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Abstract  
Although the conditions under which altruistic behaviors evolve continue to be 

vigorously debated, there is general agreement that altruistic traits involving an absolute 
cost to altruists (strong altruism) cannot evolve when populations are structured with 
randomly formed groups. This conclusion implies that the evolution of such traits 
depends upon special environmental conditions or additional organismic capabilities 
that enable altruists to interact with each other more than would be expected with 
random grouping. Here we show, using both analytic and simulation results, that the 
positive assortment necessary for strong altruism to evolve does not require these 
additional mechanisms, but merely that randomly formed groups exist for more than 
one generation. Conditions favoring the selection of altruists, which are absent when 
random groups initially form, can naturally arise even after a single generation within 
groups—and even as the proportion of altruists simultaneously decreases. The gains 
made by altruists in a second generation within groups can more than compensate for 
the losses suffered in the first and in this way altruism can ratchet up to high levels. This 
is true even if altruism is initially rare, migration between groups allowed, 
homogeneous altruist groups prohibited, population growth restricted, or kin selection 
precluded. Until now random group formation models have neglected the significance 
of multigenerational groups—even though such groups are a central feature of classic 
“haystack” models of the evolution of altruism. We also explore the important role that 
stochasticity (absent in the original random group models) plays in the evolution of 
altruism. The fact that strong altruism can increase when groups are periodically and 
randomly formed suggests that altruism may evolve more readily and in simpler 
organisms than is generally appreciated.  

 
 
Keywords: Altruism; Haystack model; Multilevel selection; Positive Assortment; 
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1. Introduction 
Nearly three decades ago Hamilton (1975) and Wilson (1975) independently 

developed models which showed that strong altruism (involving an absolute cost to 
altruists) cannot evolve in randomly formed groups. This conclusion is still generally 
accepted even among those who debate how best to define altruism and the mechanisms 
by which it evolves (Hamilton 1975, Maynard Smith 1998, Nunney 1985, 2000, Sober 
and Wilson 2000, Wilson 1975, 1990). Here we challenge this conclusion by exploring 
what happens when groups exist for more than one generation. Multigenerational 
groups are a central feature of Maynard Smith’s classic “haystack” model (1964, 
Wilson 1987), but the role of multiple generations within groups was not explored in 
Hamilton’s (1975) and Wilson’s (1975) models. Although the initial conditions after 
random group formation favor non-altruists over altruists, paradoxically these 
conditions can switch to favor altruists after even one generation of selection. Thus even 
though the overall proportion of altruists decreases after one generation, it can increase 
even more after a second generation spent within groups. 

 Besides single-generation groups, these original analytic models rely on other 
simplifying assumptions such as an infinite population and no migration between 
groups. We begin by showing how strong altruism can evolve under the assumptions of 
the original models, with the only modification being delayed reformation of random 
groups. Multigenerational groups introduce additional issues such as interactions among 
related offspring, persistent homogeneous groups of altruists, and exponential growth of 
population size. We explore model modifications—preventing altruists from benefiting 
kin, precluding homogeneous groups from forming, and adding a population-level 
carrying capacity—that mitigate each of these factors. We find that under all these 
modifications (imposed both separately and concurrently) strong altruism, although 
dampened, can still evolve in randomly formed multigenerational groups. We then 
transform the basic analytic model into an evolutionary simulation in which population 
size is finite and stable and migration between groups is allowed. In the simulation 
model migration between groups dampens selection for altruism, but the stochasticity 
inherent in finite random group formation, benefit distribution, and carrying capacity 
appears to enhance the likelihood that altruism will evolve compared to the average 
non-stochastic characteristics of an infinite population. 

2. Classifications of Altruism 
Both the analytic and simulation models discussed here involve what Pepper 

(2000) has termed an other-only altruistic trait because none of the altruist’s benefits 
come back to itself, as opposed to whole-group traits (also called group-beneficial traits) 
where the benefit is divided among all group members including the altruist. Wilson 
(1979, 1990) previously classified altruistic traits in a related but different way as either 
strong (involving an absolute cost to altruists) or weak (involving only a relative cost to 
altruists). Other-only altruistic traits are always strong while whole-group traits are 
strong if the cost to an altruist is greater than its share of the benefit it provides. Note 
that the same whole-group behavior involving the same sacrifice and provided benefit 
may be strong or weak depending on group size (Pepper 2000).  
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In contrast to strong altruism, Wilson showed (1979, 1990) that weakly altruistic 
traits can increase when groups are randomly formed every generation. That is, for an 
infinite population where a binomial trait is randomly redistributed every generation, the 
resulting between-group component of total variance can be enough for weak, but not 
for strong, altruism to evolve. Nevertheless in finite populations where fitness is relative 
the distinction between strong and weak altruism may be less important as both types 
are selected against within groups and require selection (or differential productivity) 
among groups in order to increase (Wilson 1979, 1990). In this paper we focus on other-
only, strong altruism (the most restrictive situation) to address the random group models 
of Hamilton and Wilson directly, but the consequences of multigenerational groups and 
stochasticity also apply to weak, whole-group traits and therefore these traits can even 
more readily increase via randomly formed groups than was previously shown (Wilson 
1979, 1990). 

3. Analytic Model 
We focus on Hamilton’s model (1975) because he developed a formal proof that 

altruism cannot evolve in single-generation randomly formed groups (Wilson’s model 
(1975) is similar in all important aspects). In this model a haploid infinite population is 
randomly subdivided into groups of equal size, n. Group members interact for one 
generation, affecting each other’s fitness (offspring count), before the population is 
pooled and then again randomly assigned to new groups. In every generation each 
altruist behaves in a way that costs itself c offspring and provides a total benefit of b 
offspring divided evenly among the other n-1 group members. Each non-altruist 
receives its share of benefits, but does not provide any benefit to others. Therefore, 
within every group non-altruists have more offspring than altruists, but groups with 
more altruists have more offspring per capita than groups with less. This is an example 
of multilevel selection where here selection within groups opposes selection between 
groups. 

Hamilton (1975) using Price’s covariance equation (1970) showed that under his 
model’s assumptions, between-group selection (due to the variance between groups in 
altruist frequency, p) must always be weaker than average within-group selection (due 
to the expected variance in the altruistic trait within groups) and therefore the overall 
frequency of altruists, P, must decrease in every generation. (Capital letters indicate 
whole population values; small letters indicate group values.) To illustrate this, we 
calculate ∆1P for an infinite binomial distribution, where ∆1 indicates that the change 
occurs over one generation within groups, g = 1. The variable g is the number of 
generations spent within groups before each reformation event. (See Appendix A for 
model details.) Fig. 1(a) shows how ∆1P depends on the level of benefit, b, provided by 
altruists for different starting P values. (For convenience, all results reported in this 
paper use c = 1 such that benefit b is also the benefit to cost ratio.) The results shown in 
Fig. 1(a) are the same for any group size n. Note that as benefit increases, zero is an 
upper limit on ∆1P—hence the conclusion that strong altruism cannot increase under the 
assumptions of this model for all values of P and n (Hamilton 1975, Wilson 1975).  

Yet quite different results are obtained if groups persist for even one additional 
generation (g = 2) before random mixing and the formation of new groups. Fig. 1(b) 
shows how the change in P after two generations within groups, ∆2P, depends on 
benefit values for different starting P values. The only difference between Figs. 1(a) and 
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(b) is that the latter measures the change in altruist frequency after an additional 
generation spent within groups. In this case strong altruism can clearly increase (∆2P > 
0) for sufficient values of benefit. Fig. 1(c) shows that smaller groups give a larger 
increase in altruist frequency which is consistent with previous findings on the 
relationship between group size and the evolution of altruistic traits (Avilés 1993, Boyd 
and Richerson 1988). Additionally Fig. 1(c), for which P = 0.001, shows that strong 
altruism can increase due to multigenerational groups even when the altruistic trait is 
rare, although higher benefit levels are needed for ∆2P > 0 when P is low. 

4. Applying Hamilton’s Rule 
We can also understand these results in terms of Hamilton’s rule (1964) which 

states that the condition for an altruistic trait to increase in the next generation is: 
crb > , (1) 

where r is the “coefficient of relatedness” or more generally the regression coefficient 
between the frequency of the trait in recipients and actors (Hamilton 1972). Thus r is a 
measure of positive assortment—the degree to which the benefits of altruists fall to 
other altruists. The value of r differs for other-only and whole-group traits because in 
the latter case, but not the former, altruists are recipients of their own actions (Pepper 
2000). We use superscripts w and o respectively for whole-group and other-only 
measures of r. For whole-group traits rw is the between-group variance in p over the 
total variance in the altruistic trait (Breden 1990, Frank 1995a). For an infinite binomial 
population of randomly formed groups of size n, the variance ratio rw = 1 / n. Thus 
according to Hamilton’s rule (Eq. (1)) the trait increases after one generation if b / n > c, 
but for whole-group traits this means that an altruist’s share of its benefit must be 
greater than its cost—this is the definition of weak altruism so as Wilson (1979, Wilson 
1990) noted only weak traits can increase after one generation.  

For groups of uniform size the r values are related by the following expression 
(Pepper 2000):  

1
1

−
−

=
n

nrr
w

o
. (2) 

Therefore ro = 0 for an initial random distribution where rw = 1 / n. Obviously there are 
no positive values of b and c that can satisfy Hamilton’s rule (Eq. (1)) for an other-only 
(strong) altruistic trait when r = 0 and such traits must decrease. Note however, that any 
modifications to the model that make ro > 0 can yield an increase in P, given a sufficient 
value of b. Hamilton noted that any positive assortment of altruists beyond that 
produced at random could allow altruism to increase (1975). Surprisingly, for many 
parameter settings ro increases above zero after one generation of selection—even as the 
proportion of altruists decreases. That is, this transient one-generation-long “population 
viscosity” of the original models is enough (without any other mechanisms for creating 
positive assortment) to create conditions that favor altruism in the following generation. 
If groups are randomly reformed after this single generation then this gain in positive 
assortment is destroyed before being used by selection; ro returns to zero and P 
subsequently declines. On the other hand, additional generations within groups can take 
advantage of this increased positive assortment so that strong altruism increases, as 
shown in Fig. 1. (Whether altruism actually increases or not depends on parameters 
including P, b, and n.) 
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Note that although Hamilton emphasized a ratio of variances in his proof, in this 
other-only model the regression coefficient between actors and recipients, ro, is an 
easier to interpret measure of the changing conditions affecting altruism as selection 
occurs. For instance, after one generation of selection (starting with randomly formed 
groups), the between over total variance, rw, can decrease while ro increases. It is the 
increase in ro that accurately reflects whether altruism can increase in the next 
generation. For most parameter settings both measures increase after one generation, but 
the range of parameters where rw decreases is greater than the range in which ro 
decreases. In general the r values can decrease when there is a combination of low P, 
low b, and high n.  

According to Hamilton’s rule whether altruism increases in the second generation 
within groups depends on whether ro after the first generation is greater than c / b. Of 
course it is not enough for altruism to increase in the second generation for altruism to 
increase overall. The increases in subsequent generations within groups must make up 
for any losses in the initial generation(s). Fig. 2(a) shows the expected dynamic change 
in P values over successive generations when groups persist for one and two 
generations before random reformation and Fig. 2(b) shows the concurrent changes in 
ro. Altruist frequency P decreases monotonically when groups are reformed every 
generation and ro = 0 before each round of selection. On the other hand when groups 
exist for two generations, P oscillates (and can ratchet upward). The every-other-
generation saw-toothed peaks in P correspond to similar (but offset) oscillating peaks in 
ro (Fig. 2(b)).  Here ro increases after a generation within groups and we indicate the 
critical c / b value with a solid horizontal line. Troughs on the other hand correspond to 
global mixing, new group formation, a decrease of ro back to zero and a subsequent 
decrease in P. In Fig. 2 we also show a case with the same parameters except bigger 
group size (g = 2; n = 10). Here, although P can increases during the second generations 
within groups, it is not enough to make up for losses in the first generations. Note that 
when peaks in ro fail to reach the c / b value (after generation 21 in Fig. 2(b) for g = 2; n 
= 10), as predicted by Hamilton’s rule, P can no longer increase and instead falls during 
both generations within groups (Fig. 2(a)). 

5. Analytic Model Modifications 
Multiple generations within groups complicate the simple single-generation model 

in several ways:  1) kin interactions within groups become possible; 2) the contribution 
of homogeneous groups of altruists increases—these groups uniquely retain their initial 
(maximal) level of altruism; 3) the additive frequency-dependent fitness functions can 
now lead to exponential growth of the population. Yet as we demonstrate below, while 
not inconsequential, none of these factors are essential to explain why strong altruism 
increases in randomly formed multigenerational groups—especially when altruism is 
initially rare. The following three paragraphs elaborate on each issue and describe 
modifications to the basic model to address them. We follow this with a summary of the 
results produced by each modification. 

5.1. No Kin Selection 
In the original model groups are formed by randomly selecting individuals from 

an infinite population and therefore groups contain unrelated individuals. In a second 
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generation within groups, when the benefits provided by an altruist are divided among 
other group members, some of this benefit (in the form of additional offspring) will fall 
to those with the same parent as the altruist. In general the proportion of benefit falling 
to relatives (defined by common ancestry) in subsequent generations will depend on 
parameters n, b, and P, but this proportion is bounded by 1 / n (Appendix B). This limit 
is approached for high b and P, but when altruism is initially rare this proportion is 
much less significant. For instance, for groups of size 4, the maximum possible 
proportion of benefit that could fall to relatives is 1 / n = 25%, but for P = 0.1 and b = 
10 the proportion is actually 0.61% during the second generation within groups. For the 
same P and b the proportion decreases with larger group size and more generations 
within groups. To eliminate kin selection we modify our model so that altruists only 
divide their benefit among non-relatives (Appendix B).  

5.2. No Homogeneous Groups  
In the infinite population of this model, homogeneous groups of altruists will be 

randomly created whenever P > 0. These groups are unique in being the only group 
composition for which p does not decrease with successive generations within groups. 
They are also the fastest growing groups as they contain no free-riding non-altruists. 
One might suspect that such homogeneous groups account for altruism being able to 
increase after multiple generations within groups. To check this we modify our model 
(Appendix B) such that immediately after group formation all homogeneous groups of 
altruists have one altruist switched to a non-altruist. Note that this artificially decreases 
P, making it even harder for altruism to evolve. 

5.3. No Population Growth  
Even with additive (linear) fitness functions, multiple generations within groups 

can cause a population to grow exponentially (Wilson 1987). To study the effect of 
stable population size we implement a global carrying capacity by scaling the offspring 
count of all population members each generation by the inverse of the expected overall 
growth rate during that generation (Appendix B). This holds the population size 
constant (albeit infinite) at every generation, but allows groups with more altruists to 
have relatively more offspring each generation than groups with less.  

5.4. Modification Results 
Fig. 3 compares the results for each of these modifications with the unmodified 

model for two generations within groups, g = 2. We also include results for the original 
model where g = 1. For each of the three modifications ∆2P is dampened, but still 
positive given sufficient benefit. This is true even when all of the modifications are 
imposed simultaneously. That is, in a model where no benefit is given to kin, 
homogeneous groups are always corrupted, and population size is held constant, strong 
altruism can still increase after two generations within groups.  

In contrast to the unmodified dynamic model shown in Fig. 2 where altruism tends 
to evolve to P = 1.0 or P = 0.0 given enough generations, it does not necessarily evolve 
to saturation under all these modifications. Corrupting homogeneous groups for 
example necessarily keeps P < 1.0. In the case of a population-level carrying capacity, 
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for n = 4, P = 0.1, g = 2, and b = 15, a stable limit cycle is reached in which P oscillates 
every other generation between 0.616 and 0.636. (Yet as shown in the next section, 
when stochasticity is introduced populations tend to evolve to one extreme or the other 
in these models.) 

6. Simulation Model 
So far, like Hamilton, we have used the assumption of an infinite population in 

order to calculate the expected distribution of group compositions when individuals are 
randomly distributed. But infinity here has the special consequence of converting a 
seemingly stochastic model (random group formation) to a deterministic one—the 
expected value of ro is produced by every group reformation event. For any finite 
population, group reformation events will produce ro values that fluctuate both above 
and below zero. Depending on the value of other parameters, randomly occurring above 
zero ro values constitute a second mechanism by which strong altruism can increase 
(albeit rarely), even if groups are reformed every generation (data not shown). 

We now transform the analytic model above into a computer simulation of a finite 
evolving population and the following stochastic features (see Appendix C for further 
details):  

1. When reforming groups each individual is assigned at random to an unfilled 
group (rather than by using the expected distribution). 

2. Population size is held constant by a global carrying capacity—each 
generation excess offspring are removed at random without regard to 
altruistic trait or group membership. 

3. Altruists’ benefits are distributed evenly (in units of whole offspring) to 
other group members with any remainder distributed among other members 
randomly. 

Fig. 4 shows results obtained with this computer simulation where each data point 
represents the results of a set of 1,000 runs done with the given parameter values but 
different random number seeds. Because here there is no mutation, empirically we 
observe that P = 1.0 and P = 0.0 act as stable equilibrium points and intermediate values 
do not persist indefinitely. All runs were done until one of these equilibrium points was 
reached and we use the percentage of runs reaching altruist saturation, P = 1.0, as a 
measure of how readily altruism evolves under the given conditions. As was the case for 
the analytic model, Fig. 4(a) shows that both higher starting P and higher benefit values 
favor selection for altruism and Fig. 4(b) shows that less altruistic benefit is required to 
evolve altruism for smaller group sizes.  

Note that the stochasticity of the simulation model appears to enhance selection 
for altruism compared to the analytic model. The dynamic example mentioned earlier 
for the scaled analytic model resulted in a stable limit cycle where P oscillated in a 
small range slightly above P = 0.6. Here for the same parameters (P = 0.1, n = 4, b = 15, 
g = 2) 99.9% of 1,000 runs resulted in altruism saturation (Fig. 4(a)). In the scaled 
analytic model if benefit is lowered to b = 9 while keeping other parameters the same, 
then P goes to zero, yet in the simulation model for this benefit level 47.4% of runs 
evolved to P = 1.0 (Fig. 4(a)). 

We now investigate the effect of migration in our simulation model where the 
migration rate, m, specifies the probability that an individual will leave its group during 
each generation, moving to a randomly selected group (weighted proportionately by 
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group size). The idea here is that larger, thriving groups are proportionately more 
attractive to migrants, but similar results obtain when migrants join groups at random, 
independent of group size. Fig. 5 shows how the interaction between the number of 
generations spent within groups and the migration rate influence selection for strong 
altruism. Predictably, migration lessens selection for altruism (Fig. 5) by working to 
dampen the positive assortment, ro, between actors and recipients each generation, but 
for intermediate numbers of generations spent within groups, even at relatively high 
migration rates (i.e. 30%), strong altruism evolves to saturation in some runs. 

Fig. 5 also shows that even without migration (m = 0.0) intermediate numbers of 
generations within groups are most favorable to the evolution of altruism. The 
advantage of an intermediate number of generations is consistent with similar findings 
in haystack models (Wilson 1987) and models of biased sex ratios (Wilson and Colwell 
1981). Note that in the simulations of Fig. 5 it is initially unlikely that any homogeneous 
groups of altruists will form. With initial P = 0.1 and n = 4 the probability of forming 
homogeneous altruist groups is one in 10,000 and only 250 groups are formed (N = 
1,000, n = 4) at each group reformation. Yet, in the absence of homogeneous groups 
strong altruism can still initially increase overall even as p declines in every group. This 
is because groups with a higher frequency of altruists grow faster—population P 
increasing while every group p decreases is an example of Simpson’s paradox (Simpson 
1951, Sober and Wilson 1998). With more generations within groups P must eventually 
decrease as the altruists are eliminated from every group. Altruism evolves most readily 
when the number of generations spent within groups takes full advantage of the increase 
in P due to Simpson’s paradox, but avoids the inevitable decline in P. 

Fig. 6 illustrates this tension. Here representative individual runs are shown for 2, 
4, and 10 generations within groups using the same parameters as Fig. 5 without 
migration (m = 0.0). To aid in comparison the same random number seed (same initial 
group distribution) is used in all three runs. For 10 generations within groups (g = 10), 
reformation clearly takes place well after peak P values are reached and altruism 
eventually goes extinct. For g = 4, reformation takes place near peak P values and 
altruism rapidly evolves towards saturation—even though altruism always decreases in 
the first generation after reformation. (This is true for g = 10 also, but harder to see as 
the rate of decline after reformation matches the rate before.) On the other hand when 
groups are reformed every other generation (g = 2), the potential additional increase in 
P that would result from staying within groups longer is lost and altruism increases 
more gradually. Note that the initial increase in P in these three runs takes place in the 
absence of homogeneous groups. For g = 2 and g = 4 no such groups are formed until P 
reaches about 0.3 (initial P = 0.1) and in the case of g = 10 homogeneous groups never 
formed. In contrast, in the infinite analytic model homogeneous groups are always 
initially present and more generations within groups can allow these fastest-growing 
groups to become more and more dominant, even if initially rare. 

7. Conclusion 
The main purpose of this paper is to demonstrate that strong altruism can evolve 

in randomly formed groups and thereby challenge a presumed theoretic limitation on the 
evolution of altruism. Although allowing groups to last more than one generation 
introduces new complications, we have demonstrated that kin selection, homogeneous 
groups, and population expansion are not essential to account for this phenomenon. The 
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fundamental explanation is that, for many initial conditions, after even just one 
generation of selection in randomly formed groups, the positive assortment between 
altruists and their potential recipients increases as measured by the regression 
coefficient, ro. The groups that are by chance initially dominated by altruists grow larger 
compared to other groups and even though the fraction of altruists declines in these 
groups, the absolute number of altruists poised to benefit other altruists in a subsequent 
generation increases. On the other hand, the groups that are by chance dominated by 
non-altruists do not grow as large and the relatively few altruists in these groups are 
eliminated or greatly diminished after one to several generations within groups. This 
also increases positive assortment as these non-altruists are stuck with each other and 
will receive less benefit from altruists than they did in the first generation. Of course the 
few non-altruists lucky enough to end up in altruist-dominated groups are the fittest 
individuals, but overall the conditions that favored non-altruists in the initial random 
distribution can switch to favor altruists in subsequent generations. 

We emphasize again that even when groups are multigenerational, the vast 
majority of the benefit provided by altruists will fall to non-relatives—especially when 
altruism is initially rare (Appendix B). Altruism evolves due to the positive assortment 
among heritable helping behaviors regardless of whether there is a positive assortment 
among relatives by descent. The regression coefficient used here, ro, measures the 
former. This positive assortment can be viewed equivalently (Frank 1998, Queller 1985, 
1992, Sober and Wilson 1998, Wade 1980) as causing selection on the altruistic trait 
(allele) via inclusive fitness or as causing selection among groups that vary in their trait 
composition. While interactions among kin in nature no doubt often contribute to the 
positive assortment of altruistic traits, kin interactions are not in themselves a 
requirement for altruism to evolve.  

Whether strong altruism evolves in nature via mechanisms similar to those 
illustrated here will depend on the degree to which the assumptions of these models are 
representative of natural conditions. For instance, in both the analytic and simulation 
models we demonstrated that strong altruism can evolve even when population size is 
held constant by a global carrying capacity. In nature, in addition to population-level 
limits on growth there are often limits on group size. While not explored here, group-
level limits will dampen between-group selection for altruism, so further investigation is 
needed to elucidate the relative import of global vs. local levels of population control in 
the evolution of altruism. A lack of mutation is also unrealistic. We experimented with 
mutation in our models (data not shown), but in the simple binary genetics used here a 
mutation that switches behavioral types exerts pressure towards P = 0.5 and thus favors 
altruism when P is initially low. This is because the more common type experiences 
more mutations. Even if this bias could be compensated for, low mutation rates are 
unlikely to alter our basic results, which are robust under fairly high levels of migration 
among groups and even when homogeneous groups of altruists are “mutated” to contain 
at least one non-altruist.  

This model started with the original assumptions of the random group models 
(Hamilton 1975, Wilson 1975) and added the idea of multigenerational groups from 
haystack models (Maynard Smith 1964, Wilson 1987). Just as Wilson (1987) created a 
simulation model to study a more realistic version of Maynard Smith’s (1964) original 
haystack model, we have created a simulation model that adds finite population size, 
stochasticity, and mutigenerational groups to the original analytic random group 
models. Whereas Wilson’s (1987) haystack simulation corrected the “worst case” 
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assumption made by Maynard Smith (1964) that groups would persist until altruism was 
eliminated in all mixed groups; here we correct an opposite “worst case” assumption 
made in random group models that groups only exist for a single generation. As 
demonstrated here and in the haystack simulations (Wilson 1987), an intermediate 
number of generations within groups is most favorable to the evolution of altruism. 

Maynard Smith (1998) in discussing different views on the evolution of altruism 
recently echoed the original findings of  Hamilton (1975) and Wilson (1975) and the 
current consensus opinion when he wrote: “If costs and benefits combine additively, 
and groups are formed randomly, then altruism cannot evolve. But if altruists tend to 
associate with altruists, and non-altruists with non-altruists, then altruism can evolve. 
This conclusion is agreed.” Many mechanisms which result in a positive assortment 
among self-sacrificing behaviors have been proposed including passive methods such as 
foraging in non-uniform resource distributions which can be depleted (Pepper and 
Smuts 2002), continuous population viscosity with periodic environmental disturbances 
(Mitteldorf and Wilson 2000), the coevolution of group joining and cooperative 
behaviors (Avilés 2002), and the presence of non-participants (Hauert et al. 2002), as 
well as active methods such as kin recognition (Gamboa et al. 1991), conditional 
strategies based on past actions (Axelrod and Hamilton 1981, Trivers 1971) or 
reputation (Nowak and Sigmund 1998, Panchanathan and Boyd 2003),  policing (Frank 
1995b, 2003), punishment of non-altruists (Boyd et al. 2003, Boyd and Richerson 1992, 
Fehr and Gächter 2002), and even recognition of arbitrary tags (Riolo et al. 2001). Here 
we have shown that when groups exist for more than one generation such specific or 
more complex mechanisms for creating positive assortment, although certainly 
important if present, are not needed—the positive assortment that develops between 
randomly created multigenerational groups can suffice for between-group selection to 
dominate within-group selection and thus for strong altruism to evolve. 
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Appendix A. Analytic Model 
Here we describe Hamilton’s original model with recursion added to 

accommodate multiple generations within groups. If ag, sg, and ng are respectively the 
number of altruists, non-altruists (selfish individuals), and total individuals in a group 
after g generations spent within groups, then:  
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In Hamilton’s model g is always one, but in our model we vary g by using these 
equations recursively—inputting the results from one generation into the calculations 
for the next. Note that when first formed all groups are size n, but after reproduction 
group sizes vary. (Terms without g subscripts indicate initial values, i.e. n is n0.) 

The overall number of altruists, Ag, and individuals, Ng, in the population after g 
generation within groups is then the number contributed (after g generations) by groups 
of every possible original composition (a = 0 to n) times the number of such groups 
expected in a random binomial distribution. If G is the total number of groups, then the 
expected count of groups with a initial altruists out of n group members is: 
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The total population values after g generations spent within groups are then given by: 

∑
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where ag(i) is the ag value from Eq. (A.1) given the particular starting a value specified 
by the index i and similarly for ng(i). Although G is infinite, it cancels in the calculation 
of Pg = Ag / Ng and ∆gP = Pg – P. 

Appendix B. Analytic Model Modifications 
Here we describe modification to the analytic model such that altruists do not give 

benefit to kin, homogeneous groups are disallowed, and the population size is kept 
constant. 
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B.1. No Benefit to Kin 
The modified fitness functions for when altruists only give to non-relatives are 

implemented by substituting the size of altruist kin groups, k, for the minus-one term in 
Eqs. (A.1) and (A.2). The minus-one term subtracted the altruist from the number of its 
beneficiaries; here we subtract the altruist’s kin (those having a common ancestor) as 
well. A preceding superscript k is used to designate fitness calculations that subtract k 
instead of one from a group’s altruist count and group size:  
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where the size of a kin group of altruists in generation g is given by: 
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This is the size of the kin group in the last generation times an altruist’s clutch size for 
this generation. The initial k value k0 = 1 (altruists are only related to themselves). 
Shifting benefit from kin to non-kin in this way does not affect the total group size and 
Eq. (A.3) works for calculating ng. 

Note that in the unmodified model the average proportion of a group that is 
related to an altruist, kg / ng, can never be above 1 / n and therefore the proportion of an 
altruist’s benefit that falls to kin (kg – 1)/ (ng – 1) is also bounded by 1 / n. To see this 
note that kg / ng will be largest within homogeneous groups of altruists compared to 
mixed groups. In such groups (given our convention that c = 1) kg is multiplied by b 
each generation and total group size also increases with b. Therefore the proportion kg / 
ng remains at its original value of 1 / n. In all other groups this proportion falls with 
successive generations. Only when P is high (so that homogeneous altruist groups are 
common) or when b is high (so homogeneous altruist groups grow proportionally bigger 
than other groups) is this limit approached. 

B.2. No Homogeneous Groups 
In an infinite population there will always be some homogeneous groups 

whenever P > 0. For this modification, each time groups are randomly formed we 
eliminate homogeneous groups by simply converting all groups where the altruist 
number a = n to groups where a = n – 1. In this way all homogeneous groups of altruists 
have one member switched to a non-altruist. Because non-altruists always increase 
faster than altruists, groups become more non-homogeneous with each successive 
generation. Note that this modification causes P to decrease, but this effect is small 
when P is small. 

B.3. No Population Growth 
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The global carrying capacity is implemented by scaling back all offspring 
numbers each generation by Ng-1  / Ng where Ng is first calculated without scaling. We 
use a preceding asterisk to denote values calculated with scaling. For instance, the 
number of altruists in a group after g generations with scaling is,  

g

g
gg N

N
aa 1* −=   (B.4) 

and similarly for group size *ng, where scaling is imposed at each recursion 
(generation). Whole population values with scaling *Ag and *Ng then sum over *ag and 
*ng instead of ag and ng respectively in Eqs. (A.5) and (A.6) and *Pg = *Ag / *Ng. 

Appendix C. Computer Simulation Model 
For each run of the model, individuals (N = 1,000) are initially randomly 

distributed into groups of size n using a random number generator to assign individuals 
to unfilled groups. The proportion of altruists and non-altruists is determined by the 
starting P value. The sequential steps of the simulation are then:  

1. In each group the new number of altruists and non-altruists (to the closest 
whole individual) are determined as in the analytic model above with each 
remainder benefit offspring allocated at random to other group members. 

2. Individuals are chosen at random across the whole population and eliminated 
until the original population size N is reached. 

3. If g generations have passed within groups since the last group reformation, 
all individuals are randomly assigned to new groups of size n; otherwise if 
the migration rate, m, is greater than zero, mN individuals are chosen at 
random from the whole population and moved to new random locations in 
the population array which is ordered by groups—consequently larger 
groups are proportionately more likely to send out and receive migrants.  

These steps are repeated until an equilibrium at P = 0.0 or P = 1.0 is reached. For runs 
where n = 6, N was 1,002 instead of 1,000 and initial P = 0.0998 instead of 0.1000 to 
allow an even distribution into groups. 
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Figure Legends 

Fig. 1 Change in altruist frequency (∆gP) as a function of altruist benefit, b. (a) and (b) 
compare the effect of different starting P values after one (g = 1) and two (g = 2) 
generations spent within groups, respectively, where founding group size n = 4 
(although in (a) the results are the same for all n). (c) Compares the effect of different n 
for multigenerational groups (g = 2) when altruism is rare—here P = 0.001. The cost c = 
1 in all calculations. 
 
Fig. 2 Calculated dynamics in the analytic model for one and two generations spent 
within groups (g = 1, g = 2) for groups of two different sizes (n = 3; n = 10). (a) Shows 
the dynamics in overall altruist frequency P given different starting P values and 
different sized groups. (b) Shows the concurrent change in the regression coefficient 
between actors and recipients, ro. The critical ro value of c / b is also shown with a solid 
horizontal line. Here P = 0.1, b = 10, and c = 1. Both ro and P are calculated at the end 
of the indicated generation and after group reformation if it occurs. (a) and (b) use the 
same legend. 
 
Fig. 3 Change in altruist frequency (∆gP) after two (g = 2) generations within groups as 
a function of altruist benefit, b, for several modifications of the original binomial model 
including preventing homogeneous groups from forming, scaling the population size to 
its original size each generation, and distributing altruist benefit only to the non-
relatives of an altruist. The results for the original model after one (g =1) and two (g = 
2) generations are also shown for comparison. The original P = 0.25, n = 4, and c = 1 in 
all calculations. 
 
Fig. 4 The percentage of simulation runs reaching altruist saturation as a function of 
altruist benefit, b. (a) Compares the effect of different starting P values, where the 
number of generations spent within groups g = 2 and initial group size n = 4. (b) 
Compares the effect of different n where P = 0.1 and g = 2. The total population size N 
= 1,000 and cost c = 1 in all runs. 1,000 runs were done for each unique set of 
parameters with different random number seeds. All runs were done until P = 1.0 or P = 
0.0. 
 
Fig. 5 The percentage of simulation runs reaching altruist saturation as a function of the 
number of generations spent within groups g. Compares the effect of different migration 
rates, m, where for all runs P = 0.1, g = 2, b = 10, n = 4, N = 1,000, and c = 1.  1,000 
runs were done for each unique set of parameters with different random number seeds. 
All runs were done until P = 1.0 or P = 0. For m = 0.4 all runs resulted in P = 0.0 (data 
not shown). 
 
Fig. 6 Dynamics in altruist frequency P for individual simulation runs of g = 2, g = 4, 
and g = 10 generations spent within groups. For all runs initial P = 0.1, b = 10, n = 4, N 
= 1,000, and c = 1.  To aid in comparison, all three runs were initiated with the same 
random number seed (same initial distribution into groups). 
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Fig. 1   
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 Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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