicates the least delay one
must insert into the gate-level netlist to make the constraint
valid. The STA process stages delay insertion iteratively, in-
serting more delay at only one insertion point per iteration. As
mentioned earlier, constraints are not necessarily independent,
and so inserting more delay into the netlist to repair one
constraint may repair others as well, or possibly damage them.
Therefore, after each iteration the STA process re-computes
the delay requirements for all constraints. The process is as
follows:

• Start the first STA iteration, with all delays set to zero.
• After each iteration, update the information for each

insertion point. For valid constraints, set the delay to zero.
For invalid constraints, set the delay to a re-computed
minimum delay mismatch rounded up to the best suitable
delay device available in the Technology Library.

• If all groups have a maximum delay of zero then all
timing constraints are satisfied, iteration ends, and the
netlist can proceed to the next stage in the chip design.

• If one or more groups have non-zero delay, another
iteration begins by adding delay to the worst offender.
As worst offender, our process chooses an insertion point
from those with the highest delay sum. The added delay
is the maximum delay listed for this worst offender.

This process is not necessarily monotonic in the number
of valid constraints, but it will converge unless constraints
are circularly dependent, which rarely happens. Circularly
dependent constraints force one to choose different delay
insertion points or even different timing constraints.

Having discussed where to insert delay and when to insert it,
we now come to the third and most important STA decision
to make: what STA engine to use. Conventional STA tools are
difficult to use on self-timed circuits because such tools fail to
handle logic loops gracefully. Simple treatment of such loops
is acceptable for the conventional design process because they
are rare in clocked systems — loops in clocked systems tend
to start and end at flipflops. Self-timed circuits, however, are

4We may use “constraint” and “insertion point” when it is clear from the
context that we mean “constraint instance” and “insertion point instance.”

rich with logic loops, as they must be because the unstable
behavior of closed logic loops animates self-timed behavior.

Graceful analysis of rise and fall times and delay of gates in
logic loops requires a two-pass process. A first pass computes
output rise and fall times from gate size, gate load, and
input rise and fall times. This pass converges very quickly
because output rise and fall times are a very weak function,
almost independent, of input rise and fall times. A second pass
computes the delay of each gate using the input rise and fall
times from the first pass.

Conventional STA tools combine those two passes into one
concurrent process. They split loops into linear acyclic paths
to make a one-pass estimation effective. Moreover, they com-
monly use a “clock,” rare in self-timed circuit designs, to guide
where to split each loop. Some self-timed design groups have
invested heroic effort in fresh ways to split loops in order to
apply conventional STA tools to self-timed systems [22], [23],
[14], [24], [25], but none work truly gracefully.5

The time has come to use a two-pass process to analyze loops
intact. Loops are, after all, central to self-timed circuit design.

Our STA engine is set up to work self-standing or with an
existing STA tool. Its internal algorithms to find paths and
calculate path delays are still too coarse-grained to replace
existing STA tools, but adequate for early design exploration.
We use the STA engine in self-standing mode to evaluate
the timing in new handshake components before we have
formalized timing constraints using ARCtimer — the timing
verification framework discussed in Section III. We use the
self-standing mode again to validate the STA code for the
timing constraints produced by ARCtimer and stored in the
Design Library. By inserting pseudo-random delays at multiple
pseudo-randomly selected points in the netlist we force the
STA engine to recompute compensating delays, and then we
simulate and test the repaired netlist for correct functionality.
The Click Storage constraints in Figure 10 of Section III-C1
have been validated in this way for 15743 “pseudo-random”
test cycles.

II-E Summary

The Design Library stores verified components for use in chip
designs. The Design Library appears in the center column of
Figure 1 because it connects the chip’s design flow on the
left and the component’s timing verification framework on the
right. Once verified, a component may be used in many chip
designs. Because closed loops are central to self-timed circuits,
the time has come for STA tools to avoid splitting loops and
instead to analyze loops intact.

5This applies also to the Click self-timed circuit family, which was
developed specifically to work with conventional STA and test tools [14].
Click circuits use only flipflops as state-holding elements, and have a flipflop
in every loop. Some Click loops, however, go through flipflops and fail to
start or end at flipflops. Conventional STA tools require splitting such loops.

4

Pre-
pu

bli
ca

tio
n JC

ST
20

15

III TIMING VERIFICATION FRAMEWORK

The spiral in Figure 1 shows the four main steps in our
timing verification framework6 for handshake components. We
call this framework ARCtimer. The steps use the keywords:
Handshake Component (Step 1), Model Checker (Step 2),
Timing Patterns (Step 3) and Static Timing Analysis (Step 4).
Step 1 begins and Step 4 ends in the yellow center column with
the Design Library of component descriptions for each circuit
family supported by the design flow. This paper illustrates the
steps for a Click Storage component with single incoming
and outgoing channels. This same component appears in
subsequent sub-sections of this paper to explain each step.

We use this framework in two ways, with and without priming.
Without priming, ARCtimer takes the circuit and protocol
descriptions of a component and helps us uncover all the
timing constraints. The set of timing constraints thus pro-
duced ensures that the circuit obeys the protocol. ARCtimer
works well without priming for simple components such as
the Storage and Join in the Fibonacci design in Figure 1
(left-column). For complex, nondeterministic, or data-driven
components the run time and space limitations of underlying
tools may necessitate priming ARCtimer with a starter set of
timing constraints and using ARCtimer to complete the set.

The sub-sections below explain each step in more detail.

III-A ARCtimer Step 1 — Handshake Component

A handshake component responds to the full and empty state
of its channels, as we illustrated earlier in Section II-A for the
Storage and Join components in the Fibonacci design.

The circuit-level representations for full and empty channels
depend on the variant of the handshake protocol used. Many
circuit families, including Click [14], Micropipeline [5], and
Mousetrap [13] use a two-phase non-return-to-zero (non-RTZ)
protocol with separate request and acknowledge wires to
encode full or empty. GasP uses a two-phase return-to-zero
(RTZ) protocol [9], [10] with a single statewire to represent
full or empty. Figure 2 shows the default representations for
full and empty in two-phase non-RTZ and two-phase RTZ
handshake protocols.

In general, the control logic of a handshake component is
an AND function of the conditions necessary for it to act.
Complex handshake components may have multiple such
AND functions to guard different actions. The Click Storage
component in Figure 1 (center-column-top) has one such AND
function — labeled and2.

The response of a handshake component usually changes the
state of one or more of the channels to which it responded.
Many components drain full incoming channels and fill empty
outgoing channels. Thus, there is a feedback loop from channel

6We use the term “framework” because we already reserved the term
“system” for large-scale designs, and because the term “flow” is often
associated with automatic solutions and we seek to avoid that connotation.

state to component action to channel state. The Click Storage
component in Figure 1 (center-column-top) has two such
loops: one for channel in1 from in1 R through gates xor in1,
and2, FF to in1 A; another for channel out1 from out1 A
through gates xnor out1, and2, FF to out1 R.

The AND function coordinates the two loops and makes the
Click Storage component “act.” The component’s gate-level
actions are similar but more refined than its GUI-level actions
described in Section II-A. The action triggers when in1 is full
(in1 R 6= in1 A) and out1 is empty (out1 R = out1 A) —
see Figure 2. When detected, these cause rising transitions on
xor in1 and xnor out1 that in turn cause AND function and2
to rise. A rising transition on and2 clocks the edge-triggered
flipflops and starts three actions concurrently:

• FF D captures and copies data from in1 D to out1 D.
• FF inverts the value on signal in1 A, thus draining in1.
• FF also inverts the value on out1 R, thus filling out1.

The now empty in1 and now full out1 reset xor in1 and
xnor out1 to low, each of which resets and2 to low, thus
bringing the Click Storage circuit back to an initial state where
it can coordinate the next full in1 and empty out1 handshakes.

We initialized the Click Storage circuit in the Design Library
of Figure 1 (center-column-top) with all channels empty. All
its signals have a logical value of 0, except for the output of
xnor out1 and the D input of FF which are 1, as indicated.

This initial state in the Storage circuit matches the initial
state in the compact Storage Protocol description in Figure 1
(center-column-middle) and the grey-colored state 0 in the
corresponding finite state machine expansion (right column).

One can choose various specification formalisms to describe
the protocol behavior of a single handshake component or of
a self-timed network of handshake components. Dialects of
Communicating Sequential Processes (CSP), sometimes called
Communicating Hardware Processes (CHP), are very popu-
lar [6], [8]. The Calculus of Communicating Systems (CCS)
forms the basis of the self-timed circuit verification work
in [23], [26]. Signal Transition Graphs and Petri Nets form
the basis of the self-timed circuit verification and synthesis
work in [27], [28], [29].

The goal of this paper is merely to show how to verify single
components. We consider here neither how to synthesize a
component nor how to verify networks of them. This limited
goal gives us the leisure of selecting a formalism whose
specifications are both compact, i.e. short and easy to under-
stand, and complete, i.e. fully delay-insensitive. We found a
suitable formalism in the theory of Delay-Insensitive Algebra
developed by [30], [31], [32]. Delay-Insensitive Algebra also
underlies [33] which uses it to build a verification framework
for self-timed circuits. Our goal is much simpler than any of
the synthesis and verification work built on Delay-Insensitive
Algebra. We merely seek compact and complete specifications
that allow us to verify that a component’s circuit has the same
choices of action as specified by the component’s protocol. We
seek to avoid premature commitment to a verification tool.

5

Pre-
pu

bli
ca

tio
n JC

ST
20

15

Delay-Insensitive Algebra uses finite traces of events that
specify not only safety properties, but also liveness properties
that are crucial for distinguishing choices of action. It uses
an interleaving semantics that represents parallel events by
ordering them arbitrarily.

The protocol description in Figure 1 (center-column-middle)
first identifies the signals coming into the Click Storage (Input)
and those going out (Output). This information will be used to
complete the compact description into a fully delay-insensitive
one. Next come the handshake event orderings for the two
channels. Each event is either a rising or a falling signal transi-
tion. Each channel of the Click Storage component starts with
an event on its request signal, and thereafter alternates events
on its request and acknowledge signals, This corresponds
to the basic two-phase non-RTZ handshake communication
protocol for an initially empty channel, illustrated in Figure 2.
Last comes the protocol description P — a compact repetitive
sequence of four consecutive input-output events:

P = in1 R ; in1 A ; out1 R ; out1 A ; P.

In this form, protocol P says that the Click Storage component
must wait for input event in1 R before it produces output event
in1 A followed by output event out1 R, after which it waits
again until it receives another input event, namely out1 A,
before it repeats the same protocol, P.

The delay-insensitive interpretation of P allows more behav-
iors. The interpretation is based on what is popularly known
as the Foam Rubber Wrapper metaphor, a term for delay-
insensitive communication introduced by the late Charles Mol-
nar. The idea is that an event may be delayed for an arbitrary
time when it travels between sender and receiver components.
Thus, an input event in an event sequence specified by P
might have occurred as early as its generation or as late as its
receipt, or anywhere in between. Hence, input events in1 R
and out1 A in P may move to earlier positions in the sequence
provided each input follows the previous output event on the
same channel, as specified in the handshake event orderings.
Likewise, output events in1 A and out1 R may move to later
positions in the sequence provided each output precedes the
next input event on the same channel.

We use tools developed for Delay-Insensitive Algebra in [32]
to complete the compact protocol description expressed as
P automatically into a fully delay-insensitive description ex-
pressed as the finite state machine in Figure 1 (right-column).
Figure 3 repeats both descriptions.

The finite state machine in Figure 3 (bottom) describes the
various event sequences and event choices at the pair of
channel interfaces of the Storage component. It also describes
the progress expectations at each state in an event sequence.
The triangles (5) denote transient states that may persist
only for a finite time. Triangular states typically respond
to handshake output events, which are controlled by the
component. The underlying assumption is that the internal
circuit actions leading up to the output event will finish within

a finite amount of time. 7 This is valid for most actions,
with the possible exception of non-deterministic arbitration —
absent from a Storage component. The rectangles (2) denote
non-transient states that may persist forever. Rectangular states
typically produce only input events — events controlled by
the component’s environment. The underlying assumption is
that the environment might be lazy and never act. The finite
state machine constrains the component to exit a transient state
within unbounded but finite time, but allows it to remain in a
non-transient state forever.

Note that these descriptions can be used for any Storage
component with single incoming and outgoing channels and
two-phase non-RTZ handshakes. One can easily envision how
to generalize both descriptions to arbitrary numbers of chan-
nels. Other handshake components, such as the Join in the
Fibonacci design of Figure 1 (left-column-top), and even non-
deterministic and data-driven components, also have relatively
simple compact descriptions that are easy to understand [32].

The combination of a compact protocol description, P, and
tool automation to complete P into a fully delay-insensitive
description helps avoid over-specifying components. Avoiding
over-specification is important and harder than one might
think. We inadvertently and repeatedly over-specified the
handshake behavior of a component using the approach
in [23], [26], which requires complete specifications in CCS
without tool support to help make them.

Note:
It may be worthwhile to revisit and simplify the theory
of Delay-Insensitive Algebra, “building it down” to be just
barely expressive enough to describe compact protocols for
single handshake components while preserving the ability to
complete these descriptions automatically into fully delay-
insensitive finite state machines as seen in Figure 3. The
simplified theory would be easier to support with tooling and
to re-use in other self-timed design and verification flows.

III-B ARCtimer Step 2 — Model Checker

Figure 3 illustrates how one can model the protocol of a
handshake component as a finite state machine. The machine
serializes sequential as well as parallel events and captures the
serialized behavior in event-based state transitions, state tran-
sition choices, and transient and non-transient states. Similar
finite state machine descriptions can model gates, wires, the
network of gates and wires that form the circuit of a handshake
component, and even the timing constraints of a handshake
component. Verifying that the component’s circuit meets the
component’s protocol under the component’s given set of
timing constraints thus becomes a model checking task [34].

What model checker should one use for this task? The two
basic choices are a general-purpose model checker that is
widely used or a model checker customized to fit the self-timed

7This assumes that the gates and wires are well-designed, and goes back
to designing circuits using the theory of Logical Effort [4] — see Section I.

6

Pre-
pu

bli
ca

tio
n JC

ST
20

15

computation theory of one’s choice. Analyze and Artist in [23],
[26] are examples that use customized model checkers with a
trace semantics and a CCS based logic conformance relation.
They model and verify that the timing-constrained circuit
meets the protocol. Process Spaces and FIREMAPS in [33],
[35] are examples that use the theory of Delay-Insensitive
Algebra for both the modeling and the model verification task.

A major advantage of a customized model checker is that the
theory is already built into the model checker. For instance, a
model checker built on Delay-Insensitive Algebra can use the
finite state machine description in Figure 3 (bottom) directly.
On the other hand, a customized model checker tends to
have few and highly specialized users and few test examples,
and may be flawed by various subtle bugs that make it hard
to use for new examples. A major advantage of a widely
used general-purpose model checker is that it has many users
and many diverse test examples, and so its bugs tend to be
discovered and repaired.

We experimented with both customized and general-purpose
model checkers. We have found customized model checkers
especially hard to use for modeling and verifying the protocols
and circuits of non-deterministic and data-driven handshake
components. Moreover, we mistrusted some of the verification
results that we obtained. We resolved the difficulty in modeling
the protocols by using formalisms and tools developed for
Delay-Insensitive Algebra, as explained in Section III-A. Other
difficulties vanished with use of a general-purpose model
checker. General-purpose model checkers force one to indicate
explicitly both what to verify and how to execute the various
parts of a model. Although explicitness requires more work,
it gives one full control over one’s own experiments.

The experiments and code fragments reported in this paper are
based on NuSMV [36], a model checker that is freely available
and has an active and diverse user community. NuSMV has
helped us generate and verify timing constraints for widely
different components with deterministic, non-deterministic,
and data-driven handshake behaviors. The timing verification
work in [37] each use NuSMV but verify fewer properties than
we do, as we will explain in Sections III-B1–III-B2 and IV.

Figure 4 shows what a general-purpose model checker must
have and do to verify a handshake component’s circuit against
its protocol under a given set of timing constraints. Note that
besides models for the circuit, protocol, and timing constraints,
there is the component’s environment — a model for the
environment in which the component’s circuit operates. We
model the component’s environment by providing a separate
interface for each channel that responds to channel outputs in
any of all the valid ways possible for that channel.

The following sub-sections give a more detailed explanation
of Figure 4, including code fragments with NuSMV solutions.

III-B1 Modeling the Component’s Protocol:

Figure 5 repeats the complete, fully delay-insensitive protocol
specification of Figure 3 (bottom) and shows its translation

into NuSMV model checker lingo.

The translation is wrapped in a self-contained module,
with the abbreviated name protocol, with formal parameter
names for the handshake signals. The module’s full name is
Click Storage 1 In 1 Out Protocol.8 We store such modules
in the Model Checker Library — see Figure 4.

The first part of the translation, up to line 26 in Figure 5,
codes the states, initial state, and event-based state transitions
of the protocol. Each translated state name begins with the
letter s followed by the original state number — e.g. initial
state 0 (top) translates to s0 (bottom). The original proto-
col specifications in Figure 3 specify only legal states and
transitions, omitting illegal and irrelevant ones. The omissions
must be coded, however. We code two types of error states to
receive illegal handshake transitions: illegal channel outputs
go to errorOUT, and illegal channel inputs go to errorIN. All
other events, irrelevant to the protocol, preserve the protocol’s
state. The resulting code forms a monitor. It will be used
to monitor the Component’s Test Circuit — the sub-system
inside the broken line in Figure 4 (middle) which holds the
component’s circuit, environment, and timing constraints.

To monitor the Component’s Test Circuit the protocol operates
in synchronous mode, as we already mentioned in Figure 4.
This means that the protocol’s finite state machine code is
executed in each execution step by the model checker. NuSMV
uses the keyword TRANS in line 6 of Figure 5 to indicate
that the next statement is to be executed in synchronous
mode. The next statement, enclosed by the keywords case
and esac in lines 7 and 26, is precisely the monitor code of
the component’s protocol in the rightmost white rectangle in
Figure 4.

The purpose of monitoring the Component’s Test Circuit is to
annotate its behavior for verification. Verification is done by
checking properties. The properties in lines 28–50 of Figure 5
specify what the protocol must see when it monitors the
Component’s Test Circuit.

The properties in the second part of the code, lines 28–50,
are inherent in the protocol specification, and translated along
with the rest of the code. The two safety properties in lines
30–31 allow only legal handshake behaviors. The five progress
properties in lines 33–37 allow the five transient states to
persist for only a finite time. The transient states correspond to
the triangles (5) in the original specification. The remaining
choice equivalence properties spell out the choices of action
that must be available to the observed sub-system to meet the
protocol specification. These might be refined with additional
event information, if needed. The structure of these properties
is quite straightforward for the Click Storage component, but
becomes more interesting for non-deterministic components.

The progress and choice equivalence properties are absent
from the NuSMV based timing verification work in [37]. We

8Its un-abbreviated name says that the module has the protocol translation
for a Click Storage component with 1 incoming and 1 outgoing channel.

7

Pre-
pu

bli
ca

tio
n JC

ST
20

15

will come back when we compare related work in Section IV.

III-B2 Modeling the Component’s Circuit and Environment:

Figure 6 repeats the gate-level Click Storage circuit and
environment models in Figure 1 (right-column-top) and shows
the corresponding gate-level NuSMV translation, using two
gate models, cgate and ff posedge that are defined in Figure 7.

The two translations are wrapped in self-contained modules
with formal parameter names to support the exchange of hand-
shake and timing constraint signals. For this paper, we abbre-
viated the module names Click Storage 1 In 1 Out Circuit
and Click Storage 1 In 1 Out Environment to circuit and
environment, respectively. These contain the code for the
middle two white rectangles with horizontal text in Figure 4.

The Click Storage Circuit shown in Figure 6 (top) contains
five more buffers than the original circuit description in the
Design Library of Figure 1 (center-column-top). The extra
buffers are colored grey and named buf in1 A1, buf in1 A2,
buf out1 R1, buf out1 R2, and buf ck. The translation adds
these buffers to delay wires and individual wire branches
independently from gates. Buffers are necessary because the
model checker ignores wire delays. Adding a buffer or inverter
device to a logical wire connection makes that connection
visible to the model checker as a device output with a device
delay. It suffices to add buffers only to wires that branch
out and to wires that clock edge-triggered flipflops. It is
straightforward to adapt a compiler that generates the original
circuit description to generate also the description for the
model checker. The circuit description for the model checker
also contains datapath signals in1 D and out1 D and datapath
flipflop FF D, which are omitted from Figure 6 because they
are outside the scope of this paper.

Figure 6 (bottom) shows the translated circuit module in lines
1–18 and the translated environment module in lines 21–30.
Lines 3–12 describe the gate instances and their connections
for the circuit. Lines 23–24 do the same for the environment.
Most gates are instantiated as process cgate (function,. . .)
where function is a Boolean logic combination of the module’s
parameters and outputs of other gates. The instances have
the same names and logical functions as in Figure 6 (top).
For example, gate instance xor in1 in line 3 computes the
exclusive-or of parameter in1 R and buf in A2.val, the output
of gate buf in A2. Likewise, positive edge-triggered flipflop
instance FF in line 7 copies and stores the value on inv q2d.val
onto its output q whenever its clock input buf ck.val changes
from low (FALSE) to high (TRUE). The signal definitions in
lines 14–17 and 26–29 following the keywords DEFINE serve
to shorten and simplify various code fragments.

The operations of the circuit and its environment are monitored
by the protocol, as explained in Section III-B1. Because we
describe protocols with Delay-Insensitive Algebra, which uses
an interleaving semantics, the protocol model interleaves its
events. Thus, the protocol can interpret handshake events only
when they arrive in sequence. Consequently, the circuit and

its environment must interleave all handshake events because
these are the events they share with the protocol. To simplify
the overall execution, we chose to interleave not just the
handshake events but all events generated by cgate instances in
the circuit or its environment. 9 NuSMV pairs the keywords
process and cgate in lines 3–12 and 23–24 to indicate that
the cgate instance is to be executed in asynchronous mode by
interleaving its operations with those of other process cgate
instances.

The asynchronous interleaving mode of operation comes with
a cost of fairness conditions for selecting which process cgate
operation to run next. The protocol assumes that most circuit
operations take a finite time. It expects the circuit to generate
a handshake output within a finite number of execution steps
after receiving a handshake input from its environment. The
NuSMV code for the protocol uses progress properties to
formulate and verify these expectations — see lines 33–37
of Figure 5. To satisfy these progress properties, each process
cgate instance in the module must be selected to run after
every so many unbounded but finite execution steps. The
NuSMV statements FAIRNESS running in lines 18 and 30 of
Figure 6 enforce precisely that.

The remaining code details can be explained by examining the
module definitions for cgate and ff posedge in Figure 7.

The module definition of cgate, i.e. “combinational gate,”
follows in lines 1–20 of Figure 7. Each cgate takes an
arbitrary Boolean combinational logic function through its first
parameter, set. For example, the cgate for xor in1 in line 3
of Figure 6 takes in1 R xor buf in1 A2.val — the exclusive-
or of Boolean signals in1 R and buf in A2.val. The second
parameter, init val, contains the initial value of cgate output
val, assigned in line 6 of Figure 7. For example, the output
of xnor out1 in line 4 of Figure 6 is initialized to TRUE,
which corresponds to the value 1 indicated for the xnor out1
output in Figure 6 (top). When a cgate instance is selected to
run, it evaluates its set function. Depending on the other input
parameters in Figure 7, it either updates its output val with the
set result (line 10 or 11) or does nothing (line 9 or 10). Only
lazy or timing constrained cgate instances may do nothing.

A cgate is lazy if its third parameter, lazy, is TRUE. For
example, both the Click Storage Environment gates ENV in1
and ENV out1 in lines 23–24 of Figure 6 (bottom) are lazy.
A lazy cgate has an arbitrary choice either to act by setting its
output val to the result in set or to do nothing by keeping the
old value of val. This nondeterministic choice is indicated in
line 10 of Figure 7 by the curly brackets around val and set.

Timing constraints may prevent a cgate output transition from
FALSE to TRUE (rise), from TRUE to FALSE (fall), or both.

9This simple mode of interleaving can be combined with a simultaneous
mode of operation [37] for internal gates that generate non-handshake events,
allowing arbitrary subsets of these to operate simultaneously. Such a simulta-
neous mode of operation would, however, require tighter fairness conditions
than the FAIRNESS running in lines 18 and 30 of Figure 6 (bottom) in order
to satisfy the protocol’s progress properties in lines 33–37 of Figure 5.

8

Pre-
pu

bli
ca

tio
n JC

ST
20

15

Output val cannot rise in line 9 of Figure 7 if the fourth
parameter stop rise is TRUE, and neither can it fall if the
fifth parameter stop fall is TRUE. In Section III-C, we will
discuss how timing constraints control the run-time values of
stop rise and stop fall in the various cgate instances.

It is possible that a cgate instance, poised to have its output rise
or fall, fails to be selected and do the output transition before
a new set value arrives that disables the transition. For cgate
instances used in self-timed circuits, the presence of a later set
value overtaking an earlier one often indicates the presence of
a race condition. We therefore flag such overtakings for later
inspection. A variable with the name semimodular, initially
TRUE (line 7), becomes FALSE at the first such overtaking
(lines 15–16) when the next execution step no longer shows
an enabled transition (next(val)=next(set)) but also shows no
sign of having taken it (next(val)=val). The NuSMV model
checker updates variable semimodular (lines 14–18) at each
execution step, as indicated by the keyword TRANS in line 13.
The “digital health” property in line 20 requires semimodular
to be TRUE at all times, and flags any change to FALSE.

Variable semimodular in Figure 7 has been aptly named.
Semimodularity is a well-known paradigm for designing self-
timed digital circuits without hazards by insisting that digital
signal changes occur before being disabled. One might call it
the “no change left behind” paradigm. Introduced by David
Muller [38] and brought to the attention of a wider audience
through Raymond Miller’s 1965 book [39] semimodularity
formed the starting point of the first generation of self-timed
circuit design tools [27], [28]. Though semimodularity is still
an important paradigm for designing and verifying self-timed
circuits, new design trends for fast, energy-efficient self-timed
circuits [18], [40], [19], [20] force it to share that position
with Relative Timing [41]. The NuSMV code in lines 14–18
of Figure 7 for updating the variable semimodular is based
on a new definition of semimodularity for timing constrained
self-timed circuits, presented by us in [42].

The module definition of ff posedge in lines 22–31 of Figure 7
models a positive edge-triggered flipflop. The flipflop copies
and stores the value of its second parameter, d, onto its output,
q, whenever its first parameter, ck, changes from low (FALSE)
to high (TRUE), as indicated in line 29. The value of output
q is initialized through the third parameter, init q (line 26).
Instances of ff posedge run each execution step, as indicated
by the keyword TRANS in line 27.

To time and verify each ff posedge instance, we pair it with
a process cgate instance as its clock buffer. The clock buffer
provides the timing flexibility in selecting when the flipflop
acts. We verify the semimodular behavior of the clock buffer to
ensure that all “clock” transitions issued by the and2 gate reach
the flipflop — see Section III-A for a reminder on “clocking.”
This explains the extra buffer buf ck in Figure 6 (top): it is the
clock buffer for flipflop FF. It is possible to model ff posedge
so it can be timed and verified without the extra clock buffer,
but to do this properly requires modeling data — which falls

outside the scope of this paper.

Gate models cgate and ff posedge in Figures 6–7 have
NuSMV code descriptions reminiscent of code descriptions
in a hardware description language like Verilog. We chose
to use a general gate model for cgate, capable of modeling
all combinational gates in the Click Storage component. This
is possible because each gate instantiated in the component’s
gate-level netlist in Figure 6 (top) has a behavioral description
of its Boolean logic function. When instantiated with the
signals coming into the gate, this Boolean logic function
becomes the set function of the corresponding cgate instance
in Figure 6 (bottom). One could follow a similar approach for
sequential gates and define a general gate model capable of
modeling all sequential gates, as is done in [43]. We refrained
from doing this here because Click components use only one
type of sequential gate — a positive edge-triggered flipflop.
Instead of using a few general gate models, one could define a
dedicated model for each gate with a different logic function,
and connect the gates by connecting their signal names. This
is done in [37]. Figure 6 would require eight such dedicated
gate models: two for the lazy environment, and six for the
circuit. Dedicated gate models produce a larger Model Checker
Library to characterize, but they contain extra connectivity
information that could be useful.

III-B3 Instantiating the Models in a Model Checker Netlist:

Figure 8 repeats the middle grey rectangle of Figure 4 with the
Model Checker Netlist but omits the white rectangle for the
Component’s Timing Constraints. It also shows the NuSMV
translation with a single protocol, circuit, and environment
instance for each. The keywords process in lines 4–5 indicate
that the model checker will run the circuit and environment
instances in asynchronous mode by interleaving their events.
The FAIRNESS running command in line 11 insists that the
event selection between the two instances be fair. The lack
of keyword process in line 3 indicates that the protocol
instance runs in synchronous mode. This matches the modes
of operation specified earlier in Figure 4.

In Section III-C, we will verify the “digital health” and
protocol properties in the code of Figure 8, analyze any
failing properties, and generate timing constraints to correct
the failures. In Section III-D we will revisit Figure 8 and
upgrade its NuSMV code by adding the missing constraints.

III-C ARCtimer Step 3 — Timing Patterns

When the model checker runs the code in Figure 8 it reports
multiple failing properties. For each failing property it gives a
counterexample — a computation path that fails that property.
Failing properties expose delay sensitivities in the design.
A counterexample not only exposes a delay sensitivity, but
also contains “clues” about how to prevent it from becoming
hazardous. These clues can be captured in a form suitable for
verification and correction — and thus prevention.

9

Pre-
pu

bli
ca

tio
n JC

ST
20

15

There are various options available for capturing clues. For
instance, [44] assigns metric delay bounds to each gate in
the circuit and its environment, capturing each clue as a
tighter metric delay bound and calls this a timing constraint.
Alternatively, a clue can be captured as a relative ordering of
events and be called a chain constraint as in [33], [35], or a
(relative) timing constraint as in [45], [29], [46], [23], [26].

Here, we capture a clue as a relative ordering of events and
call this a relative timing constraint, or simply constraint.

Analyzing a counterexample to capture the clue it contains
always requires finite state machine analysis around the failing
step. Many of the approaches referenced here, notably [44],
[46], [29], [47], [26], provide heuristics to capture the clue
as a constraint and to generate the constraint automatically.
These heuristics are, alas, tightly coupled to the underlying
tools and theory and thus hard to transfer to other verification
flows.10

To share understanding of what is involved in analyzing a
counterexample, this paper analyzes the two counterexamples
of Figure 9 for the netlist of Figure 8 — one failing a
“digital health” property and the other failing a protocol prop-
erty. Section III-C1 analyzes each counterexample, extracts
its clues and formulates them as relative timing constraints.
Section III-C2 shows a way to model these constraints.

It is well to remember that the generation of relative timing
constraints comes early in the design process, as part of
building the library of handshake components — the Design
Library in Figure 1 (center-column). Once constraints are
known and stored in the Design Library, they are used over
and over again for every chip design. Thus, the time taken for
constraint generation plays only a small role in the overall time
from design to market. We therefore have the leisure to make
the constraints understandable to the component’s designer,
and to increase their robustness to circuit modifications applied
later in the design process. We do this by formulating the
constraints as timing patterns, in support of the design patterns
that the designer selected for the component’s circuit and
family. The highly general and highly robust timing patterns
derived for simple components can form a starter set for
priming complex components. More detail on timing patterns
appears in Section III-C3.

III-C1 Analyzing Counterexamples:

Figure 9 (right) shows two counterexamples for the NuSMV
netlist in Figure 8. To ease following the paths in each
counterexample, Figure 9 also repeats the gate-level circuit
diagram of the Click Storage circuit and environment. Both
counterexamples describe a path of events starting from the
initial state. State names, like s0 for the initial state, are filled
in by the component’s protocol — the vertical rectangle in the

10(See also Note on page 6 in Section III-A)
It may be worthwhile to revisit the existing heuristics on automatic generation
of constraints from counterexamples and “build down” the surrounding theory
to be just expressive enough for heuristic constraint generation. The extracted
heuristics would be easier to support with tooling and to re-use elsewhere.

netlist diagram of Figure 8. The protocol description for the
Click Storage component can be found in Figure 5.

The two counterexamples show that if gates and wires have
arbitrary delays it is harder to guarantee the simple operational
descriptions of handshake components and handshake channel
interfaces given in Section III-A and Figure 2.

The first six execution steps, run steps 1–6 in Figure 9, are
the same in both counterexamples. In step 1, ENV in1 raises
ENV in1.val. The rising transition is denoted by the symbol
“+” at the end of ENV in1.val. For a falling transition we
would have used the symbol “−.” Remember that a gate name
with suffix “.val” denotes the gate’s output — see Figures 6–7.
Because ENV in1.val is an alternative name for in1 R, this
step changes the protocol state to s1. With in1 R high and
in1 A still low, incoming channel in1 is now full. This is
detected by gate xor in whose output rises in step 2. With
both its input signals high, AND function and2 now “acts” as
follows. First and2.val rises (step 3), and then clock buffer
output buf ck.val rises and clocks flipflop FF, causing its
output FF.q to rise (step 4). From here on, the ordering of
execution steps depends on the delays of the logic gate in the
feedback loops from FF.q back to buf ck. There are four such
feedback loops — two per channel, on each side.

Both counterexamples focus on the two feedback loops at the
out1 side. They show what happens when the two feedback
loops are equally fast, and what happens when both are
faster than the two feedback loops at the in1 side. The
examples both next select to change buf out1 R1 in step 5,
raising buf out1 R1.val and thus out1 R, which changes the
protocol state to s3. Outgoing channel out1 is now empty. In
step 6, both examples then raise buf out1 R2.val, making gate
xnor out1 aware that out1 is empty by enabling xnor out1.val
to fall. In step 7, the two counterexamples diverge.

The example in the left box of Figure 9 selects ENV out1,
raising ENV out1.val and thus out1 A, which changes the
protocol state to s4. The change in out1 A also makes channel
out1 full and prevents xnor out1.val from falling before it took
the opportunity to fall. This causes xnor out1.semimodular to
become FALSE (lines 15–16 of Figure 7) which is flagged
because the gate has failed the “digital health” property, called
CTLSPEC AG semimodular (line 20 of Figure 7).

A semimodularity failure like this could happen in a chip
design if the internal path through the circuit, from FF.q via
buf out1 R2 to xnor out1, were to take about the same time
as the external path through the environment, from FF.q via
buf out1 R1 to xnor out1. Were this to happen, it would
render exclusive-NOR gate xnor out1 useless as a detector
of full and empty channel states, thus defeating the handshake
protocol on out1. To differentiate a full from an empty channel,
xnor out1 must have enough time to receive and respond
to the internal representation for out1 R, as captured by
buf out1 R2, before the environment responds with a next
state change through out1 A. This is the clue we are seeking.
Given that both inputs for buf out1 R1 and buf out1 R2 start

10

Pre-
pu

bli
ca

tio
n JC

ST
20

15

at FF.q, or even at the AND function and2.val before that,
we can capture this clue in the counterexample in one of the
following two ways:

• After FF.q rises, xnor out1.val must fall before out1 A
rises. Following the notation of [23], [37] we denote this
as: FF.q+ → xnor out1.val− < out1 A+.

• If ¬FF.q holds while and2.val rises, then subsequently
xnor out1.val must fall before out1 A rises — denoted
as: (¬FF.q ∧ and2.val+)→ xnor out1.val− < out1 A+.

The second formulation of the captured clue matches relative
timing constraint rt3 in Figure 10. A similar counterexample
exists for the case that FF.q holds while and2.val rises, leading
to rt4. Two more such counterexamples can be found by
exchanging the two feedback loops at channel out1’s side
for the two feedback loops at channel in1’s side. The four
relative timing constraints rt1 to rt4 in Figure 10 block all
such counterexamples.

Semimodularity failures are easy to solve: instead of disabling
the transition, take it! This simple heuristic, however, tends to
push the semimodularity failure to the next gate, just as a
snow plow pushes snow elsewhere. This happens for instance
between rt7–rt8 and rt9 in Figure 10, each of which solve
a semimodularity failure. Constraints rt7 and rt8 solve a
semimodularity failure for gate and2 by pushing the failure to
the next gate, buf ck. Constraint rt9 solves the semimodularity
failure for gate buf ck by pushing the failure to FF, which
does not register this type of failure, and so the simple
heuristic snow plow stops here. Relative timing constraints
that merely push a semimodularity failure elsewhere fail to
be appealing and intuitive to the designer of the component
and are less robust to circuit modification applied later in the
design process. We will come back to this in Section III-C3.

The counterexample in the right box of Figure 9 avoids the
mistake of the first counterexample by taking the still-enabled
transition xnor out1.val− (step 7). It continues by resetting
the AND function and setting up the flipflop for the next
handshake coordination (steps 8–10). So far so good. But then,
it starts a second handshake on channel out1 (steps 11-12)
while ignoring the still outstanding first handshake on in1 —
forgetting that it “takes two to tango.” With in1 R high and
in1 A still low, input channel in1 is still full and xor in1 is
still high. As a result, the AND function “acts” prematurely
(steps 13–15) and coordinates the first handshake on in1 with
the second handshake on out1. This premature action of the
AND function causes a protocol failure in step 15.

This second counterexample violates the core purpose of the
Click Storage component, which is to coordinate exactly one
incoming handshake with exactly one outgoing handshake and
to repeat this for the successive handshakes on each channel.
For one-to-one coordination, the AND function must know
when a channel is willing to participate (“Shall we dance?”)
as well as when its participation is over (“Thank you!”). Each
channel indicates its willingness to participate by raising the

output of its exclusive-(N)OR gate, and each channel ends its
participation by lowering this same output. After each action,
both outputs must fall before either rises again. We capture
this clue in the counterexample in the following way:

• When and2.val rises, then xor in1.val must fall before
xnor out1.val rises. We denote this as:
and2.val+ → xor in1.val− < xnor out1.val+.

This formulation of the captured clue matches rt5 in Figure 10.
The related constraint, rt6, avoids similar counterexamples for
the reverse situation by preventing each handshake on in1 from
outpacing its handshake partner on out1.

Solving protocol failures may be hard and require rules of
thumb for designing self-timed circuits. For example [29]
experiments with slow versus fast input events to guide the
synthesis of self-timed circuits. By presuming a slow environ-
ment, it may be possible to generate rt5 automatically from
the second counterexample. We will come back to this in
Section III-C3.

III-C2 Modeling Relative Timing Constraints:

The relative timing constraints in Figure 10 capture the clues
from the various counterexamples generated by the model
checker. The two counterexamples of Figure 9 gave us rt3 and
rt5, and implicitly all six constraints, rt1 to rt6. The focus of
the current section is to expose the structure and operation of
all such relative timing constraints.

As mentioned in Section II-D, relative timing constraints are
constraints between signals at the ends of paths that start at the
same point — signals that must change in a pre-established
sequence. Each relative timing constraint identifies the point
where the paths split, called a Point of Divergence (POD)
in [23], [37] — here we call it myPOD. Each constraint also
indicates the two destinations, a pre-established “early” end
point and a pre-established “late” end point — we call these
myEARLY and myLATE, respectively. In addition the constraint
has a name, like rt1 in Figure 10 — we call this myNAME.

Our relative timing constraints have the following structure:
• myNAME : myPOD → myEARLY < myLATE

where
• myPOD is an abbreviation for: guardPOD ∧ eventPOD

◦ guardPOD is a guard, i.e. a Boolean logic expression
◦ eventPOD is an event, i.e. a rising or falling signal

• myPOD holds if and only if
◦ eventPOD occurs, and
◦ meanwhile guardPOD holds

• myEARLY and myLATE have similar structures:
◦ myEARLY abbreviates guardEARLY ∧ eventEARLY

◦ myLATE abbreviates guardLATE ∧ eventLATE

The better to distinguish guards from events, we underline
guards. We omit trivial guards, like TRUE. For instance, the
guards for myPOD in rt5 to rt11 are omitted for this reason.

Constraint myNAME :myPOD → myEARLY < myLATE says:

11

Pre-
pu

bli
ca

tio
n JC

ST
20

15

• if myPOD becomes valid
• then myEARLY must become valid
• before myLATE becomes valid.

One can use a constraint for analysis and report whether or not
it is satisfied for all possible computation paths of the system.
This is done, for instance, during static timing analysis —
see Section II-D. Alternatively, one can use a constraint as an
actuator — a delay device that retards eventLATE after myPOD
becomes valid by blocking eventLATE until myEARLY has
become valid. The model checker uses constraints as actuators.

Our model checker’s actuator model of constraint myNAME
is a three-state finite state machine extension of the two-
state version used in [37]. The three states are necessary for
modeling the non-trivial guards of myLATE in rt7 and rt8 of
Figure 10. We name the three states GREEN, YELLOW, and
RED.

Figure 10 (left) shows the stoplight model that we use as the
model checker’s actuator view of a relative timing constraint.
Both GREEN and YELLOW states permit eventLATE to
happen, while a RED state blocks eventLATE . Most constraints
start in GREEN, as do rt1 to rt11 in Figure 10 (right), and
proceed as follows:

• All constraints go to a GREEN state when myEARLY
becomes valid, because the need to retard eventLATE

vanishes with arrival of myEARLY.
• In GREEN, only myPOD can change the state, because

myEARLY and myLATE matter only after myPOD be-
comes valid. The stoplight changes from GREEN to
YELLOW if myPOD holds but guardLATE does not.
Only instances of eventLATE for which guardLATE holds
need blocking. The state changes from GREEN to RED
if both myPOD and guardLATE hold.

• Both YELLOW and RED states follow from arrival of a
valid myPOD but not yet a valid myEARLY.

• Before myEARLY becomes valid, changes in guardLATE

change the state from YELLOW to RED, and vice versa.
Such changing of the guard and the state happens in some
computations for rt7 and rt8 in Figure 10. The stoplight
state for rt7 or rt8 changes from RED, at myPOD, to
YELLOW, by rt5 and rt6, back to RED if xor in1.val+ or
xnor out1.val+ changes before and2.val−.

III-C3 Deriving Timing Patterns:

Failure analysis of the two counterexamples in Figure 9 of
Section III-C1 gave us the first six relative timing constraints
rt1 to rt6 of Figure 10. Constraints rt1 to rt6 are the weakest
relative timing constraints required to prevent the failures
exposed by the two counterexamples and similar examples.
The remaining constraints are also the weakest relative timing
constraints of their kind:

• Constraints rt7 and rt8 form the weakest relative timing
constraints to maintain the “digital health” of gate and2
as a semimodular gate. They go as far as to permit a

single rising and2 input after both inputs have gone low,
before they require and2.val to fall.

• Constraint rt9 is the weakest relative timing constraint to
maintain buf ck’s “digital health” as a semimodular gate.

• Constraints rt10 and rt11 are the weakest setup time
constraints for positive edge-triggered flipflop FF.

One can explore myNAME :myPOD → myEARLY < myLATE
expressions to get an idea which constraints are critical. One
way to do this is to estimate the elapsed time between myLATE
and myEARLY at full speed operation under reasonable gate
delays and in a reasonable environment, e.g.:

• Assume gate delays equivalent to 2 inverter delays for
X(N)OR, AND, FF. Assume zero delay for the grey
buffers. Replace the component’s environment in Figure 6
by two other Click Storage circuits, one on each channel.
Assume maximally parallel operation — no stalling.

• Under these assumptions, the cycle time for and2.val+ is
12 inverter delays, and the elapsed time from myEARLY
to myLATE is 4 inverter delays for rt1–rt4 and rt7–rt8,
6 for rt5–rt6 and rt9, and 9 for rt10–rt11.

With at least 4 inverter delays to spare in each constraint, these
estimations indicate that the risk for violating a constraint is
low and that none of the constraints rt1 to rt11 is critical.

Constraints rt1 to rt11 are the weakest possible constraints in
part because they are tightly coupled to the circuit. A tight
coupling between constraints and circuit is useful if the chip
uses exactly this circuit for each instance of the Click Storage
component — which is unlikely. For example, a technology
mapping tool might partition the AND gate into a NAND and
inverter, and a layout tool might add clock buffers. With a
NAND gate or extra clock buffers, constraints rt1 to rt11,
as formulated in Figure 10, no longer suffice because the gate
names and connections have changed. To make the constraints
suffice might require a grouping of gates in the new circuit
and a mapping of group names back to the old circuit. This
is common practice and not a problem in itself. The problem
is that not all renamings ensure that rt1 to rt11 still cover all
the properties in the new circuit — see Figure 11.

Ensuring that the renaming works for rt1 to rt11 may require
re-running the model checker on the new circuit. However,
re-running the model checker would defeat the purpose of
working with a Design Library of verified components and
would put the timing verification framework, i.e. ARCtimer,
in the critical design cycle of each chip. Our purpose holds to
keep ARCtimer firmly in the early part of the design process.

To hold this purpose, the constraints must work regardless of
circuit changes made during technology mapping or layout.
Figure 11 shows that constraints rt1 to rt11 fail this purpose.

In summary: We need general constraints that emphasize the
circuit’s intent rather than the circuit’s structure.

The component’s designer faces a similar issue when choosing
appropriate structures for the component’s circuit. To make the

12

Pre-
pu

bli
ca

tio
n JC

ST
20

15

circuit work for every chip, he or she uses design patterns. The
patterns work for most technology mappings and layout tools.
We wish to solve circuit design and circuit timing in a similar
way. We seek timing patterns that make the design patterns
work — i.e. that ensure:

• the X(N)OR gates detect full and empty channel states,
• the AND function coordinates the handshakes, and
• the FF and inv q2d flip the channel state.

Let us examine the initial constraints rt1 to rt11 of Figure 10 to
see which might work as patterns and which need generalizing:

• Constraints rt1 to rt4 make the X(N)OR gates work, and
do no more and no less than that — they make fine
patterns. Figure 12 rephrases them as p1 and p2.

• Constraints rt5 and rt6 make the AND function work by
comparing the output signals of the X(N)OR gates. This
comparison makes less sense for complex AND functions
in components with more than one channel on each side.
Requiring the outputs of all X(N)OR gates to fall before
any channel input changes results in the more general
constraints p3 and p4 in Figure 12 (top) and p (bottom).

• Constraints rt7 to rt9 keep the AND function semimod-
ular, but they do this by exposing the organization of
the AND function all the way from gate and2 to the
FF’s clock input — a result of resolving semimodularity
failures by pushing them out of the way. The slow
environment presumed in Section III-C1 for rt5 and rt6
can be assumed again here to guarantee that there will
be enough time to stabilize internal feedback loops up
to FF’s clock input before the channel inputs change.
This assumption is formalized in p5 and p6 of Figure 12.
Unlike rt7 and rt8, patterns p5 and p6 are robust to both
post-layout design changes shown in Figure 11.

• Constraints rt10 and rt11 keep the FF with inv q2d
combination flipping, but can be generalized as patterns
p7 and p8 of Figure 12 by assuming a slow environment.

Note that each pattern in p1 to p8 of Figure 12 still leaves at
least 2 inverter delays to spare under the earlier estimations for
full speed operation, reasonable gate delays, and a reasonable
environment. This indicates that the risk for violating one of
these patterns is low and that none of them is critical.

The slow environment assumed above leads to a burst-mode
operation [48] of the Click Storage component, where internal
loops stabilize before new external channel inputs arrive.
The burst-mode assumption is expressed most clearly in the
parametrized pattern p of Figure 12. It is quite common in self-
timed circuit design to assume that an external feedback loop
through the component’s environment is slow compared to an
internal feedback loop in the component’s circuit. Heuristics
for automatic circuit synthesis or timing constraint generation
often use such assumptions. There is no guarantee, however,
that relative timing constraints generated on the basis of
heuristics are sufficiently general to be stored in a Design
Library for use in every chip design.

The role of ARCtimer’s Step 3 is to take the initial timing
constraints, obtained by human or automated failure analysis,
and turn them into sufficiently general timing patterns.

III-D Step 2 Revisited — Adding Timing Constraints

The double-headed arrow in Figure 1 (right-column), on the
spiral between Step 2 and Step 3, indicates that we alternate
these two steps. We first run the model checker (Step 2), then
we examine a few counterexamples and capture their clues in
one ore more relative timing constraints (Step 3). Then we
model the constraints, and re-run the model checker primed
with these constraints. We examine a few counterexamples,
and repeat. We alternate Step 2 and Step 3 until the model
checker reports no further counterexamples. This alternation
gave us constraints rt1 to rt11 of Figure 10, from which we
then derived timing patterns p1 to p8 and p of Figure 12.

The purpose of this section is to illustrate how one can
model such constraints in a general-purpose model checker.
As before, we use the NuSMV model checker as example.
Figure 13 expands the NuSMV Model Checker Netlist of
Figure 8 without timing constraints to match the version
shown in Figure 4 (middle) with p1 to p8 as the component’s
timing constraints. When the model checker runs the code in
Figure 13 it reports no further counterexamples — all modeled
properties are valid.

Module rt in lines 1–18 of Figure 13 models the state changes
of the stoplight model of Figure 10 (left) which is our model
of a relative timing constraint. The parameters in line 1 with
names eventPOD, eventEARLY, guardPOD, guardEARLY, and
guardLATE represent respectively eventPOD , eventEARLY ,
guardPOD , guardEARLY and guardLATE defined earlier in
Section III-C2 and used in Figure 10. Note the absence of a
parameter for eventLATE . The third parameter in line 1, init rt,
contains the initial stoplight state. The role of the last two
parameters, xPOD and xEARLY, is to reduce the number of rt
instances needed to code constraints. Parameter xPOD, when
TRUE, indicates that both rising and falling signal transitions
count as events for myPOD. Parameter xEARLY indicates the
same for myEARLY. The last two parameters make it possible
to model inv q2d.val± in p7 and p8 of Figure 12 with a single
rt instance by making xEARLY TRUE (t) — see line 27.

The statement between the keywords case and esac in lines 7
and 14 is precisely the code for the stoplight’s state changes.
It is executed in synchronous mode, i.e. in each execution step
by the model checker, as indicated by the keyword TRANS in
line 6. This is consistent with the mode of execution indicated
earlier in Figure 4 for the leftmost white rectangle with the
name “Component’s Timing Constraints.”

The signal, stop, defined in line 18 of Figure 13, is TRUE if
and and only if the stoplight is RED.

The constraint’s rt instances follow in lines 22–30, in the code
for the circuit module. Constraints that start in the same state
and that use the same myPOD, myEARLY, and guardLATE

13

Pre-
pu

bli
ca

tio
n JC

ST
20

15

have the same rt parameters in the NuSMV code, and can thus
share an rt instance. For instance, patterns p1 and p3 share an
rt instance in line 24, called p1p3. This is possible, despite
the fact that the two patterns have different myLATE events.
It is possible because the rt instances control the GREEN,
YELLOW and RED stoplight states, but they do not block
myLATE event. The cgate instance that drives the myLATE
event, eventLATE , is the one that blocks the event.

For the model checker, we partitioned the stoplight model of
Figure 10 (left) into a stoplight controller (rt) and a driver
(cgate). Although [37] uses a two-state model instead of
our three-state stoplight model, their model checker solution
uses exactly the same partition. The analogy with everyday
stoplights and drivers makes this an obvious partition.

Just as multiple stoplights may force a driver to stop a vehicle,
so multiple rt instances may force a cgate to block a myLATE
event. Take for instance relative timing constraints p1, p4, p5,
and p7 of Figure 12. The constraints share myLATE event,
in1 R±, and may thus each block it. Thus, in the model
checker, each of the stop signals of the constraints’ multiple rt
instances may block in1 R±. Line 29 of Figure 13 combines
these separate stop signals into a single variable stop in1 R x,
to simplify the remaining code. Likewise, line 30 combines the
separate stop signals for myLATE event out1 A± into a single
variable stop out1 A x.

All events in1 R± and out1 A± are generated by the environ-
ment. Therefore, stop in1 R x and stop out1 A x must pass
from the instantiated circuit to the instantiated environment
through the parameter mechanism, as shown in lines 41–48
of Figure 13.11 In lines 34–37, module environment passes
the parameters to the appropriate cgate drivers, ENV in1 and
ENV out1. Because stop in1 R x blocks the rising as well as
the falling transitions of ENV in1.val it is passed to both the
stop rise and the stop fall parameter slots for cgate ENV in1
— making the cgate block any transition of ENV in1.val if
stop in1 R x is TRUE (line 9 of Figure 7). This is how
timing constraints control the run-time values of stop rise and
stop fall in the various cgate drivers of myLATE events.

It is straightforward to generate the NuSMV code changes in
lines 21–49 of Figure 13 from the timing patterns in Figure 12.
Module rt, in lines 1–18 of Figure 13, is a predefined module
in ARCtimer’s Model Checker Library for NuSMV, just like
the modules for combinational logic gate cgate and for positive
edge-triggered flipflop ff posedge.

III-E ARCtimer Step 4 — Static Timing Analysis

Section III-C3 ended Step 3 “Timing Patterns” of Figure 1
(right-column-bottom) with a set of timing patterns p1 to p8
and their parametrized version p — see Figure 12. This set is
complete in terms of property coverage and sufficiently general
to apply to every chip with a Click Storage component.

11Some timing constraints exchange parameters in the reverse direction,
from the environment to the circuit. For example, bundled data setup time
constraints pass myPOD from the environment to the circuit — see footnote 3.

This Section III-E takes p to Step 4 “Static Timing Analysis”
of Figure 1 (center-column-bottom) by translating p’s formula
into code for static timing analysis (STA). We store both p’s
formula, p : myPOD → myEARLY < myLATE, and its STA
code in the Design Library.12

The first task for static timing analysis is to validate p,
i.e. to validate that p’s slowest early path is faster than p’s
fastest late path in the chip’s gate-level netlist. This involves
computing the maximum path delay, maxEARLY , of all paths
from myPOD to myEARLY and the minimum path delay,
minLATE , from myPOD to myLATE, and validating that:

• maxEARLY < (minLATE + margin)
for some delay margin.

The second task for static timing analysis is to repair the netlist
in case the first task invalidates p. The iterative repair process
described in Section II-D performs this second task. It finds
the minimum delay value d to make p valid, given a delay
insertion point in the netlist at which to insert d.

Calculating maxEARLY and minLATE involves following the
topological connections between gates and wires in the netlist,
differentiating rising from falling transitions where possible,
and filling in gate and wire delays using lookup tables [49],
[50], [22], [23], [51], [25]. Unfortunately, some STA tools
cannot differentiate rising from falling transitions, and many
STA tools cut paths and loops at flipflops — see Section II-D.
As a result, most STA tools need guidance to know if a path
passes through or bypasses a flipflop and to know which delay
to use at asymmetric delay insertion points.

Various self-timed design groups have developed solutions to
guide STA tools through a gate-level netlist with self-timed
circuitry — see Section II-D. The solutions usually involve
pre-cut sub-paths that a conventional STA tool can handle.
These pre-cut sub-paths are the result of a higher-level analysis
of the netlist. The higher-level analysis is the most interesting
part of any of these solutions, because it is the part that would
remain necessary even if conventional STA tools were capable
of doing the analysis without guidance.

The STA code stored in the Design Library does the higher-
level analysis. It contains the algorithms to find paths and
calculate path delays and to mark intermediary flipflops and
other relevant checkpoints on the paths.13 Below, we indicate
the most important decisions that we made to organize this
STA code. These decisions complement the actual path cutting
pragmatics described for instance in [50], [22], [51], [25].

• Fill in crucial semantic details in advance:
We use the model checker and formal analysis to fill in
behavioral details that a topological search cannot find.

• Mimic the modularity of the self-timed design:
Because the Design Library stores information by compo-
nent, we must partition the STA code also by component.

12The STA code for non-relative-timing constraints, such as minimum clock
pulse widths, can be stored, organized, and generated in a way similar to p.

13We call these checkpoints, after the Berlin Wall’s “Checkpoint Charlie”
— the famous Cold War crossing point between East and West Berlin.

14

Pre-
pu

bli
ca

tio
n JC

ST
20

15

Our self-timed components communicate by handshakes
over channels, as explained in Section III-A and Figure 2.
Each handshake is marked by a pair of events, making the
channel full and then empty, or vice versa. In Click these
events are marked by a transition on the request signal
followed by a transition on the acknowledge signal, or
vice versa. Each pair of handshake events partitions the
paths in the netlist between two successive components.
Thus, although we store the main STA code for validating
the component’s timing constraints with the component,
we can distribute the full code by storing the delay
calculations for the other side of a partitioned path with
the other component.14

The STA code uses the pair of handshake events to initiate
an external delay calculation and return its results. This
process may be recursive, because the STA code for
the neighboring component may initiate sub-calculations
stored with further out neighboring components before it
can complete its calculation.
We implement this using channel subroutine calls. Hence,
in addition to STA code for validating its own timing
constraint, each component must also store STA code for
the channel subroutines for which it might receive calls.

• Sequence the calculations in a sensible way
Internal paths generally contribute less delay than paths
that exit and enter the component via a handshake
channel. Thus, it makes sense to start minimum path
delay calculations with internal paths, and use the current
minimum to cut off subsequent calculations including the
channel subroutine calls introduced above.

As an example, let us look at the decisions and STA code
organization related to timing constraint p of Figure 12 and its
calculations to validate maxEARLY < (minLATE + margin):

• Delay insertion points:
We have chosen to repair p at the two myLATE events, by
delaying signal changes on in[n2] R and out[m2] A —
whichever applies. The two end signals make good repair
points, because, not only do they change exactly once
per myPOD–myLATE cycle, the minimum frequency for
repair, but also their change covers all of the myEARLY
events in each myPOD–myLATE cycle. The delay element
must delay both rising and falling transitions because the
direction of the change is irrelevant, as indicated by the
symbol “±” in Figure 12.
Also, as p’s myLATE events, in[n2] R and out[m2] A
share the same set of myEARLY events. As a result, we
can delay signal changes on in[n2] R and out[m2] A
without creating circular repair dependencies. The lack
of circular dependencies ensures that the repair process
described in Section II-D will converge.

14Bundled data setup and hold time constraints use a similar partition based
on different pairs of handshake events — between request and data signals
versus acknowledge and data signals. See also footnote 3.

• Additional semantic details to simplify maxEARLY :
Timing constraint p has falling signal transitions for
myEARLY events, and thus requires transition-aware
static timing analysis. However, the only myEARLY event
preventing a transition-agnostic analysis is buf ck.val−.
Unlike its transition-agnostic version buf ck.val±, event
buf ck.val− follows and2.val+ not immediately but only
after FF.q±. As it happens, all p’s myEARLY events
follow and2.val+ after FF.q±. We can indicate this by
adding FF.q± between myPOD and myEARLY in p. The
presence of FF.q± makes it possible to focus on changes
rather than specific transitions of myEARLY events —
the transitions are implied, as the model checker can
confirm. Figure 14 shows the updated version of p,
with checkpoint FF.q± and non-specific myEARLY event
transitions. This is the version that we translate into STA
code, using transition-agnostic calculations.15

From p itself we can deduce that early paths end before
any myLATE event and thus never go through a channel.
Therefore, we can use transition-agnostic calculations for
maxEARLY restricted to paths internal to the module.

• STA code partitioning for minLATE :
The minLATE STA code for p calculates the minimum
path delay for paths from myPOD to myLATE internal to
the module — no holds barred. The code keeps track of
any flipflop or other checkpoints that may need further
preparation before the calculations can be handed over to
conventional STA tools. Each time the path subsequently
exits and enters the module over a channel, the code
inserts a channel subroutine call, and splits the calcu-
lation into the sum of three sub-calculations: the original
calculation up to the exit over the channel, the channel
subroutine call, and the original calculation from the entry
over the channel back into the module.
Each channel comes with STA code to fill in the delay of
a channel subroutine call entering and exiting the Click
Storage module. Each such channel subroutine calculates
the minimum path delay for paths through the component
from channel entry to channel exit — no holds barred.

Our STA code calculations are conservative. They tend to
ignore any guards, and focus only on the event changes in
the relative timing constraint formulation of Section III-C2.
This is possible because we compensate for missing details by
adding checkpoints. Moreover, static timing validation is more
forgiving than behavior-based timing verification: it suffices

15We chose and2.val+ as p’s myPOD rather than FF.q±, because as the
AND function of the Click Storage component, and2.val+ makes the compo-
nent “act” more so than FF.q±. Moreover, alternative circuit implementations
that split FF into separate flipflops for each channel [52] require p to use
and2.val+ as myPOD. Having said that, the Click Storage circuit in Figure 1
(right-column-top) can use FF.q± as myPOD and thus, without inserting
an additional checkpoint, avoid the need to differentiate rising from falling
transitions in myEARLY. Whether one chooses to keep the STA code as general
as possible by taking and2.val+ as myPOD or as simple as possible by taking
FF.q± as myPOD the goal remains the same: simplify the STA code using
transition-agnostic path-finding and path-delay calculations where possible.

15

Pre-
pu

bli
ca

tio
n JC

ST
20

15

to satisfy maxEARLY < (minLATE + margin) even were the
minimum and maximum delays to belong to false paths.

Note:
The signal names that we obtain from the model checker
all specify gate outputs — never gate inputs. However, p’s
myEARLY and myLATE implicitly represent events that happen
not just at the output of the gate but also in the wires branching
out to each subsequent gate’s input. We must code these
events accordingly lest there be gaps in the coverage of p.
The pseudo-random delay insertion test scenario described
at the end of Section II-D might or might not detect such
coverage gaps. Therefore, instead of looking for changes at
p’s myEARLY and myLATE output signals, the STA code looks
for changes at the gate inputs connected to these signals. For
example, instead of looking for buf ck.val±, a change at the
clock buffer output in Figure 1 (right-column-top) the STA
code looks for FF.ck±, a change at the flipflop’s clock input.

III-F Summary Timing Verification Framework Steps 1–4

Our Design Library, Figure 1 (center-column), stores a set of
handshake components for use in larger self-timed systems.
For each component, the Design Library stores a circuit
description, a protocol description, a description of the timing
constraints for the circuit, and static timing analysis code to
validate and enforce these constraints in the final system.
The circuit and its timing constraints are known to follow
the protocol properly because they have gone through the
verification steps outlined here. Because these verification
steps happen early in the design process, we have the leisure
to apply an in-depth verification process.

We make use of a model checker as part of the verification
process. The model checker verifies that each component,
or rather its timing constrained circuit, obeys the protocol
specified for its interface signals. The model checker also
verifies the “digital health” of a component. “Digital health”
includes such properties as semimodular gate behavior and as
absence of set-reset drive fights, a “digital health” property
not used in this paper but important for verification of GasP
components. The static timing analysis code covers additional
timing constraints, such as minimum clock pulse widths for
all the edge-triggered flipflops in the Click circuit. The flipflop
models in this paper are too abstract for the model checker to
detect the need for such pulse width constraints.

In building the Design Library, we strive for modularity and
generality. The Design Library is organized by component.
Even the static timing analysis code generated in Step 4 is par-
titioned over the components. For each handshake component
we seek circuit descriptions as well as protocol, constraint, and
code descriptions that are understandable to the component’s
designer, easy to maintain, and robust to circuit modifica-
tions applied later in the design process. Where possible,
the descriptions in the Design Library are parametrized to
address variable numbers of channels. Whenever we use the

term pattern, as in design pattern or timing pattern, it is to
emphasize the generality of that particular description.

IV COMPARISON TO RELATED WORK

Throughout this paper, we have identified related work in
context. We have identified essential decisions and explained
where, how, and why our decisions differ from those of others.
For instance, in Section II-D we highlighted three static timing
analysis (STA) decisions that one must make: where and when
to insert delay to repair invalid timing constraints, and what
STA engine to use. The purpose of this Section IV is to
highlight where our key decisions are new or different.

One important choice was to select a general-purpose model
checker rather than one specialized to the timing verification
of self-timed circuits. The active and diverse user community
of the NuSMV model checker that we use in this paper gave
us high confidence that the software would be correct as well
as enable us to control our experiments. The work reported
in [37] also uses the NuSMV general-purpose model checker.
Even so, model checkers developed specifically for timing
verification of self-timed circuits — notably [33], [26] — have
important value because of the new theories they founded and
the new experiments they enabled. However, our experience
with specialized model checkers for tool support has been a
struggle due to hidden assumptions and hard to find bugs,
possibly reinforced by the monolithic solution approach.

We model semimodular gate behavior and generate timing
constraints that guarantee a gate’s semimodular behavior if
needed, as do [33], [29], [26], [37]. But we use a new def-
inition of semimodularity, adapted for relative timing, which
we first published in [42]. The new definition, coded in lines
14–18 of Figure 7, prevents blocked gate output transitions
from causing semimodularity failures. The idea is simple: a
transition that is blocked by a timing constraint is already
disabled and therefore cannot be disabled further. Note that
the general gate models that we use and share with [43] make
it much easier to swap in a new definition of semimodularity
than it would be were we to use a dedicated model for each
gate with a different logic function as is done in [23], [37].

Like [33], [29], [23], [37] we verify that a component,
or rather its timing constrained circuit, obeys the protocol
specified for its interface signals. This includes verifying that
the component’s handshake transitions are legal, as expressed
by the safety properties in lines 30–31 of Figure 5. In our
work and that of [33], obeying the protocol also means that
the circuit can make progress in certain states even if the
environment fails to make progress, as expressed in lines 33–
37 of Figure 5. Progress under a lazy environment is modeled
in the theory of Delay-Insensitive Algebra, but not in the
theory underlying [29], [23], [37]. Unlike others, we also
verify that all reachable protocol scenarios remain available
for implementation. This is expressed by the choice equiv-
alence properties coded in lines 39–50 of Figure 5. Choice
equivalence properties are meta properties to check whether

16

Pre-
pu

bli
ca

tio
n JC

ST
20

15

or not the verification process overlooked a protocol scenario.
They target not an individual timing constrained circuit but
the model checker’s finite state machine model of all possible
timing constrained circuits.

The timing constraints that we model and verify constrain
the ordering of specific events that originate from a common
start event. We formulate and name these constraints in a way
similar to [23], [37], by specifying the common start event,
and the constrained early and late events. The resulting event
ordering specifications are called relative timing constraints,
after [41]. Because of their simple formulation, relative timing
constraints are easy to model and add to an already existing
netlist configuration in the model checker, as illustrated in
Section III-C2 and Section III-D. But the same formulations
that are so simple to read, model, and verify can be difficult
to translate for static timing analysis (STA). Translation into
STA code may require one to specify intermediary checkpoints
and corresponding events, as illustrated in Section III-E and
Figure 14. The addition of checkpoint events makes a relative
timing constraint look more like a chain constraint [33], [35].
Chain constraints specify the paths over which the delays to
the early and late events must be calculated. As such, chain
constraints already contain most of the semantic details that
we add in Section III-E to simplify STA code generation.
Consequently, chain constraints are much easier to translate
into STA code than relative timing constraints. However, chain
constraints are also much harder to model than relative timing
constraints.

Fortunately, we seldom need to add more than a few check-
points to simplify STA code generation. These checkpoints can
be added systematically to existing relative timing constraints,
using the stoplight model of Figure 10 (left), as demonstrated
in Figure 14. This 3-state model is new. It generalizes the 2-
state model in [37] to guarded events — the guard indicates
whether or not the event instance applies.

The key focus in this paper, more so than in any related work
seen, is to ensure that not only the circuit of a handshake
component but also its timing constraints and static timing
analysis code are sufficiently general for use in a Design
Library. This paper is silent about using timing constraints
to guide synthesis and layout of the design or parts of it, as
explored in for instance [23], [53], [25], but we anticipate that
such extensions will follow a similar pattern.

V SUMMARY AND CONCLUSION

This paper introduces ARCtimer, a framework for generating
and verifying timing constraints for handshake components, as
needed to make the component’s gate-level circuit follow the
component’s handshake protocol. The component thus verified
goes into a library for later system use. This library, the
Design Library of Figure 1 (center-column), stores general
descriptions, called patterns, of the component’s circuit and
protocol and timing constraints. The Design Library also
stores static timing analysis code to validate and enforce the

component’s constraints in any self-timed system built using
the library. Because the timing constraints ensure that each
component faithfully follows its protocol, and because each
protocol is delay insensitive, the resulting systems are delay
insensitive. By constraining time locally, we free it globally
— this hallmark of self-timed design established since Seitz’
equipotential regions and self-timed signaling [54] applies not
only to designing and parsing self-timed systems but also to
verifying and validating them, as this paper confirms.

We wrote this paper to help readers understand tradeoffs and
decisions. It explains where in the design flow a framework
like ARCtimer fits. It identifies essential decision points, the
choices one can make, what we and others chose, and why.
Although this paper is not intended as a survey, it refers
to many related works and discusses them in context. We
encourage readers to reproduce our work and our results.
To enable readers to do so, the paper provides high-level
algorithmic descriptions where possible, as well as low-level
details where we think it helps to have a starter set of code
that is known to work. We show our NuSMV model checker
code not only to give readers a head start, but also to indicate
that it is not hard to generate such code automatically from
the component information stored in the Design Library.

Last but not least: we call upon readers for collaboration in
moving this field forward. Many of today’s self-timed design
tools are monolithic. The time has come to make exchangeable
theory and tool parts. This paper identifies three problem areas
shared by all self-timed circuit families and thus prime areas
for exchangeable solutions. The three problem areas are: static
timing analysis with loops kept intact (Section II-D), delay-
insensitive protocol specifications (Section III-A), and failure
analysis heuristics to derive timing constraints (Section III-C,
footnote 10). This paper also identifies a solution approach
to facilitate the exchange of theory and tools between self-
timed circuit families by using the organizational discipline
that binds them all: design patterns.

ACKNOWLEDGMENT

We thank private and corporate sponsors of the Asynchronous
Research Center (ARC) at Portland State University — with-
out their support this work would not be possible. We are
fortunate to have the support and encouragement of our Deans,
Dean Renjeng Su at Portland State University and Dean
Bin Hu at Lanzhou University. Special thanks go to Willem
Mallon for the world-class compiler skills, experience in self-
timed design, and wisdom he brought to the ARC. Willem
not only built ARCwelder, a design compiler for self-timed
systems whose development shaped our work, but also brought
Delay-Insensitive Algebra to our attention. We owe much to
his contributions. We thank Anping He’s student at Lanzhou
University, Chao Zhou, for automating the protocol translation
for the NuSMV model checker. We thank also ARC students
Chris Cowan, Navaneeth Jamadagni, and Swetha Mettala Gilla
for daily companionship, discussion, and laughter.

17

Pre-
pu

bli
ca

tio
n JC

ST
20

15

REFERENCES

[1] Jun Sawada and Warren A. Hunt Jr. Verification of FM9801: An Out-
of-Order Microprocessor Model with Speculative Execution, Exceptions,
and Program-Modifying Capability. Formal Methods in System Design,
20(2):187–222, 2002.

[2] Anna Slobodová, Jared Davis, Sol Swords, and Warren Hunt Jr. A
Flexible Formal Verification Framework for Industrial Scale Validation.
In Formal Methods and Models for Codesign (MEMOCODE), pages
89–97, 2011.

[3] Chao Yan, Florent Ouchet, Laurent Fesquet, and Katell Morin-Allory.
Formal Verification of C-element Circuits. In IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), pages 55–
64, 2011.

[4] Ivan Sutherland, Bob Sproull, and David Harris. Logical Effort:
Designing Fast CMOS Circuits. Morgan Kaufmann Publishers, 1999.

[5] Ivan E. Sutherland. Micropipelines. Communications of the ACM,
32(6):720–738, 1989.

[6] Jens Sparsø and Steve Furber (Eds.). Principles of Asynchronous Circuit
Design — A Systems Perspective. Kluwer Academic Publishers, 2001.

[7] Doug Edwards and Andrew Bardsley. Balsa: An Asynchronous Hard-
ware Synthesis Language. The Computer Journal, 45(1):12–18, 2002.

[8] Peter A. Beerel, Recep O. Ozdag, and Marcos Ferretti. A Designer’s
Guide to Asynchronous VLSI. Cambridge University Press, 2010.

[9] Ivan Sutherland and Scott Fairbanks. GasP: A Minimal FIFO Control. In
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 46–53, 2001.

[10] Ivan Sutherland. GasP Circuits that Work. ECE 507 Research Seminar,
Fall 2010. Asynchronous Research Center, Portland State University.
Download from: http://arc.cecs.pdx.edu/fall10.

[11] Alain J. Martin and Mika Nyström. Asynchronous Techniques for
System-on-Chip Design. Proceedings of the IEEE, 94(6):1089–1120,
2006.

[12] Basit Riaz Sheikh and Rajit Manohar. ”energy-efficient pipeline tem-
plates for high-performance asynchronous circuits”. ACM Journal on
Emerging Technologies in Computing Systems, 7(4), 2011.

[13] Montek Singh and Steven M. Nowick. ”mousetrap: High-speed
transition-signaling asynchronous pipelines”. IEEE Transactions on Very
Large Integration (VLSI) Systems, 15(6):684–698, 2007.

[14] Ad Peeters, Frank te Beest, Mark de Wit, and Willem Mallon. Click
Elements: An Implementation Style for Data-Driven Compilation. In
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 3–14, 2010.

[15] Louis Scheffer, Luciano Lavagno, and Grant Martin (Eds.). Electronic
Design Automation for Integrated Circuits Handbook, Volumes 1–2.
CRC Press and Taylor & Francis, 2006.

[16] Kees van Berkel, Ronan Burgess, Joep Kessels, Marly Roncken, Frits
Schalij, and Ad Peeters. Asynchronous Circuits for Low Power: A DCC
Error Corrector. IEEE Design & Test of Computers, 11(2):22–32, 1994.

[17] Joep Kessels and Paul Marston. Designing Asynchronous Standby
Circuits for a Low-Power Pager. Proceedings of the IEEE, 87(2):257–
267, 1999.

[18] Kenneth S. Stevens, Shai Rotem, Ran Ginosar, Peter Beerel, Chris J.
Myers, Kenneth Y. Yun, Rakefet Kol, Charles Dike, and Marly Roncken.
An Asynchronous Instruction Length Decoder. IEEE Journal of Solid-
State Circuits, 36(2):217–228, 2001.

[19] Basit Riaz Sheikh and Rajit Manohar. An Operand-Optimized Asyn-
chronous IEEE 754 Double-Precision FLoating-Point Adder. In
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 151–162, 2010.

[20] Basit Riaz Sheikh and Rajit Manohar. An Asynchronous FLoating-Point
Multiplier. In IEEE International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 89–96, 2012.

[21] Sachin S. Sapatnekar. Chapter 6: Static Timing Analysis. In L.
Scheffer, L. Lavagno, G. Martin (Eds.): Electronic Design Automation
for Integrated Circuits Handbook, Volume 2. CRC Press and Taylor &
Francis, 2006.

[22] Mallika Prakash and Peter A. Beerel. Static Timing Analysis of
Template-Based Asynchronous Circuits. US Patent US 2009/0210841
A1, assigned to the University of Southern California, August 20, 2009.

[23] Kenneth S. Stevens, Yang Xu, and Vikas Vij. Characterization of
Asynchronous Templates for Integration into Clocked CAD Flows. In
IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 151–161, 2009.

[24] Peter A. Beerel, Georgios D. Dimou, and Andrew M. Lines. Proteus:
An ASIC Flow for GHz Asynchronous Designs. IEEE Design & Test
of Computers, 28(5):36–51, 2011.

[25] Vikas S. Vij. Algorithms and Methodology to Design Asynchronous Cir-
cuits Using Synchronous CAD Tools and Flows. PhD thesis, Electrical
and Computer Engineering, The University of Utah, USA, 2013.

[26] Yang Xu. Algorithms for Automatic Generation of Relative Timing
Constraints. PhD thesis, Electrical and Computer Engineering, The
University of Utah, USA, 2011.

[27] Teresa Meng. Synchronization Design for Digital Systems. Kluwer
Academic Publishers, 1991.

[28] Luciano Lavagno and Alberto Sangiovanni-Vincentelli. Algorithms for
Synthesis and Testing of Asynchronous Circuits. Kluwer Academic
Publishers, 1993.

[29] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano
Lavagno, and Alexandre Yakovlev. Logic Synthesis of Asynchronous
Controllers and Interfaces. Springer-Verlag, 2002.

[30] Mark B. Josephs and Jan Tijmen Udding. An Algebra for Delay-
Insensitive Circuits. In Computer Aided Verification (CAV), pages 343–
352, 1991.

[31] Tom Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, De-
partment of Mathematics and Computing Science, Eindhoven University
of Technology, The Netherlands, 1994.

[32] Willem C. Mallon. Theories and Tools for the Design of Delay-
Insensitive Communicating Processes. PhD thesis, Mathematics and
Natural Sciences, University of Groningen, The Netherlands, 2000.

[33] Radu Negulescu. Process Spaces and Formal Verification of Asyn-
chronous Circuits. PhD thesis, Computer Science, University of Wa-
terloo, Canada, 1998.

[34] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[35] Radu Negulescu and Ad Peeters. Verification of Speed-Dependences
in Single-Rail Handshake Circuits. In IEEE International Symposium
on Advanced Research in Asynchronous Circuits and Systems (ASYNC),
pages 159–170, 1998.

[36] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin
Keighren, Emanuele Olivetti, Marco Pistore, Marco Roveri, and An-
drei Tchaltsev. NuSMV 2.4 User Manual, 2013. Download from
http://nusmv.fbk.eu/NuSMV/userman/index-v2.html.

[37] Krishnaji Desai, Kenneth S. Stevens, and John O’Leary. Symbolic
Verification of Timed Asynchronous Hardware Protocols. In IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 147–152,
2013.

[38] David E. Muller and W. Scott Bartky. A Theory of Asynchronous
Circuits. In International Symposium on the Theory of Switching, pages
204–243. Harvard University Press, 1959.

[39] Raymond E. Miller. Switching Theory Volume 2: Sequential Circuits and
Machines, (Chapters 9–10: Asynchronous Switching Networks & Speed
Independent Switching Circuit Theory). John Wiley & Sons, 1965.

[40] Peter A. Beerel and Marly E. Roncken. Low Power and Energy Efficient
Asynchronous Design. Journal of Low Power Electronics (JOLPE),
3(3):234–253, 2007.

[41] Kenneth S. Stevens, Ran Ginosar, and Shai Rotem. Relative Timing.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
11(1):129–140, 2003.

[42] Hoon Park, Anping He, Marly Roncken, and Xiaoyu Song. Semi-
Modular delay model revisited in context of relative timing. Electronics
Letters, 51(4):332–334, 2015.

[43] Khaled Alsayeg, Katell Morin-Allory, and Laurent Fesquet. RAT-based
formal verification of QDI asynchronous controllers. In Forum on
Specification & Design Languages (FDL), pages 1–6, 2009.

[44] Tomohiro Yoneda, Tomoya Kitai, and Chris Myers. Automatic Deriva-
tion of Timing Constraints by Failure Analysis. In Computer Aided
Verification (CAV), pages 195–208, 2002.

[45] Marco A. Peña, Jordi Cortadella, Alex Kondratyev, and Enric Pastor.
Formal verification of safety properties in timed circuits. In IEEE In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC), pages 2–11, 2000.

[46] Hoshik Kim, Peter A. Beerel, and Ken Stevens. Relative Timing Based
Verification of Timed Circuits and Systems. In IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), pages 115–
124, 2002.

[47] Yang Xu and Kenneth S. Stevens. Automatic Synthesis of Computation
Interference Constraints for Relative Timing Verification. In IEEE

18

Pre-
pu

bli
ca

tio
n JC

ST
20

15

International Conference on Computer Design (ICCD), pages 16–22,
2009.

[48] Robert M. Fuhrer and Steven M. Nowick. Sequential Optimization of
Asynchronous and Synchronous Finite-State Machines: Algorithms and
Tools. Kluwer Academic Publishers, 2001.

[49] Mallika Prakash. Library Characterization and Static Timing Analysis
of Asynchronous Circuits. Master’s thesis, Computer Engineering,
University of Southern California, USA, December 2007.

[50] Prasad Joshi. Static Timing Analysis of GasP. Master’s thesis, Electrical
Engineering, University of Southern California, USA, December 2008.

[51] Swetha Mettala Gilla. Library Characterization and Static Timing
Analysis of Single-Track Circuits in GasP. Master’s thesis, Electrical
and Computer Engineering, Portland State University, USA, 2010.

[52] Marly Roncken, Swetha Mettala Gilla, Hoon Park, and Ivan Suther-
land. Naturalized Communication and Testing. In IEEE International
Symposium on Asynchronous Circuits and Systems (ASYNC), 2015.

[53] Minoru Iizuka, Naohiro Hamada, Hiroshi Saito, Ryoichi Yamaguchi, and
Minoru Yoshinaga. A Tool Set for the Design of Asynchronous Circuits
with Bundled-data Implementation. In IEEE International Conference
on Computer Design (ICCD), pages 78–83, 2011.

[54] Charles L. Seitz. Chapter 7: System Timing. In C. Mead and L. Conway:
Introduction to VLSI Systems, pages 218–262. Addison-Wesley, 1980.

19

Pre-
pu

bli
ca

tio
n JC

ST
20

15G
e

n
e

ra
te

 t
im

in
g

 c
o

n
s
tr

a
in

ts
fr

o
m

 c
o

u
n

te
re

x
a

m
p

le
s

¬
F

F
.q

 ∧
 a

n
d

2
.v

a
l+

x
o

r_
in

1
.v

a
l-

in
1

_
R

-

F
F

.q
-

in
v
_

q
2

d
.v

a
l+

b
u

f_
c
k
.v

a
l+

1

1

 a
n

d
2

x
o

r_
in

1 F
F

b
u

f_
in

1
_

A
1

b
u

f_
o

u
t1

_
R

1

C
lic

k
 S

to
ra

g
e
 C

ir
c
u

it

in
v
_

q
2

d

x
n

o
r_

o
u

t1

b
u

f_
o

u
t1

_
R

2
b

u
f_

in
1

_
A

2

C
lic

k
 S

to
ra

g
e

 E
n

v
ir
o

n
m

e
n

t

ENV_out1

ENV_in1

o
u

t1
_

A

o
u

t1
_

R

in
1

_
R

in
1

_
A

b
u

f_
c
k

Q
D

L
L

C
li
c

k
 S

to
ra

g
e

 P
ro

to
c

o
l

 a
n

d
2

x
o

r_
in

1

F
F

in
1

_
R

in
1

_
A

in
1

_
D

o
u

t1
_

D

o
u

t1
_

R

o
u

t1
_

A

C
li
c

k
 S

to
ra

g
e
 C

ir
c

u
it

x
n

o
r_

o
u

t1

F
F

_
D

in
v
_

q
2

d

1

D
e

s
ig

n
:
F

ib
o

n
a

c
c
i

J
o

in

(a
d

d
)

C
3

c
h

5

S
to

ra
g

e
C

4

S
to

ra
g

e
C

2

S
to

ra
g

e
C

1

1

0
1

c
h

1

c
h

2
c
h

3

c
h

4

re
s
u

lt
s

 C

h
ip

 D
e

s
ig

n

 D

e
s

ig
n

 L
ib

ra
ry

 C

o
m

p
o

n
e

n
t

T
im

in
g

 P
a

tt
e

rn
 G

e
n

e
ra

ti
o

n
 a

n
d

 V
e

ri
fi

c
a

ti
o

n

e
v
a

lu
a

te
ti
m

in
g

c
o

n
s
tr

a
in

ts

w
ir
e

 &
 g

a
te

d

e
la

y
s

O
K

?

re
p

a
ir
 i
n

v
a

lid

ti
m

in
g

c
o

n
s
tr

a
in

ts

N
O

Y
E

S

1

G
U

I

S
T

A

in
_

R

o

u
t_

A

in
_

A

o

u
t_

R

in
_

D

o

u
t_

D

G
a

te
 l
e

v
e

l
n

e
tl
is

t

S
to

ra
g

e
 C

4
c
h

4

c
h
5

P
a

rs
e

r

c
h

ip

In
p

u
t

 {

in
1

_
R

,
o

u
t1

_
A

}

O
u

tp
u

t

 {

in
1

_
A

,
o

u
t1

_
R

}

H
a

n
d

s
h

a
k

e
 e

v
e

n
t

o
rd

e
ri

n
g

 (

{i
n

1
_

R
},

 {
in

1
_

A
})

 (

{o
u

t1
_

R
},

 {
o

u
t1

_
A

})

H
a

n
d

s
h

a
k

e
 p

ro
to

c
o

l
(P

)

P
 =

 i
n

1
_

R
;
in

1
_

A
;

o
u

t1
_

R
;

o
u

t1
_

A
;

P

C
li
c

k
 S

to
ra

g
e

 T
im

in
g

Q
D

Q
D

C
lic

k
 S

to
ra

g
e

 P
ro

to
c
o

l

05
3 4

2

6 1

7

out1_A

in
1

_
A

out1_A

o
u

t1
_

R

in
1

_
A

in1_R

out1_A

in
1

_
A

in
1
_
R

in
1
_
R

out1_R

out1_R

c
o

m
p

o
n

e
n

ts
d

a
ta

 t
y
p

e
s

fu
n

c
ti
o

n
s

g
a

te
 l
e

v
e

l
n

e
tl
is

t

c
ir
c
u

it
s

S
te

p
 1

H
a

n
d

s
h

a
k

e

C
o

m
p

o
n

e
n

t

c
o

m
p

o
n

e
n

t
n

e
tw

o
rk

S
te

p
 2

M
o

d
e

l

C
h

e
c

k
e

r

G
e

n
e

ra
liz

e
 t
o

 t
im

in
g

 p
a

tt
e

rn
s

a
n

d
2

.v
a

l+
x
o

r_
in

1
.v

a
l-

x
n

o
r_

o
u

t1
.v

a
l-

b
u

f_
c
k
.v

a
l-

in
1

_
R

±

o
u

t1
_

A
±

M
o

d
u

la
r

S
T

A
 c

o
d

e

p

a
th

-d
e

la
y
 s

e
a

rc
h

c
h

a
n

n
e

l
s
u

b
ro

u
ti
n

e
s

s
u

b
ro

u
ti
n

e
 c

a
lls

A
d

d
 c

h
e

c
k
p

o
in

ts
 t
o

 t
im

in
g

 p
a

tt
e

rn
s

to
 s

im
p

lif
y
 S

T
A

 c
o

d
e

a
n

d
2

.v
a

l+

x
o

r_
in

1
.v

a
l±

x
n

o
r_

o
u

t1
.v

a
l±

b
u

f_
c
k
.v

a
l±

in
1

_
R

±

o
u

t1
_

A
±

F
F

.q
±

ti
m

in
g

c
o

n
s
tr

a
in

ts

S
te

p
 4

S
ta

ti
c

T
im

in
g

A
n

a
ly

s
is

S
te

p
 3

T
im

in
g

P
a

tt
e

rn
s

Fi
gu

re
1

R
ef

er
en

ce
di

ag
ra

m
fo

r
th

is
pa

pe
r,

ill
us

tr
at

in
g

th
e

tim
in

g
ve

ri
fic

at
io

n
co

nt
ex

t
an

d
fr

am
ew

or
k

of
A

R
C

tim
er

.
T

he
D

es
ig

n
Li

br
ar

y
in

th
e

ce
nt

er
co

lu
m

n
co

nn
ec

ts
th

e
C

hi
p

D
es

ig
n

flo
w

on
th

e
le

ft
an

d
th

e
C

om
po

ne
nt

Ti
m

in
g

Pa
tte

rn
G

en
er

at
io

n
an

d
Ve

ri
fic

at
io

n
fr

am
ew

or
k

(A
R

C
tim

er
)

on
th

e
ri

gh
t.

O
nc

e
ve

ri
fie

d,
a

co
m

po
ne

nt
m

ay
be

us
ed

in
m

an
y

ch
ip

de
si

gn
s.

T
he

lib
ra

ry
st

or
es

th
e

co
m

po
ne

nt
’s

ci
rc

ui
t

(c
en

te
r-

to
p)

,
pr

ot
oc

ol
(c

en
te

r-
m

id
dl

e)
,

its
tim

in
g

co
ns

tr
ai

nt
s,

an
d

th
e

st
at

ic
tim

in
g

an
al

ys
is

co
de

to
en

fo
rc

e
th

es
e

co
ns

tr
ai

nt
s

in
th

e
fin

al
ch

ip
de

si
gn

(c
en

te
r-

bo
tto

m
).

T
he

ch
ip

de
si

gn
flo

w
an

d
lib

ra
ry

ar
e

ex
pl

ai
ne

d
in

Se
ct

io
n

II
.A

R
C

tim
er

St
ep

1
th

ro
ug

h
St

ep
4

fo
llo

w
in

Se
ct

io
n

II
I.

20

Pre-
pu

bli
ca

tio
n JC

ST
20

15

Time

full fullempty emptyempty

request
acknowledge

non-RTZ

statewire
RTZ

valid validdata
bundled data Voltage

Figure 2 Default state representations for full and empty
channels in two-phase non-RTZ and RTZ handshake proto-
cols with bundled data. A channel with non-RTZ protocol is
engaged in a handshake, i.e. is full, when its request and
acknowledge differ. A channel with RTZ protocol is full
when its statewire is high. During the handshake, i.e. when
the channel is full, data must be valid and remain stable.

21

Pre-
pu

bli
ca

tio
n JC

ST
20

15Last comes the protocol description P — a compact repetitive
sequence of four consecutive input-output events:

P = in1 R ; in1 A ; out1 R ; out1 A ; P.

In this form, protocol P says that the Click Storage component
must wait for input event in1 R before it produces output event
in1 A followed by output event out1 R, after which it waits
again until it receives another input event, namely out1 A,
before it repeats the same protocol, P.

The delay-insensitive interpretation of P allows more behav-
iors. The interpretation is based on what is popularly known
as the Foam Rubber Wrapper metaphor, a term for delay-
insensitive communication introduced by the late Charles Mol-
nar. The idea is that an event may be delayed for an arbitrary
time when it travels between sender and receiver components.
Thus, an input event in an event sequence specified by P
might have occurred as early as its generation or as late as its
receipt, or anywhere in between. Hence, input events in1 R
and out1 A in P may move to earlier positions in the sequence
provided each input follows the previous output event on the
same channel, as specified in the handshake event orderings.
Likewise, output events in1 A and out1 R may move to later
positions in the sequence provided each output precedes the
next input event on the same channel.

We use tools developed for Delay-Insensitive Algebra in [19]
to complete the compact protocol description expressed as
P automatically into a fully delay-insensitive description ex-
pressed as the finite state machine in Figure 1 (right-column).
Figure 3 repeats both descriptions.

The finite state machine in Figure 3 (bottom) describes the
various event sequences and event choices at the pair of
channel interfaces of the Storage component. It also describes
the progress expectations at each state in an event sequence.
The triangles (5) denote transient states that may persist
only for a finite time. Triangular states typically respond
to handshake output events, which are controlled by the
component. The underlying assumption is that the internal
circuit actions leading up to the output event will finish within
a finite amount of time. 6 This is valid for most actions,
with the possible exception of non-deterministic arbitration —
absent from a Storage component. The rectangles (2) denote
non-transient states that may persist forever. Rectangular states
typically produce only input events — events controlled by
the component’s environment. The underlying assumption is
that the environment might be lazy and never act. The finite
state machine constrains the component to exit a transient state
within unbounded but finite time, but allows it to remain in a
non-transient state forever.

Note that these descriptions can be used for any Storage
component with single incoming and outgoing channels and
two-phase non-RTZ handshakes. One can easily envision how

6This assumes that the gates and wires are well-designed, and goes back
to designing circuits using the theory of Logical Effort [48] — see Section I.

Input:
{in1 R , out1 A}

Output:
{in1 A , out1 R}

Handshake event ordering:
({in1 R} , {in1 A})
({out1 R} , {out1 A})

Handshake protocol (P):
P = in1 R ; in1 A ; out1 R ; out1 A ; P

0

5 3

4

2

6

1

7

o
u

t1
_

A

in1_A

o
u

t1
_

A

out1_R

in1_A

in
1

_
R

o
u

t1
_

A

in1_A

in1_R

in1_R

o
u
t1

_
R

o
u
t1

_
R

Figure 3 (From Figure 1 — center and right columns)
Compact (top) and complete (bottom) protocol specification
of a Click Storage component with a single incoming and a
single outgoing handshake channel. The finite state machine
(bottom) starts in state 0, colored grey. The triangles (5)
indicate a transient state. No matter the environment that it
operates in, the component must exit a transient state. It can
exit a transient state through an event on one of the state’s
outgoing arrows. The arrow points to the component’s next
state. The rectangles (2) indicate a non-transient state. In
some environments, the component will stay in such a state
forever; in other environments, it exits the state by following
one of the state’s event-arrow pairs to the next state.

to generalize both descriptions to arbitrary numbers of chan-
nels. Other handshake components, such as the Join in the
Fibonacci design of Figure 1 (left-column-top), and even non-
deterministic and data-driven components, also have relatively
simple compact descriptions that are easy to understand [19].

The combination of a compact protocol description, P, and
tool automation to complete P into a fully delay-insensitive
description helps avoid over-specifying components. Avoiding
over-specification is important and harder than one might
think. We inadvertently and repeatedly over-specified the
handshake behavior of a component using the approach
in [45], [52], which requires complete specifications in CCS
without tool support to help make them.

Note:
It may be worthwhile to revisit and simplify the theory
of Delay-Insensitive Algebra, “building it down” to be just
barely expressive enough to describe compact protocols for
single handshake components while preserving the ability to
complete these descriptions automatically into fully delay-
insensitive finite state machines as seen in Figure 3. The
simplified theory would be easier to support with tooling and
to re-use in other self-timed design and verification flows.

7

0

5 3

4

2

6

1

7

o
u

t1
_

A

in1_A

o
u

t1
_

A

out1_R

in1_A

in
1

_
R

o
u

t1
_

A

in1_A

in1_R

in1_R

o
u
t1

_
R

o
u
t1

_
R

Figure 3 (From Figure 1 — center and right columns)
Compact (top) and complete (bottom) protocol specification
of a Click Storage component with a single incoming and a
single outgoing handshake channel. The finite state machine
(bottom) starts in state 0, colored grey. The triangles (5)
indicate a transient state. No matter the environment that it
operates in, the component must exit a transient state. It can
exit a transient state through an event on one of the state’s
outgoing arrows. The arrow points to the component’s next
state. The rectangles (2) indicate a non-transient state. In
some environments, the component will stay in such a state
forever; in other environments, it exits the state by following
one of the state’s event-arrow pairs to the next state.

22

Pre-
pu

bli
ca

tio
n JC

ST
20

15
C

o
m

p
o

n
e

n
t’

s
 P

ro
to

c
o

l

a
n

d
 p

ro
to

c
o

l
p

ro
p

e
rt

ie
s

Component’s Environment

and “digital health” properties

Component’s Circuit

and “digital health” properties

Model Checker Library

for gates, wires, handshake circuits, handshake protocols, etc.

including “digital health” and protocol-related properties

instantiate models

Model Checker Netlist

verify properties

Verification Report

including counterexamples for invalid properties

C
o

m
p

o
n

e
n

t’
s

T
im

in
g

 C
o

n
s

tr
a

in
ts

Component’s Test Circuit

Figure 4 Organization of the model checking task to verify,
for a given handshake component, that the component’s
circuit in its environment and under its timing constraints
satisfies both the gate-level “digital health” properties and the
properties defined by the component’s protocol. Examples of
“digital health” are semimodularity, used later in this paper,
and absence of set-reset drive fights, which plays no role in
this paper. The grey rectangle at the top represents the Model
Checker Library — a translation of the Design Library in
Figure 1 (center-column) into model checker lingo. Using
the Model Checker Library, ARCtimer creates a Model
Checker Netlist represented by the middle grey rectangle.
The netlist connects single instances of the component’s pro-
tocol, circuit, environment, and available timing constraints,
as indicated by the white and broken-line rectangles and the
white arrows. A white arrow follows the direction from a
rectangle with models that create an event to a rectangle with
models that respond to that event. All events in and between
rectangles with horizontal text are interleaved using an
asynchronous mode of operation. Events of rectangles with
vertical text must be synchronized to corresponding events,
which is achieved by operating them in synchronous mode.
The model checker takes the Model Checker Netlist and first
generates a corresponding finite state machine model with
instantiated gate-level “digital health” and protocol-related
properties for verification, and then it checks the properties.
The grey rectangle at the bottom represents the verification
report with a pass or fail indication per property and a
counterexample of a computation path in the resulting finite
state machine for each failing property.

23

Pre-
pu

bli
ca

tio
n JC

ST
20

150

5 3

4

2

6

1

7
o

u
t1

_
A

in1_A

o
u

t1
_

A

out1_R

in1_A
in

1
_

R

o
u

t1
_

A

in1_A

in1_R

in1_R

o
u
t1

_
R

o
u
t1

_
R

III-B1 Modeling the Component’s Protocol:

Figure 5 repeats the complete, fully delay-insensitive protocol
specification of Figure 3 (bottom) and shows its translation
into NuSMV model checker lingo.

The translation is wrapped in a self-contained module,
with the abbreviated name protocol, with formal parameter
names for the handshake signals. The module’s full name is
Click Storage 1 In 1 Out Protocol.7 We store such modules
in the Model Checker Library — see Figure 4.

The first part of the translation, up to line 26 in Figure 5,
codes the states, initial state, and event-based state transitions
of the protocol. Each translated state name begins with the
letter s followed by the original state number — e.g. initial
state 0 (top) translates to s0 (bottom). The original proto-
col specifications in Figure 3 specify only legal states and
transitions, omitting illegal and irrelevant ones. The omissions
must be coded, however. We code two types of error states to
receive illegal handshake transitions: illegal channel outputs
go to errorOUT, and illegal channel inputs go to errorIN. All
other events, irrelevant to the protocol, preserve the protocol’s
state. The resulting code forms a monitor. It will be used
to monitor the Component’s Test Circuit — the sub-system
inside the broken line in Figure 4 (middle) which holds the
component’s circuit, environment, and timing constraints.

To monitor the Component’s Test Circuit the protocol operates
in synchronous mode, as we already mentioned in Figure 4.
This means that the protocol’s finite state machine code is
executed in each execution step by the model checker. NuSMV
uses the keyword TRANS in line 6 of Figure 5 to indicate
that the next statement is to be executed in synchronous
mode. The next statement, enclosed by the keywords case
and esac in lines 7 and 26, is precisely the monitor code of
the component’s protocol in the rightmost white rectangle in
Figure 4.

The purpose of monitoring the Component’s Test Circuit is to
annotate its behavior for verification. Verification is done by
checking properties. The properties in lines 28–50 of Figure 5
specify what the protocol must see when it monitors the
Component’s Test Circuit.

The properties in the second part of the code, lines 28–50,
are inherent in the protocol specification, and translated along
with the rest of the code. The two safety properties in lines
30–31 allow only legal handshake behaviors. The five progress
properties in lines 33–37 allow the five transient states to
persist for only a finite time. The transient states correspond to
the triangles (5) in the original specification. The remaining
choice equivalence properties spell out the choices of action
that must be available to the observed sub-system to meet the
protocol specification. These might be refined with additional
event information, if needed. The structure of these properties
is quite straightforward for the Click Storage component, but

7Its un-abbreviated name says that the module has the protocol translation
for a Click Storage component with 1 incoming and 1 outgoing channel.

0

5 3

4

2

6

1

7
o

u
t1

_
A

in1_A

o
u

t1
_

A

out1_R

in1_A
in

1
_

R

o
u

t1
_

A
in1_A

in1_R

in1_R

o
u
t1

_
R

o
u
t1

_
R

1 MODULE protocol (in1 R, in1 A, out1 R, out1 A)
VAR

state: {s0, s1, s2, s3, s4, s5, s6, s7, errorOUT, errorIN};
ASSIGN

5 init(state) := s0;
TRANS

next(state) = case
−−legal handshake transitions
state=s0 & (in1 R != next(in1 R)) : s1;

10 state=s1 & (in1 A != next(in1 A)) : s2;
state=s1 & (out1 R != next(out1 R)) : s3;
state=s2 & (in1 R != next(in1 R)) : s7;
state=s2 & (out1 R != next(out1 R)) : s5;
state=s3 & (out1 A!= next(out1 A)) : s4;

15 state=s3 & (in1 A != next(in1 A)) : s5;
state=s4 & (in1 A != next(in1 A)) : s0;
state=s5 & (in1 R != next(in1 R)) : s6;
state=s5 & (out1 A!= next(out1 A)) : s0;
state=s6 & (out1 A!= next(out1 A)) : s1;

20 state=s7 & (out1 R != next(out1 R)) : s6;
−−illegal handshake transitions
in1 A!=next(in1 A) | out1 R!=next(out1 R) : errorOUT;
in1 R!=next(in1 R) | out1 A!=next(out1 A) : errorIN;
−−remaining transitions

25 TRUE: state;
esac;

−−PROPERTIES
−−safety

30 CTLSPEC AG state!=errorOUT;
CTLSPEC AG state!=errorIN;
−−progress

CTLSPEC AG AF(state!=s1)
CTLSPEC AG AF(state!=s2)

35 CTLSPEC AG AF(state!=s3)
CTLSPEC AG AF(state!=s4)
CTLSPEC AG AF(state!=s7)
−−choice equivalence

CTLSPEC AG (state=s0 → E[state=s0 U state=s1])
40 CTLSPEC AG (state=s1 → E[state=s1 U state=s2])

CTLSPEC AG (state=s1 → E[state=s1 U state=s3])
CTLSPEC AG (state=s2 → E[state=s2 U state=s7])
CTLSPEC AG (state=s2 → E[state=s2 U state=s5])
CTLSPEC AG (state=s3 → E[state=s3 U state=s4])

45 CTLSPEC AG (state=s3 → E[state=s3 U state=s5])
CTLSPEC AG (state=s4 → E[state=s4 U state=s0])
CTLSPEC AG (state=s5 → E[state=s5 U state=s6])
CTLSPEC AG (state=s5 → E[state=s5 U state=s0])
CTLSPEC AG (state=s6 → E[state=s6 U state=s1])

50 CTLSPEC AG (state=s7 → E[state=s7 U state=s6])

Figure 5 Fully delay-insensitive protocol specification (top)
and corresponding NuSMV model checker code (bottom).
The first part of the code in lines 1–26 describes legal and
illegal states and transitions. The model checker uses this
part to monitor the sub-system with circuit, environment, and
timing constraints. The second part in lines 28–50 describes
the protocol properties for “what the monitor must see.”
Note: A NuSMV case statement gives higher priority to the
guarded commands in earlier lines of the case statement.

becomes more interesting for non-deterministic components.

9

Figure 5 Fully delay-insensitive protocol specification (top)
and corresponding NuSMV model checker code (bottom).
The first part of the code in lines 1–26 describes legal and
illegal states and transitions. The model checker uses this
part to monitor the sub-system with circuit, environment, and
timing constraints. The second part in lines 28–50 describes
the protocol properties for “what the monitor must see.”
Note: A NuSMV case statement gives higher priority to the
guarded commands in earlier lines of the case statement.

24

Pre-
pu

bli
ca

tio
n JC

ST
20

151

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_
in

1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL

The progress and choice equivalence properties are absent
from the NuSMV based timing verification work in [9]. We
will come back when we compare related work in Section IV.

III-B2 Modeling the Component’s Circuit and Environment:

Figure 6 repeats the gate-level Click Storage circuit and
environment models in Figure 1 (right-column-top) and shows
the corresponding gate-level NuSMV translation, using two
gate models, cgate and ff posedge that are defined in Figure 7.

The two translations are wrapped in self-contained modules
with formal parameter names to support the exchange of hand-
shake and timing constraint signals. For this paper, we abbre-
viated the module names Click Storage 1 In 1 Out Circuit
and Click Storage 1 In 1 Out Environment to circuit and
environment, respectively. These contain the code for the
middle two white rectangles with horizontal text in Figure 4.

The Click Storage Circuit shown in Figure 6 (top) contains
five more buffers than the original circuit description in the
Design Library of Figure 1 (center-column-top). The extra
buffers are colored grey and named buf in1 A1, buf in1 A2,
buf out1 R1, buf out1 R2, and buf ck. The translation adds
these buffers to delay wires and individual wire branches
independently from gates. Buffers are necessary because the
model checker ignores wire delays. Adding a buffer or inverter
device to a logical wire connection makes that connection
visible to the model checker as a device output with a device
delay. It suffices to add buffers only to wires that branch
out and to wires that clock edge-triggered flipflops. It is
straightforward to adapt a compiler that generates the original
circuit description to generate also the description for the
model checker. The circuit description for the model checker
also contains datapath signals in1 D and out1 D and datapath
flipflop FF D, which are omitted from Figure 6 because they
are outside the scope of this paper.

Figure 6 (bottom) shows the translated circuit module in lines
1–18 and the translated environment module in lines 21–30.
Lines 3–12 describe the gate instances and their connections
for the circuit. Lines 23–24 do the same for the environment.
Most gates are instantiated as process cgate (function,. . .)
where function is a Boolean logic combination of the module’s
parameters and outputs of other gates. The instances have
the same names and logical functions as in Figure 6 (top).
For example, gate instance xor in1 in line 3 computes the
exclusive-or of parameter in1 R and buf in A2.val, the output
of gate buf in A2. Likewise, positive edge-triggered flipflop
instance FF in line 7 copies and stores the value on inv q2d.val
onto its output q whenever its clock input buf ck.val changes
from low (FALSE) to high (TRUE). The signal definitions in
lines 14–17 and 26–29 following the keywords DEFINE serve
to shorten and simplify various code fragments.

The operations of the circuit and its environment are monitored
by the protocol, as explained in Section III-B1. Because we
describe protocols with Delay-Insensitive Algebra, which uses

1

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_
in

1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL

1 MODULE circuit (in1 R, out1 A)
VAR

xor in1 : process cgate (in1 R xor buf in1 A2.val, f,f,f,f);
xnor out1 : process cgate (out1 A xnor buf out1 R2.val, t,f,f,f);

5 and2 : process cgate (xor in1.val & xnor out1.val, f,f,f,f);
buf ck : process cgate (and2.val, f,f,f,f);
FF : ff posedge (buf ck.val, inv q2d.val, f);
inv q2d : process cgate (!FF.q, t,f,f,f);
buf in1 A1 : process cgate (FF.q, f,f,f,f);

10 buf in1 A2 : process cgate (FF.q, f,f,f,f);
buf out1 R1: process cgate (FF.q, f,f,f,f);
buf out1 R2: process cgate (FF.q, f,f,f,f);

DEFINE
in1 A := buf in1 A1.val;

15 out1 R := buf out1 R1.val;
f := FALSE;
t := TRUE;

FAIRNESS running

20
MODULE environment (in1 A, out1 R)
VAR

ENV in1 : process cgate (!in1 A, f,t,f,f);
ENV out1 : process cgate (out1 R, f,t,f,f);

25 DEFINE
in1 R := ENV in1.val;
out1 A := ENV out1.val;
f := FALSE;
t := TRUE;

30 FAIRNESS running

Figure 6 (top) Click Storage circuit and environment
models from Figure 1 (right-column-top) with corresponding
module definitions for the Model Checker Library (bottom)
coded in NuSMV. In the picture, the gates for ENV in1 and
ENV out1 contain the letter “L” to indicate that they are lazy.
The code for cgate and ff posedge follows in Figure 7.

an interleaving semantics, the protocol model interleaves its
events. Thus, the protocol can interpret handshake events only
when they arrive in sequence. Consequently, the circuit and
its environment must interleave all handshake events because
these are the events they share with the protocol. To simplify
the overall execution, we chose to interleave not just the
handshake events but all events generated by cgate instances in

10

Figure 6 (top) Click Storage circuit and environment
models from Figure 1 (right-column-top) with corresponding
module definitions for the Model Checker Library (bottom)
coded in NuSMV. In the picture, the gates for ENV in1 and
ENV out1 contain the letter “L” to indicate that they are lazy.
The code for cgate and ff posedge follows in Figure 7.

25

Pre-
pu

bli
ca

tio
n JC

ST
20

15
the circuit or its environment. 8 NuSMV pairs the keywords
process and cgate in lines 3–12 and 23–24 to indicate that
the cgate instance is to be executed in asynchronous mode by
interleaving its operations with those of other process cgate
instances.

The asynchronous interleaving mode of operation comes with
a cost of fairness conditions for selecting which process cgate
operation to run next. The protocol assumes that most circuit
operations take a finite time. It expects the circuit to generate
a handshake output within a finite number of execution steps
after receiving a handshake input from its environment. The
NuSMV code for the protocol uses progress properties to
formulate and verify these expectations — see lines 33–37
of Figure 5. To satisfy these progress properties, each process
cgate instance in the module must be selected to run after
every so many unbounded but finite execution steps. The
NuSMV statements FAIRNESS running in lines 18 and 30 of
Figure 6 enforce precisely that.

The remaining code details can be explained by examining the
module definitions for cgate and ff posedge in Figure 7.

The module definition of cgate, i.e. “combinational gate,”
follows in lines 1–20 of Figure 7. Each cgate takes an
arbitrary Boolean combinational logic function through its first
parameter, set. For example, the cgate for xor in1 in line 3
of Figure 6 takes in1 R xor buf in1 A2.val — the exclusive-
or of Boolean signals in1 R and buf in A2.val. The second
parameter, init val, contains the initial value of cgate output
val, assigned in line 6 of Figure 7. For example, the output
of xnor out1 in line 4 of Figure 6 is initialized to TRUE,
which corresponds to the value 1 indicated for the xnor out1
output in Figure 6 (top). When a cgate instance is selected to
run, it evaluates its set function. Depending on the other input
parameters in Figure 7, it either updates its output val with the
set result (line 10 or 11) or does nothing (line 9 or 10). Only
lazy or timing constrained cgate instances may do nothing.

A cgate is lazy if its third parameter, lazy, is TRUE. For
example, both the Click Storage Environment gates ENV in1
and ENV out1 in lines 23–24 of Figure 6 (bottom) are lazy.
A lazy cgate has an arbitrary choice either to act by setting its
output val to the result in set or to do nothing by keeping the
old value of val. This nondeterministic choice is indicated in
line 10 of Figure 7 by the curly brackets around val and set.

Timing constraints may prevent a cgate output transition from
FALSE to TRUE (rise), from TRUE to FALSE (fall), or both.
Output val cannot rise in line 9 of Figure 7 if the fourth
parameter stop rise is TRUE, and neither can it fall if the
fifth parameter stop fall is TRUE. In Section III-C, we will
discuss how timing constraints control the run-time values of

8This simple mode of interleaving can be combined with a simultaneous
mode of operation [9] for internal gates that generate non-handshake events,
allowing arbitrary subsets of these to operate simultaneously. Such a simulta-
neous mode of operation would, however, require tighter fairness conditions
than the FAIRNESS running in lines 18 and 30 of Figure 6 (bottom) in order
to satisfy the protocol’s progress properties in lines 33–37 of Figure 5.

1 MODULE cgate (set, init val, lazy, stop rise, stop fall)
VAR

val : boolean;
semimodular : boolean;

5 ASSIGN
init(val) := init val;
init(semimodular) := TRUE
next(val) := case

(stop rise & !val & set) | (stop fall & val & !set) : val;
10 lazy : {val, set};

TRUE : set;
esac;

TRANS
next(semimodular) = case

15 ((!stop rise & !val & set) | (!stop fall & val & !set))
& next(val)=next(set) & next(val)=val : FALSE;

TRUE : semimodular;
esac;
−−PROPERTIES for “digital health”

20 CTLSPEC AG semimodular

MODULE ff posedge(ck, d, init q)
VAR

q : boolean;
25 ASSIGN

init(q) := init q;
TRANS

next(q) = case
!ck & next(ck) : d;

30 TRUE : q;
31 esac;

Figure 7 Module definitions for cgate and ff posedge.
Earlier commands in a case statement have a higher priority.
NuSMV uses the symbol “!” for logical negation.

stop rise and stop fall in the various cgate instances.

It is possible that a cgate instance, poised to have its output rise
or fall, fails to be selected and do the output transition before
a new set value arrives that disables the transition. For cgate
instances used in self-timed circuits, the presence of a later set
value overtaking an earlier one often indicates the presence of
a race condition. We therefore flag such overtakings for later
inspection. A variable with the name semimodular, initially
TRUE (line 7), becomes FALSE at the first such overtaking
(lines 15–16) when the next execution step no longer shows
an enabled transition (next(val)=next(set)) but also shows no
sign of having taken it (next(val)=val). The NuSMV model
checker updates variable semimodular (lines 14–18) at each
execution step, as indicated by the keyword TRANS in line 13.
The “digital health” property in line 20 requires semimodular
to be TRUE at all times, and flags any change to FALSE.

Variable semimodular in Figure 7 has been aptly named.
Semimodularity is a well-known paradigm for designing self-
timed digital circuits without hazards by insisting that digital
signal changes occur before being disabled. One might call it
the “no change left behind” paradigm. Introduced by David
Muller [24] and brought to the attention of a wider audience
through Raymond Miller’s 1965 book [23] semimodularity
formed the starting point of the first generation of self-timed
circuit design tools [21], [18]. Though semimodularity is still
an important paradigm for designing and verifying self-timed
circuits, new design trends for fast, energy-efficient self-timed
circuits [44], [4], [37], [39] force it to share that position with
Relative Timing [43]. The NuSMV code in lines 14–18 of
Figure 7 for updating the variable semimodular is based on a
new definition of semimodularity for timing constrained self-
timed circuits, presented by us in [27].

11

Figure 7 Module definitions for cgate and ff posedge.
Earlier commands in a case statement have a higher priority.
NuSMV uses the symbol “!” for logical negation.

26

Pre-
pu

bli
ca

tio
n JC

ST
20

15
C

o
m

p
o

n
e

n
t’

s
 P

ro
to

c
o

l

a
n

d
 p

ro
to

c
o

l
p

ro
p

e
rt

ie
s

Component’s Environment

and “digital health” properties

Component’s Circuit

and “digital health” properties

Model Checker Netlist

Component’s Test Circuit

C
o

m
p

o
n

e
n

t’
s

 P
ro

to
c

o
l

a
n

d
 p

ro
to

c
o

l
p

ro
p

e
rt

ie
s

Component’s Environment

and “digital health” properties

Component’s Circuit

and “digital health” properties

Model Checker Netlist

Component’s Test Circuit

1 MODULE main
VAR

ComponentProtocol : protocol (in1 R, in1 A, out1 R, out1 A);
ComponentCircuit : process circuit (in1 R, out1 A);

5 ComponentEnvironment : process environment (in1 A, out1 R);
DEFINE

in1 R := ComponentEnvironment.in1 R;
in1 A := ComponentCircuit.in1 A;
out1 R := ComponentCircuit.out1 R;

10 out1 A := ComponentEnvironment.out1 A;
11 FAIRNESS running

Figure 8 Copy of the Model Checker Netlist in Figure 4 without timing constraints (left) and corresponding NuSMV code (right)
with one instance each of the component’s protocol, circuit, and environment. The code of each instance can be found in Figures 5–6.

The module definition of ff posedge in lines 22–31 of Figure 7
models a positive edge-triggered flipflop. The flipflop copies
and stores the value of its second parameter, d, onto its output,
q, whenever its first parameter, ck, changes from low (FALSE)
to high (TRUE), as indicated in line 29. The value of output
q is initialized through the third parameter, init q (line 26).
Instances of ff posedge run each execution step, as indicated
by the keyword TRANS in line 27.

To time and verify each ff posedge instance, we pair it with
a process cgate instance as its clock buffer. The clock buffer
provides the timing flexibility in selecting when the flipflop
acts. We verify the semimodular behavior of the clock buffer to
ensure that all “clock” transitions issued by the and2 gate reach
the flipflop — see Section III-A for a reminder on “clocking.”
This explains the extra buffer buf ck in Figure 6 (top): it is the
clock buffer for flipflop FF. It is possible to model ff posedge
so it can be timed and verified without the extra clock buffer,
but to do this properly requires modeling data — which falls
outside the scope of this paper.

Gate models cgate and ff posedge in Figures 6–7 have
NuSMV code descriptions reminiscent of code descriptions
in a hardware description language like Verilog. We chose
to use a general gate model for cgate, capable of modeling
all combinational gates in the Click Storage component. This
is possible because each gate instantiated in the component’s
gate-level netlist in Figure 6 (top) has a behavioral description
of its Boolean logic function. When instantiated with the
signals coming into the gate, this Boolean logic function
becomes the set function of the corresponding cgate instance
in Figure 6 (bottom). One could follow a similar approach for
sequential gates and define a general gate model capable of
modeling all sequential gates, as is done in [1]. We refrained
from doing this here because Click components use only one
type of sequential gate — a positive edge-triggered flipflop.
Instead of using a few general gate models, one could define a
dedicated model for each gate with a different logic function,
and connect the gates by connecting their signal names. This
is done in [9]. Figure 6 would require eight such dedicated
gate models: two for the lazy environment, and six for the
circuit. Dedicated gate models produce a larger Model Checker
Library to characterize, but they contain extra connectivity
information that could be useful.

III-B3 Instantiating the Models in a Model Checker Netlist:

Figure 8 repeats the middle grey rectangle of Figure 4 with the
Model Checker Netlist but omits the white rectangle for the
Component’s Timing Constraints. It also shows the NuSMV
translation with a single protocol, circuit, and environment
instance for each. The keywords process in lines 4–5 indicate
that the model checker will run the circuit and environment
instances in asynchronous mode by interleaving their events.
The FAIRNESS running command in line 11 insists that the
event selection between the two instances be fair. The lack
of keyword process in line 3 indicates that the protocol
instance runs in synchronous mode. This matches the modes
of operation specified earlier in Figure 4.

In Section III-C, we will verify the “digital health” and
protocol properties in the code of Figure 8, analyze any
failing properties, and generate timing constraints to correct
the failures. In Section III-D we will revisit Figure 8 and
upgrade its NuSMV code by adding the missing constraints.

III-C ARCtimer Step 3 — Timing Patterns

When the model checker runs the code in Figure 8 it reports
multiple failing properties. For each failing property it gives a
counterexample — a computation path that fails that property.
Failing properties expose delay sensitivities in the design.
A counterexample not only exposes a delay sensitivity, but
also contains “clues” about how to prevent it from becoming
hazardous. These clues can be captured in a form suitable for
verification and correction — and thus prevention.

There are various options available for capturing clues. For
instance, [55] assigns metric delay bounds to each gate in
the circuit and its environment, capturing each clue as a
tighter metric delay bound and calls this a timing constraint.
Alternatively, a clue can be captured as a relative ordering of
events and be called a chain constraint as in [25], [26], or a
(relative) timing constraint as in [28], [8], [17], [45], [52].

Here, we capture a clue as a relative ordering of events and
call this a relative timing constraint, or simply constraint.

Analyzing a counterexample to capture the clue it contains
always requires finite state machine analysis around the failing
step. Many of the approaches referenced here, notably [55],
[17], [8], [53], [52], provide heuristics to capture the clue as a

12

Figure 8 Copy of the Model Checker Netlist in Figure 4 without timing constraints (left) and corresponding NuSMV code (right)
with one instance each of the component’s protocol, circuit, and environment. The code of each instance can be found in Figures 5–6.

27

Pre-
pu

bli
ca

tio
n JC

ST
20

15

1

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_
in

1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL 1

1

 and2

xor_in1

FF

buf_in1_A1 buf_out1_R1

Click Storage Circuit

inv_q2d

xnor_out1

buf_out1_R2buf_in1_A2

Click Storage Environment

E
N

V
_

o
u

t1

E
N

V
_
in

1

out1_A

out1_R

in1_R

in1_A

buf_ck

QD

LL

“Digital Health” Failure
Initial State:

state=s0
Run step 1:

ENV in1.val+
in1 R+
state=s1

Run step 2:
xor in1.val+

Run step 3:
and2.val+

Run step 4:
buf ck.val+
FF.q+

Run step 5:
buf out1 R1.val+
out1 R+
state=s3

Run step 6:
buf out1 R2.val+

Run step 7:
ENV out1.val+
out1 A+
state=s4
xnor out1.semimodular=FALSE

Failure: CTLSPEC AG semimodular

Protocol Failure
Initial state: Run step 8:

state=s0 and2.val−
Run step 1: Run step 9:

ENV in1.val+ buf ck.val−
in1 R+ Run step 10:
state=s1 inv q2d−

Run step 2: Run step 11:
xor in1.val+ ENV out1.val+

Run step 3: out1 A+
and2.val+ state=s4

Run step 4: Run step 12:
buf ck.val+ xnor out1.val+
FF.q+ Run step 13:

Run step 5: and2.val+
buf out1 R1.val+ Run step 14:
out1 R+ buf ck.val+
state=s3 FF.q−

Run step 6: Run step 15:
buf out1 R2.val+ buf out1 R1.val−

Run step 7: out1 R−
xnor out1.val− state=errorOUT

Failure: CTLSPEC AG state!=errorOUT

Figure 9 (left) Copy of the Click Storage circuit and environment coded in Figures 6–7 and two counterexamples (right) showing a
“digital health” failure for gate xnor out1 and a failure in state s4 of the protocol (Figure 5) monitoring the circuit and environment.
The counterexamples each describe a path of events through the circuit. An event is a rising or falling signal transition. The
counterexamples indicate rising signal transitions by appending the symbol “+” to the signal name, like ENV in1.val+ in step 1.
They indicate falling transitions by appending the symbol “−”, like out1 R− in step 15 of the path with the protocol failure.

to rt4. Two more such counterexamples can be found by
exchanging the two feedback loops at channel out1’s side
for the two feedback loops at channel in1’s side. The four
relative timing constraints rt1 to rt4 in Figure 10 block all
such counterexamples.

Semimodularity failures are easy to solve: instead of disabling
the transition, take it! This simple heuristic, however, tends to
push the semimodularity failure to the next gate, just as a
snow plow pushes snow elsewhere. This happens for instance
between rt7–rt8 and rt9 in Figure 10, each of which solve
a semimodularity failure. Constraints rt7 and rt8 solve a
semimodularity failure for gate and2 by pushing the failure to
the next gate, buf ck. Constraint rt9 solves the semimodularity
failure for gate buf ck by pushing the failure to FF, which
does not register this type of failure, and so the simple
heuristic snow plow stops here. Relative timing constraints
that merely push a semimodularity failure elsewhere fail to
be appealing and intuitive to the designer of the component
and are less robust to circuit modification applied later in the
design process. We will come back to this in Section III-C3.

The counterexample in the right box of Figure 9 avoids the
mistake of the first counterexample by taking the still-enabled
transition xnor out1.val− (step 7). It continues by resetting
the AND function and setting up the flipflop for the next
handshake coordination (steps 8–10). So far so good. But then,
it starts a second handshake on channel out1 (steps 11-12)
while ignoring the still outstanding first handshake on in1 —

forgetting that it “takes two to tango.” With in1 R high and
in1 A still low, input channel in1 is still full and xor in1 is
still high. As a result, the AND function “acts” prematurely
(steps 13–15) and coordinates the first handshake on in1 with
the second handshake on out1. This premature action of the
AND function causes a protocol failure in step 15.

This second counterexample violates the core purpose of the
Click Storage component, which is to coordinate exactly one
incoming handshake with exactly one outgoing handshake and
to repeat this for the successive handshakes on each channel.
For one-to-one coordination, the AND function must know
when a channel is willing to participate (“Shall we dance?”)
as well as when its participation is over (“Thank you!”). Each
channel indicates its willingness to participate by raising the
output of its exclusive-(N)OR gate, and each channel ends its
participation by lowering this same output. After each action,
both outputs must fall before either rises again. We capture
this clue in the counterexample in the following way:

• When and2.val rises, then xor in1.val must fall before
xnor out1.val rises. We denote this as:
and2.val+ → xor in1.val− < xnor out1.val+.

This formulation of the captured clue matches rt5 in Figure 10.
The related constraint, rt6, avoids similar counterexamples for
the reverse situation by preventing each handshake on in1 from
outpacing its handshake partner on out1.

Solving protocol failures may be hard and require rules of
thumb for designing self-timed circuits. For example [8] exper-

14

Figure 9 (left) Copy of the Click Storage circuit and environment coded in Figures 6–7 and two counterexamples (right) showing a
“digital health” failure for gate xnor out1 and a failure in state s4 of the protocol (Figure 5) monitoring the circuit and environment.
The counterexamples each describe a path of events through the circuit. An event is a rising or falling signal transition. The
counterexamples indicate rising signal transitions by appending the symbol “+” to the signal name, like ENV in1.val+ in step 1.
They indicate falling transitions by appending the symbol “−,” like out1 R− in step 15 of the path with the protocol failure.

28

Pre-
pu

bli
ca

tio
n JC

ST
20

15

m
yP

O
D

 Ù
 Ø

 g
u
a
rd

 L
A

T
E m

yE
A

R
L
Y

m
yP

O
D

 Ù
 g

u
a
rd

 L
A

T
E

guard LATE +

m
yE

A
R

L
Y

YELLOW

perm
it

event LATE

guard LATE -

myEARLY

myEARLY

 has priority

REDblock
event LATE

GREEN

permit
event LATE

m
yP

O
D

 Ù
 Ø

 g
u
a
rd

 L
A

T
E m

yE
A

R
L
Y

m
yP

O
D

 Ù
 g

u
a
rd

 L
A

T
E

guard LATE +

m
yE

A
R

L
Y

YELLOW

perm
it

event LATE

guard LATE -

myEARLY

myEARLY

 has priority

REDblock
event LATE

GREEN

permit
event LATE

Initial Set of Relative Timing Constraints
for the Click Storage Circuit and Environment in Figure 6

myName myPOD myEARLY myLATE

rt1 : (¬FF.q ∧ and2.val+)→ xor in1.val− < in1 R−
rt2 : (FF.q ∧ and2.val+) → xor in1.val− < in1 R+
rt3 : (¬FF.q ∧ and2.val+)→ xnor out1.val− < out1 A+

rt4 : (FF.q ∧ and2.val+) → xnor out1.val− < out1 A−
rt5 : and2.val+ → xor in1.val− < xnor out1.val+
rt6 : and2.val+ → xnor out1.val− < xor in1.val+
rt7 : and2.val+ → and2.val− < (xor in1.val ∧ xnor out1.val+)
rt8 : and2.val+ → and2.val− < (xnor out1.val ∧ xor in1.val+)
rt9 : and2.val+ → buf ck.val− < and2.val+
rt10 : FF.q+ → inv q2d.val− < buf ck.val+
rt11 : FF.q− → inv q2d.val+ < buf ck.val+

Figure 10 (left) Stoplight model of a relative timing constraint for use by the model checker, and (right) initial set of relative timing
constraints for the Click Storage component derived by failure analysis of counterexamples for the NuSMV netlist in Figure 8. Failure
analysis of the two counterexamples from Figure 9 in Section III-C1 gave us rt3 and rt5 — and implicitly rt1 to rt6. Constraint
myNAME : myPOD → myEARLY < myLATE expresses that after myPOD the computation encounters myEARLY before myLATE.
The expressions myPOD, myEARLY, and myLATE formulate guarded events, as explained in the text of Section III-C2. The
expressions for the guards are underlined. Rising events end with the symbol “+” and falling events end with the symbol “−”.

iments with slow versus fast input events to guide the synthesis
of self-timed circuits. By presuming a slow environment, it
may be possible to generate rt5 automatically from the second
counterexample. We will come back to this in Section III-C3.

III-C2 Modeling Relative Timing Constraints:

The relative timing constraints in Figure 10 capture the clues
from the various counterexamples generated by the model
checker. The two counterexamples of Figure 9 gave us rt3 and
rt5, and implicitly all six constraints, rt1 to rt6. The focus of
the current section is to expose the structure and operation of
all such relative timing constraints.

As mentioned in Section II-D, relative timing constraints are
constraints between signals at the ends of paths that start at the
same point — signals that must change in a pre-established
sequence. Each relative timing constraint identifies the point
where the paths split, called a Point of Divergence (POD)
in [45], [9] — here we call it myPOD. Each constraint also
indicates the two destinations, a pre-established “early” end
point and a pre-established “late” end point — we call these
myEARLY and myLATE, respectively. In addition the constraint
has a name, like rt1 in Figure 10 — we call this myNAME.

Our relative timing constraints have the following structure:
• myNAME : myPOD → myEARLY < myLATE

where
• myPOD is an abbreviation for: guardPOD ∧ eventPOD

◦ guardPOD is a guard, i.e. a Boolean logic expression
◦ eventPOD is an event, i.e. a rising or falling signal

• myPOD holds if and only if
◦ eventPOD occurs, and
◦ meanwhile guardPOD holds

• myEARLY and myLATE have similar structures:
◦ myEARLY abbreviates guardEARLY ∧ eventEARLY

◦ myLATE abbreviates guardLATE ∧ eventLATE

The better to distinguish guards from events, we underline
guards. We omit trivial guards, like TRUE. For instance, the
guards for myPOD in rt5 to rt11 are omitted for this reason.

Constraint myNAME :myPOD → myEARLY < myLATE says:
• if myPOD becomes valid
• then myEARLY must become valid
• before myLATE becomes valid.

One can use a constraint for analysis and report whether or not
it is satisfied for all possible computation paths of the system.
This is done, for instance, during static timing analysis —
see Section II-D. Alternatively, one can use a constraint as an
actuator — a delay device that retards eventLATE after myPOD
becomes valid by blocking eventLATE until myEARLY has
become valid. The model checker uses constraints as actuators.

Our model checker’s actuator model of constraint myNAME
is a three-state finite state machine extension of the two-state
version used in [9]. The three states are necessary for modeling
the non-trivial guards of myLATE in rt7 and rt8 of Figure 10.
We name the three states GREEN, YELLOW, and RED.

Figure 10 (left) shows the stoplight model that we use as the
model checker’s actuator view of a relative timing constraint.
Both GREEN and YELLOW states permit eventLATE to
happen, while a RED state blocks eventLATE . Most constraints
start in GREEN, as do rt1 to rt11 in Figure 10 (right), and
proceed as follows:

• All constraints go to a GREEN state when myEARLY
becomes valid, because the need to retard eventLATE

vanishes with arrival of myEARLY.
• In GREEN, only myPOD can change the state, because

myEARLY and myLATE matter only after myPOD be-
comes valid. The stoplight changes from GREEN to

15

Figure 10 (left) Stoplight model of a relative timing constraint for use by the model checker, and (right) initial set of relative timing
constraints for the Click Storage component derived by failure analysis of counterexamples for the NuSMV netlist in Figure 8. Failure
analysis of the two counterexamples from Figure 9 in Section III-C1 gave us rt3 and rt5 — and implicitly rt1 to rt6. Constraint
myNAME : myPOD → myEARLY < myLATE expresses that after myPOD the computation encounters myEARLY before myLATE.
The expressions myPOD, myEARLY, and myLATE formulate guarded events, as explained in the text of Section III-C2. The
expressions for the guards are underlined. Rising events end with the symbol “+” and falling events end with the symbol “−.”

29

Pre-
pu

bli
ca

tio
n JC

ST
20

15

buf_extranew

buf_cknew

NEW-2

a
n

d
2

b
u

f_
c

k

 and2new

buf_extranew

buf_cknew

NEW-1

a
n

d
2

b
u

f_
c

k

 and2new

buf_ck

 and2

OLD

Figure 11 (left) Click Storage sub-circuit from Figure 6,
and (right) two new post-layout versions with an extra buffer.
Sub-circuit NEW-1 groups and2new and buf extranew and
identifies the group with and2 in OLD. The semimodular
gate behavior of each gate is covered if the semimodularity
of and2 is covered. Constraints rt7 and rt8 of Figure 10
cover the semimodularity of and2, and thus that of and2new

and buf extranew in NEW-1. The grouping and renamings
for sub-circuit NEW-2, however, keep buf extranew isolated.
Because rt1 to rt11 are the weakest possible constraints for
the original circuit with sub-circuit OLD, they fail to cover
the semimodular gate behavior of buf extranew in NEW-2.
Because the timing patterns p5 and p6 in Figure 12 cover the
semimodular behavior of all gates from and2 through buf ck,
they cover the semimodular behavior of the intermediary
gate, buf extranew , in both NEW-1 and NEW-2.

30

Pre-
pu

bli
ca

tio
n JC

ST
20

15
patterns work for most technology mappings and layout tools.
We wish to solve circuit design and circuit timing in a similar
way. We seek timing patterns that make the design patterns
work — i.e. that ensure:

• the X(N)OR gates detect full and empty channel states,
• the AND function coordinates the handshakes, and
• the FF and inv q2d flip the channel state.

Let us examine the initial constraints rt1 to rt11 of Figure 10 to
see which might work as patterns and which need generalizing:

• Constraints rt1 to rt4 make the X(N)OR gates work, and
do no more and no less than that — they make fine
patterns. Figure 12 rephrases them as p1 and p2.

• Constraints rt5 and rt6 make the AND function work by
comparing the output signals of the X(N)OR gates. This
comparison makes less sense for complex AND functions
in components with more than one channel on each side.
Requiring the outputs of all X(N)OR gates to fall before
any channel input changes results in the more general
constraints p3 and p4 in Figure 12 (top) and p (bottom).

• Constraints rt7 to rt9 keep the AND function semimod-
ular, but they do this by exposing the organization of
the AND function all the way from gate and2 to the
FF’s clock input — a result of resolving semimodularity
failures by pushing them out of the way. The slow
environment presumed in Section III-C1 for rt5 and rt6
can be assumed again here to guarantee that there will
be enough time to stabilize internal feedback loops up
to FF’s clock input before the channel inputs change.
This assumption is formalized in p5 and p6 of Figure 12.
Unlike rt7 and rt8, patterns p5 and p6 are robust to both
post-layout design changes shown in Figure 11.

• Constraints rt10 and rt11 keep the FF with inv q2d
combination flipping, but can be generalized as patterns
p7 and p8 of Figure 12 by assuming a slow environment.

Note that each pattern in p1 to p8 of Figure 12 still leaves at
least 2 inverter delays to spare under the earlier estimations for
full speed operation, reasonable gate delays, and a reasonable
environment. This indicates that the risk for violating one of
these patterns is low and that none of them is critical.

The slow environment assumed above leads to a burst-mode
operation [11] of the Click Storage component, where internal
loops stabilize before new external channel inputs arrive.
The burst-mode assumption is expressed most clearly in the
parametrized pattern p of Figure 12. It is quite common in self-
timed circuit design to assume that an external feedback loop
through the component’s environment is slow compared to an
internal feedback loop in the component’s circuit. Heuristics
for automatic circuit synthesis or timing constraint generation
often use such assumptions. There is no guarantee, however,
that relative timing constraints generated on the basis of
heuristics are sufficiently general to be stored in a Design
Library for use in every chip design.

Timing Patterns
replacing rt1 to rt11 from Figure 10

myName myPOD myEARLY myLATE
p1 : and2.val+ → xor in1.val− < in1 R±
p2 : and2.val+ → xnor out1.val− < out1 A±
p3 : and2.val+ → xor in1.val− < out1 A±
p4 : and2.val+ → xnor out1.val− < in1 R±
p5 : and2.val+ → buf ck.val− < in1 R±
p6 : and2.val+ → buf ck.val− < out1 A±
p7 : and2.val+ → inv q2d.val± < in1 R±
p8 : and2.val+ → inv q2d.val± < out1 A±

Parametrized Timing Patterns
for N incoming and M outgoing channels

(0 < n1, n2 ≤ N and 0 < m1,m2 ≤M)

myPOD myEARLY myLATE

p : and2.val+ →





xor in [n1] .val−
xnor out [m1] .val−

buf ck.val−
inv q2d.val±



 <

{
in [n2] R±

out [m2] A±
}

Figure 12 Timing Patterns for a Click Storage component
with a single incoming and a single outgoing channel (top).
Pattern p (bottom) re-phrases and parametrizes p1 to p8 to
multiple incoming and outgoing channels. It expresses that
after myPOD the computation must satisfy all myEARLY
before any myLATE. Symbols “+”, “−” and “±” at the end
of a signal indicate a rising, falling, or either signal transition.

The role of ARCtimer’s Step 3 is to take the initial timing
constraints, obtained by human or automated failure analysis,
and turn them into sufficiently general timing patterns.

III-D Step 2 Revisited — Adding Timing Constraints
The double-headed arrow in Figure 1 (right-column), on the
spiral between Step 2 and Step 3, indicates that we alternate
these two steps. We first run the model checker (Step 2), then
we examine a few counterexamples and capture their clues in
one ore more relative timing constraints (Step 3). Then we
model the constraints, and re-run the model checker primed
with these constraints. We examine a few counterexamples,
and repeat. We alternate Step 2 and Step 3 until the model
checker reports no further counterexamples. This alternation
gave us constraints rt1 to rt11 of Figure 10, from which we
then derived timing patterns p1 to p8 and p of Figure 12.

The purpose of this section is to illustrate how one can
model such constraints in a general-purpose model checker.
As before, we use the NuSMV model checker as example.
Figure 13 expands the NuSMV Model Checker Netlist of
Figure 8 without timing constraints to match the version
shown in Figure 4 (middle) with p1 to p8 as the component’s
timing constraints. When the model checker runs the code in
Figure 13 it reports no further counterexamples — all modeled
properties are valid.

Module rt in lines 1–18 of Figure 13 models the state changes
of the stoplight model of Figure 10 (left) which is our model
of a relative timing constraint. The parameters in line 1 with
names eventPOD, eventEARLY, guardPOD, guardEARLY, and
guardLATE represent respectively eventPOD , eventEARLY ,

17

Figure 12 Timing Patterns for a Click Storage component
with a single incoming and a single outgoing channel (top).
Pattern p (bottom) re-phrases and parametrizes p1 to p8 to
multiple incoming and outgoing channels. It expresses that
after myPOD the computation must satisfy all myEARLY
before any myLATE. Symbols “+,” “−” and “±” at the end
of a signal indicate a rising, falling, or either signal transition.

31

Pre-
pu

bli
ca

tio
n JC

ST
20

15
1 MODULE rt (eventPOD, eventEARLY, init rt, guardPOD, guardEARLY, guardLATE, xPOD, xEARLY)

VAR
stoplight : {GREEN, YELLOW, RED};

ASSIGN
5 init(stoplight) := init rt;

TRANS
next(stoplight) = case

myEARLY : GREEN;
stoplight=GREEN & myPOD & !guardLATE: YELLOW;

10 stoplight=GREEN & myPOD & guardLATE : RED;
stoplight=YELLOW & next(guardLATE) : RED;
stoplight=RED & next(!guardLATE) : YELLOW;
TRUE : stoplight;

esac;
15 DEFINE

myPOD := guardPOD & ((xPOD & eventPOD!=next(eventPOD)) | (!eventPOD & next(eventPOD)))
myEARLY := guardEARLY & ((xEARLY & eventEARLY!=next(eventEARLY)) | (!eventEARLY & next(eventEARLY)))

18 stop := (stoplight=RED);

21 MODULE circuit (in1 R, out1 A)
−− RELATIVE TIMING CONSTRAINTS
VAR

p1p3: rt (and.val, !xor in.val, GREEN, t,t,t,f,f);
25 p2p4: rt (and.val, !xnor out.val, GREEN, t,t,t,f,f);

p5p6: rt (and.val, !ckbuf.val, GREEN, t,t,t,f,f);
p7p8: rt (and.val, inv q2d.val, GREEN, t,t,t,f,t);

DEFINE
stop in1 R x := p1p3.stop | p2p4.stop | p5p6.stop | p7p8.stop;

30 stop out1 A x := p1p3.stop | p2p4.stop | p5p6.stop | p7p8.stop;
31 −−Insert lines 2 to 18 from MODULE circuit of Figure 6

34 MODULE environment (in1 A, out1 R, stop in1 R x, stop out1 A x)
35 VAR

ENV in1 : process cgate (!in1 A, f,t, stop in1 R x, stop in1 R x);
ENV out1 : process cgate (out1 R, f,t, stop out1 A x, stop out1 A x);

38 −−Insert lines 25 to 30 from MODULE environment of Figure 6

41 MODULE main
VAR

ComponentProtocol : protocol (in1 R, in1 A, out1 R, out1 A);
ComponentCircuit : process circuit (in1 R, out1 A);

45 ComponentEnvironment : process environment (in1 A, out1 R, stop in1 R x, stop out1 A x);
DEFINE

stop in1 R x := ComponentCircuit.stop in1 R x;
stop out1 A x := ComponentCircuit.stop out1 A x;

49 −−Insert lines 7 to 11 from MODULE main of Figure 8

Figure 13 NuSMV model checker code changes for adding the relative timing constraints captured in patterns p1 to p8 of Figure 12.
The Model Checker Library adds the module definitions for protocol (Figure 5) and logic gates cgate and ff posedge (Figure 7).
Note: In NuSMV, earlier commands in a case statement have a higher priority, and the symbol “!” is used for logical negation.

guardPOD , guardEARLY and guardLATE defined earlier in
Section III-C2 and used in Figure 10. Note the absence of a
parameter for eventLATE . The third parameter in line 1, init rt,
contains the initial stoplight state. The role of the last two
parameters, xPOD and xEARLY, is to reduce the number of rt
instances needed to code constraints. Parameter xPOD, when
TRUE, indicates that both rising and falling signal transitions
count as events for myPOD. Parameter xEARLY indicates the
same for myEARLY. The last two parameters make it possible
to model inv q2d.val± in p7 and p8 of Figure 12 with a single
rt instance by making xEARLY TRUE (t) — see line 27.

The statement between the keywords case and esac in lines 7

and 14 is precisely the code for the stoplight’s state changes.
It is executed in synchronous mode, i.e. in each execution step
by the model checker, as indicated by the keyword TRANS in
line 6. This is consistent with the mode of execution indicated
earlier in Figure 4 for the leftmost white rectangle with the
name “Component’s Timing Constraints.”

The signal, stop, defined in line 18 of Figure 13, is TRUE if
and and only if the stoplight is RED.

The constraint’s rt instances follow in lines 22–30, in the code
for the circuit module. Constraints that start in the same state
and that use the same myPOD, myEARLY, and guardLATE

have the same rt parameters in the NuSMV code, and can thus

18

Figure 13 NuSMV model checker code changes for adding the relative timing constraints captured in patterns p1 to p8 of Figure 12.
The Model Checker Library adds the module definitions for protocol (Figure 5) and logic gates cgate and ff posedge (Figure 7).
Note: In NuSMV, earlier commands in a case statement have a higher priority, and the symbol “!” is used for logical negation.

32

Pre-
pu

bli
ca

tio
n JC

ST
20

15

myPOD
out1_A±

myEARLY in1_R±

myPOD
out1_A±

myEARLY in1_R±FF.q±

myPOD
out1_A±

myEARLY in1_R±

myPOD
out1_A±

myEARLY in1_R±FF.q±

Parametrized Timing Patterns for STA code generation
replacing p from Figure 12 (guard

def
= sta1.stoplight 6= GREEN)

myPOD myEARLY myLATE

sta1 : and2.val+ → FF.q± <

{
in [n2] R±

out [m2] A±
}

sta2 : (guard ∧ FF.q±) →





xor in [n1] .val±
xnor out [m1] .val±

buf ck.val±
inv q2d.val±



 <

{
in [n2] R±

out [m2] A±
}

Figure 14 We modify timing pattern p of Figure 12 to simplify its STA code. Knowing that all p’s myEARLY paths go through
flipflop FF compensates the need to differentiate rising from falling transitions in myEARLY. The lefthand graphs show the event
orderings specified by p before (top) and after (bottom) adding FF. The righthand constraints sta1 and sta2 formulate the modified
version of p, and have been verified by using their NuSMV translations instead of those of p in lines 24–30 of Figure 13. The guard
in myPOD of sta2 plays the role of the baton in a relay race, handing over the task of blocking myLATE from sta1 to sta2.

Our self-timed components communicate by handshakes
over channels, as explained in Section III-A and Figure 2.
Each handshake is marked by a pair of events, making the
channel full and then empty, or vice versa. In Click these
events are marked by a transition on the request signal
followed by a transition on the acknowledge signal, or
vice versa. Each pair of handshake events partitions the
paths in the netlist between two successive components.
Thus, although we store the main STA code for validating
the component’s timing constraints with the component,
we can distribute the full code by storing the delay
calculations for the other side of a partitioned path with
the other component.13

The STA code uses the pair of handshake events to initiate
an external delay calculation and return its results. This
process may be recursive, because the STA code for
the neighboring component may initiate sub-calculations
stored with further out neighboring components before it
can complete its calculation.
We implement this using channel subroutine calls. Hence,
in addition to STA code for validating its own timing
constraint, each component must also store STA code for
the channel subroutines for which it might receive calls.

• Sequence the calculations in a sensible way
Internal paths generally contribute less delay than paths
that exit and enter the component via a handshake
channel. Thus, it makes sense to start minimum path
delay calculations with internal paths, and use the current
minimum to cut off subsequent calculations including the
channel subroutine calls introduced above.

As an example, let us look at the decisions and STA code
organization related to timing constraint p of Figure 12 and its
calculations to validate maxEARLY < (minLATE + margin):

• Delay insertion points:
We have chosen to repair p at the two myLATE events, by
delaying signal changes on in[n2] R and out[m2] A —
whichever applies. The two end signals make good repair
points, because, not only do they change exactly once

13Bundled data setup and hold time constraints use a similar partition based
on different pairs of handshake events — between request and data signals
versus acknowledge and data signals. See also footnote 2.

per myPOD–myLATE cycle, the minimum frequency for
repair, but also their change covers all of the myEARLY
events in each myPOD–myLATE cycle. The delay element
must delay both rising and falling transitions because the
direction of the change is irrelevant, as indicated by the
symbol “±” in Figure 12.
Also, as p’s myLATE events, in[n2] R and out[m2] A
share the same set of myEARLY events. As a result, we
can delay signal changes on in[n2] R and out[m2] A
without creating circular repair dependencies. The lack
of circular dependencies ensures that the repair process
described in Section II-D will converge.

• Additional semantic details to simplify maxEARLY :
Timing constraint p has falling signal transitions for
myEARLY events, and thus requires transition-aware
static timing analysis. However, the only myEARLY event
preventing a transition-agnostic analysis is buf ck.val−.
Unlike its transition-agnostic version buf ck.val±, event
buf ck.val− follows and2.val+ not immediately but only
after FF.q±. As it happens, all p’s myEARLY events
follow and2.val+ after FF.q±. We can indicate this by
adding FF.q± between myPOD and myEARLY in p. The
presence of FF.q± makes it possible to focus on changes
rather than specific transitions of myEARLY events —
the transitions are implied, as the model checker can
confirm. Figure 14 shows the updated version of p,
with checkpoint FF.q± and non-specific myEARLY event
transitions. This is the version that we translate into STA
code, using transition-agnostic calculations.14

From p itself we can deduce that early paths end before
any myLATE event and thus never go through a channel.
Therefore, we can use transition-agnostic calculations for
maxEARLY restricted to paths internal to the module.

14We chose and2.val+ as p’s myPOD rather than FF.q±, because as the
AND function of the Click Storage component, and2.val+ makes the compo-
nent “act” more so than FF.q±. Moreover, alternative circuit implementations
that split FF into separate flipflops for each channel [32] require p to use
and2.val+ as myPOD. Having said that, the Click Storage circuit in Figure 1
(right-column-top) can use FF.q± as myPOD and thus, without inserting
an additional checkpoint, avoid the need to differentiate rising from falling
transitions in myEARLY. Whether one chooses to keep the STA code as general
as possible by taking and2.val+ as myPOD or as simple as possible by taking
FF.q± as myPOD the goal remains the same: simplify the STA code using
transition-agnostic path-finding and path-delay calculations where possible.

20

Figure 14 We modify timing pattern p of Figure 12 to simplify its STA code. Knowing that all p’s myEARLY paths go through
flipflop FF compensates the need to differentiate rising from falling transitions in myEARLY. The lefthand graphs show the event
orderings specified by p before (top) and after (bottom) adding FF. The righthand constraints sta1 and sta2 formulate the modified
version of p, and have been verified by using their NuSMV translations instead of those of p in lines 24–30 of Figure 13. The guard
in myPOD of sta2 plays the role of the baton in a relay race, handing over the task of blocking myLATE from sta1 to sta2.

33

	Modular Timing Constraints for Delay-Insensitive Systems
	Let us know how access to this document benefits you.
	Citation Details

	Introduction
	Timing Verification Context
	GUI
	Parser
	Design Library
	STA
	Summary

	Timing Verification Framework
	ARCtimer Step 1 — Handshake Component
	ARCtimer Step 2 — Model Checker
	Modeling the Component's Protocol
	Modeling the Component's Circuit and Environment
	Instantiating the Models in a Model Checker Netlist

	ARCtimer Step 3 — Timing Patterns
	Analyzing Counterexamples
	Modeling Relative Timing Constraints
	Deriving Timing Patterns

	Step 2 Revisited — Adding Timing Constraints
	ARCtimer Step 4 — Static Timing Analysis
	Summary Timing Verification Framework Steps 1–4

	Comparison to Related Work
	Summary and Conclusion
	References

