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Figure 6 presents the principal components of the SVD for the
hub height location including the linear term, v1, and the nonlinear
forcing term, vR. To uncover the locations at which the nonlinear forc-
ing term is active, the vR is isolated above a certain threshold. The loca-
tions that show inactive force are marked with black color. The
eigentime-delay vectors gradually develop structures and spectral con-
tent. Forcing term vR is the nonlinear geometrical structure of time
series data and presents the existence of intermittent patterns in the
considered locations. During the intermittent bursts, the nonlinear
modes display the activated fine spatial structure and show the depar-
ture from Gaussianity. Note that the dynamics of the trajectories are
governed by the linear term when the forcing term is small. The hub
height location at the rotor center shows relatively large fluctuations in
the nonlinear term in comparison with that at z=D ¼ 4=6. The center
of the rotor presents the nonlinearity as an on–off intermittent force.
Switching between chaotic bursts static behavior can describe the non-
linearity of the system. Platt et al.28 highlighted that on–off chaos can
be detected at the suitably chosen coordinates. Using the Hankel
matrix analysis provides the opportunity to classify the flow signal and
highlights these coordinates that show the alternating in the chaosity.
The locations downstream the rotor have unstable invariant manifolds
and attractors that produce on–off intermittency. Outside the swept
area, the nonlinearity displays less switching with the time and the
activity of the force is balanced by inactivity periods, indicating that
linearity suppresses the forcing terms and the flow becomes less cha-
otic. The statistics of the forcing term activity at the hub height show
that at the center of the rotor the activity presents about 68% of the
total time duration, whereas outside the swept region the activity
presents about 78%. Although the ratio activity of the forcing term
outside the swept area is larger than inside, the strength of the nonline-
arity is much small outside the rotor area, indicating that the large
forcing term induces the flow to react against the nonlinear forces and
makes a balance to null the nonlinearity.

Figure 7 presents the principal components of the SVD for the
top tip location including the linear and the nonlinear forcing terms.

The physical location shows less impact on the flow at the top tip and
above, where the inside and outside the swept area show the same
trend in the nonlinearity distribution through the forcing term. As
pointed in Ali and Cal,29 the top tip location is less intermittent and
independent of the physical location. Here, the same trend is shown
regarding location independence. However, the flow at these locations
carries a nonlinear force as shown in Fig. 7. The justification for this
observation is that the nonlinearity of the forcing term can take differ-
ent shapes; one of them is the intermittency. Thus, the nonlinearity
can be imposed by a different mechanism that is active at these loca-
tions, for example, the tip vortices, momentum entrainment, and the
interaction between the wake and the flow above. This is the extension
for all approaches that are used to detect the intermittency in the
energy cascade of turbulence. The statistics of the forcing term activity
at the top tip display that at the center of the rotor the activity presents
about 75% of the total time duration, whereas the activity at the out-
side of the swept region is about 79%, indicating that the chaos
induced by the wind turbines is dependent on the parameter variations
and the external disturbances change percentage of nonlinearity to a
certain degree. A small variation in the activity is presented in the top
tip and above regions. Also, in comparison with the hub height, the
activity is substantial at the top tip but the amplitude of the force is
low.

Figure 8 presents the principal components of the SVD for the
hub height position at two locations downstream the rotor, including
x=D ¼ 1 and 8. This figure is introduced to check the transition and
the activity of the nonlinear forcing term downstream the rotor. The
shape of the nonlinear term reveals the signature of the burst events.
The on–off forcing is dominant in the near-wake region and distrib-
uted at a certain frequency with a high level of nonlinearity. Moreover,
the activity of the forcing term is pronounced when the linear term is
negative, indicating that the intermittent events are starker at low-
speed flow. Also, the trajectories of the nonlinear forcing term reveal
that the flow dynamic at the near-wake region follows different trajec-
tories, where they never exactly are repeated. Moving from 1D to 8D

FIG. 5. Probability density function (PDF) of the rare forcing events at the bottom tip (BT), hub height (HH), and top tip (TT) of z=D ¼ 0 location.
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helps in presenting a promising model for prediction of the underlying
nonlinear processes. Figures 9 and 10 show the prediction of the fluc-
tuating velocity signals of 21 wall-normal locations at different places
downstream the rotor. The prediction matches the test data in a short
time and starts diverging from the testing data relatively short times,
meaning the underlying dynamics for detecting the nonlinearities are
discovered through the data-driven approach. However, the diver-
gence shown after a short time is due to that the delay-embedding of
the measurements are not provided any information about the order
of nonlinearity. The mean relative error is defined as
EðtÞ ¼ jjuPrf � utestf jj2=jjutestf jj2;, where uPrf is the fluctuating velocity
that is predicted from the model, and utestf is the actual fluctuating
velocity measured via the hot-wire anemometer. The mean relative
errors are approximately 15%, where less accurate prediction is shown
with increasing advective timescales, where the growth becomes expo-
nentially unbound.

The proposed tool for the prediction can be part of the wind
farm control system to predict the wind and control the turbines such
as changing the yaw angle of the wind turbine or the blade pitch to
keep optimal operating conditions for all turbines in the array, and
that will ensure the increase in the power output. The predicted model
is a critical key for model predictive control, where the switching con-
trol between a number of actuation (for example, yawed and non-
yawed) can be achieved to track a reference operation in an unsteady
flow within wind farm.18 The turbine sensors used in the field such as
sensors that measure power or LIDAR signals can be used as an input
to achieve the wind farm control.9 The Koopman operator can be
used as a systems model to process noise and measurement noise via
two steps: first, the prediction step that utilizes a previously estimated
state of the linear model to predict the value of the next state and
estimate the state covariance. The second step is the updated step,
where the state estimation will be corrected based on the current

FIG. 7. The eigentime-delay series and forcing term of the velocity signal at the top tip location of z – y plane.
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measurements and the statistical properties of the model. The evolu-
tion of the error covariance can be predicted with the full state forward
model, where the actual observations will be used as an input into
mathematical and computational models to create a unified, complete
description. Also, this method can be used to model the dynamic sta-
bility of the grid in response to disturbances.

VI. CONCLUSION

The chaos of the wake flow behind a wind turbine is presented
using the Koopman operator. The goals of the current work are to
connect the chaos force, which causes the linear model to diverge,
with intermittency, demonstrate, and quantify the activity of the inter-
mittent force with respect to time; and more importantly, evaluate the
proficiency of the data-driven model to predict the future state of the
system, where the stochastic fluctuating velocity is based on trained
data.

Linear representations show the potential ability to distinguish
flow events downstream the rotor. The major variations in the nonlin-
ear forcing term are found at the center of the rotor, where the hub
height shows the large transients and intermittent events. Less nonlin-
earity is shown at the top tip location. Outside the swept area, the loca-
tions share the same nonlinearity events. Also, the signature of the
nonlinear forces sustains outside the rotor area. The robustness of the
nonlinear forcing term is shown outside the swept area and at the far-
wake regions. This model physically describes the chaotic transitions
between the center of the rotor and the atmospheric stream flow,
caused by wake advection and vortex shedding in the spanwise direc-
tion. The current approach also successfully predicts the flow field for
short term timescales. The mean errors between the predictive and test
fluctuating velocities are approximately 15%. The proposed method
needs further investigations to obtain a full description of the nonlin-
ear term. Achieving this goal will help in forecasting the variability of

FIG. 8. The eigentime-delay series and forcing term of the velocity signal at the hub height location of x – y plane.
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the wind to protect the system in high winds, capture more energy in
low winds, and reduce the uncertainty of the output by supporting
real-time operations. Forecasting the variability of the wind will allow
anticipating wind generation levels to adjust the power system
accordingly.

The current model is a part of system identification and uses the
measurements from the wind plant to estimate the relevant properties
of the system. The simple structure and fast computation of the data-
driven model are well-suited for real-time control. The measurements
of the real-world wind plant can be fed into the model structure to
identify the model parameters and then adjust the internal model

based on the predicted future state and test a few sets such as yawed
angles to reach the optimized control points. Based on the evaluation
of predicted turbine power outputs, the updated yaw settings are
stored as a baseline if improvement is shown. Another advantage of
the current model is that it can display the effect of inflow conditions
and tested parameters on the relevant structural loads on the turbine
by analyzing the nonlinear forces.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

FIG. 9. Predication fluctuating velocities at
x=D ¼ 1 at (a) 75, (b) 150, (c) 450, and
(d) 800 time units. The blue and orange
lines present the measured and predicted
velocities, respectively.

FIG. 10. Predication fluctuating velocities
at x=D ¼ 6.
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