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Abstract: Microplastics are ubiquitous in our environment and are found in rivers, 

streams, oceans, and even tap water. Riverine microplastics are relatively understudied 

compared to those in marine ecosystems. In Oregon, we sampled eight sites along four 

freshwater rivers spanning rural to urban areas to quantify microplastics. Plankton tow 

samples from sites along the Columbia, Willamette, Deschutes, and Rogue Rivers were 
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analyzed using traditional light microscopy for initial microplastic counts. Application of 

Nile Red dye to validate microplastics improved microplastic identification, particularly 

for particles (Wilcox Test; p-value=0.001). Nile Red-corrected microfiber abundance was 

correlated with human population within five kilometers of the sample site (R²=0.554), 

though no such relationship was observed between microparticles and population 

(R²=0.183). This study finds plastics present in all samples from all sites, despite the 

range from undeveloped, remote stretches of river in rural areas to metropolitan sites 

within Portland, demonstrating the pervasive presence of plastic pollution in freshwater 

environments.  

Key Words: freshwater, microfibers, microparticles, Nile Red, population, plankton tow 
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Introduction 

Plastics, synthetic polymers derived from petroleum, have become a part of daily 

life in the products that we rely on, with global plastic production estimated at ~330 

million metric tons per year in 2016, and projected to double over the next two decades 

(Lebreton & Andrady 2019). The durability of plastic makes it both appealing as a 

product and challenging to dispose of properly. Given the limited plastic recycling 

(Kershaw et al. 2019), a majority of plastic products end up in landfills and experience 

degradation over time (Lebreton & Andrady 2019). In fact, land-based sources of waste 
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contribute roughly 80 percent of plastic litter to the marine environment (Sharma & 

Chatterjee 2017) and up to 12.7 million metric tons of plastic waste generated from 

coastal countries entered the ocean in 2010 (Jambeck et al. 2015). Despite fairly 

extensive microplastics research in the marine environment, significant information gaps 

remain for freshwater systems (Horton et al. 2017). 

Microplastics, particles or fibers less than 5 mm in diameter (Erni-Cassola et al. 

2017), can be introduced into the environment in many ways. Primary microplastics are 

manufactured as small particles, while secondary microplastics result from fragmentation 

of larger plastic debris (Barboza et al. 2018). Microplastics are generally categorized into 

types including pellets, fragments, fibers, granules, plastic films, and foam (Van 

Cauwenberghe et al. 2015, Rochman et al. 2019). For this study we grouped observed 

microplastics into two morphological categories: “fiber” or “particle”. 

In marine and freshwater ecosystems, proximity to point and nonpoint sources 

(e.g., effluent pipes, septic systems, and urban runoff) may affect the amount of plastic 

found at a given location (Carr et al. 2016). Aquatic microplastics are suspected to 

originate from wastewater treatment plant (WWTP) facilities and large-scale urban 

development along freshwater rivers (Eerkes-Medrano et al. 2015, Conley et al. 2019). 

Microplastics can enter these systems from surface runoff, laundry, and improper waste 

disposal. Each load of laundry can send hundreds of thousands of microplastics to the 

WWTP and eventually into aquatic systems (Brodde 2017, Hartline et al. 2016). 

There is documented potential for microplastics to cause harm to aquatic 

organisms and potentially humans that ingest those organisms (Cole 2016, Lebreton & 
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Andrady 2019, Maes et al. 2017). Microplastics ingested by aquatic species can cause 

physical and physiological effects, including internal damage to digestive mechanisms, 

reduced growth rates, and absorption of chemicals bound to microparticles (Cole et al. 

2011, Duis & Coors 2016, Lusher et al. 2017). These ingested particles can then 

accumulate up the food chain as organisms are preyed upon, ultimately bioaccumulating 

in marine mammals and potentially humans (Rochman et al. 2015, Lebreton & Andrady 

2019).  

Plankton tows can be used to establish the presence of microplastics in an aquatic 

environment, as well as to assess microplastic presence within organisms in the food 

chain. For example, a 2015 Australian study (Hall et al. 2015) used subsurface plankton 

tows to establish the presence of microplastics in coral reef waters. Hall et al. (2015) 

found polyurethane, polystyrene, and polyester, which are commonly associated with 

anthropogenic presence (clothes laundering) and activities like shipping and fishing. 

Most plastics found were fibrous and less than one mm, suggesting that the microplastics 

were secondary particles resulting from fragmentation (Hall et al. 2015). Cole’s 2016 

study also supported the notion that fibers are among the most prevalent microplastic 

types with synthetic fibers generally manufactured as nylon, polyester, or polypropylene, 

which are commonly used in the production of textiles and fishing gear. Sources include 

washing machines, the degradation of cigarette butts, and the fragmentation of nautical 

equipment like fishing lines and nets (Cole 2016).  

To identify microplastics in samples, microscopy coupled with a validation 

technique is standard (Maes et al. 2017). However, Raman and FTIR validation, the gold 

standards, are expensive, require trained personnel, and are generally limited to a subset 
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of samples from the study that are validated, given time and cost constraints. For 

microplastics research to be more accessible to diverse scientists, including student and 

non-governmental citizen scientists, a more accessible validation method is required. Nile 

Red, a lipophilic fluorescent dye able to highlight lipid materials, has gained popularity 

for the study of microplastics since plastics are petroleum-derived, lipid-containing 

products. Although more accessible than methods like infrared or Raman spectroscopy, 

traditional light microscopy can create low data reliability, especially when particles are 

exceedingly small or clear/white in coloration. As a result, validation is required to 

confirm that materials counted are, in fact, plastic (Shim et al. 2016; Maes et al. 2017). 

Nile Red is a cost-effective alternative that is inexpensive to replicate across all samples. 

Nile Red causes plastics to fluoresce under inexpensive LED light conditions by binding 

to lipids during the staining process, providing more accurate results than microscopy 

alone, while reducing validation time and expense.  

This project began as a collaboration with Oregon Public Broadcasting (OPB), a 

local affiliate of the Public Broadcasting System (PBS), to quantify microplastic pollution 

in Oregon’s rivers (Profita & Burns 2019). Collection sites were selected to span rural to 

urban and undeveloped to developed areas within the Columbia, Willamette, Rogue, and 

Deschutes River watersheds (Figure 1). The application of Nile Red dye was explored as 

a low-cost analytical method to improve the accuracy of microplastic identification 

versus microscopy alone (Maes et al. 2017). 

The study objective was to identify patterns of microplastic occurrence in water 

samples across eight sites on four Oregon rivers testing a cost-effective method to do so. 

This study sought to answer the questions:  
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1) Are microplastics present in both rural and urban stretches of rivers in 

Oregon?  

2) Does microplastic abundance correlate with human population?  

3) Does the low-cost technique of applying Nile Red dye facilitate microplastic 

identification of both particles and fibers in freshwater plankton tow samples 

(e.g., Erni-Cassola et al. 2017)?  

We hypothesized that microplastics would be present at all sites; counts would positively 

correlate with human population density; and that Nile Red would enhance identification 

over traditional microscopy for all microplastics.  

Methods 

Study Sites 

Eight study sites spanned four rivers in Oregon, ranging from the Columbia River 

mainstem at the Washington border in the north to the Rogue River in Southern Oregon 

(Figure 1). Rivers vary in length from the Columbia River spanning 2,010 km to the 

Deschutes River spanning 280 km (Appendix Table 1). Plastic pollution from point and 

nonpoint sources is an emerging concern in all four rivers, especially given the cultural 

and ecological importance of fish species that rely on these habitats for spawning, 

rearing, and migration. 

Samples were collected at eight locations: the Columbia River near St. Helens, the 

Willamette River near Fall Creek (upstream), Albany (midstream), and Portland (Oregon 
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Museum of Science and Industry [OMSI] dock; downstream), the Rogue River near 

Woodruff Bridge (upstream) and in Grants Pass (downstream), and at Big River 

(upstream) and Tumulo (downstream) on the Deschutes River (Figure 1). Sites were 

chosen based on a) their proximity to WWTP and urban centers: OMSI in downtown 

Portland, Albany on the Willamette River, and Grants Pass on the Rogue River or b) their 

remote locations: Fall Creek on the Willamette, Woodruff Bridge on the Rogue, and Big 

River on the Deschutes. 

Sample Collection 

Between September 7th and 14th, 2018, three samples plus a field control were 

collected from each of the eight sites (n=24) using a General Oceanics plankton tow net 

with a 0.5m mouth and 200 µm mesh size equipped with a flow meter. Based on previous 

research studying riverine surface water microplastics using a sample depth of 0.15m 

(Yonkos et al. 2014), our net was submerged in the river approximately 0.3 to 1m below 

the river surface (depending on river depth and access conditions) for 15 min to sample 

subsurface flow (Lenaker et al. 2019). Excess water exited through the mesh netting 

while debris and plankton were trapped in the cod-end (Vinzant 2016). Samples were 

poured and the cod-end rinsed with deionized (DI) water into pre-rinsed glass jars for 

transport back to the Applied Coastal Ecology lab at Portland State University. At each 

site, a control jar was open during sampling to collect any airborne plastic particles. The 

total water volume sampled from each river varied greatly, however water volume of 

each sample collected and rinsed from the net cod-end was approximately 680 mL. Flow 

was recorded as rotor revolutions (converted to “counts”) at each sampling event (see 

Appendix Table 2), and this value was used to calculate sample volume (m3) using the 
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equation: area [(3.14 x (net diameter)²)/4] x distance [(counts x rotor constant)/999999], 

based on the General Oceanics flow meter user guidelines.  

Tissue Dissolution  

The plankton tow samples contained a significant amount of biological material 

making microscope inspection of microplastics difficult. To avoid misidentification, a 

potassium hydroxide (KOH) digestion was performed to remove naturally-occurring 

biological material from the samples (Rochman et al. 2015). Each sample was filtered 

with a 200 µm strainer and the remnants were rinsed into a beaker with 400 mL of 

filtered DI water and a 10% potassium hydroxide (KOH) solution (Rochman et al. 2015). 

Covered beakers sat on a 60oC hotplate with a stir bar for 24 hrs before being filtered into 

a petri dish. Samples that remained murky after the first digestion were split into two 

petri dishes and were digested a second time to increase clarity. Despite these extra steps, 

many samples remained muddy so density separation was utilized to effectively isolate 

the plastics from the biological material (Masura et al. 2015). 

Density Separation 

Samples were rehydrated, scraped with a shucking tool to loosen the sample from 

the bottom of the dish, then added to a hypersaline solution with a ratio of 168.4 g of salt 

(NaCl) to 2 L of water. Jars were sealed and shaken vigorously for 60 sec, then returned 

to the lab bench for the contents to separate and stratify. Since the hypersaline solution 

causes heavier sediment particles to sink to the bottom of the jar, while the lighter plastic 

particles floated to the top (Thompson et al. 2004), heavy plastic particles may have been 

lost during this step (Crichton et al. 2017). Once the solution had stratified, the liquid was 
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removed using a vacuum filtration set up: a 2 L glass Erlenmeyer flask connected to the 

sink faucet by a rubber tube (see Appendix Figure 1) with a glass filter (Whatman 1820-

047 Glass Microfiber Binder Free Filter, 1.6 Micron, 4.3 s/100mL Flow Rate, Grade 

GF/A, 4.7cm Diameter, Amazon) atop. The quart sample jar was then opened and the top 

layer was poured out to ensure that the plastics were filtered but no sediment was 

included. Once the water in the beaker was sucked into the Erlenmeyer flask, and the 

plastic particles were left on the filter paper, it was lifted and transferred to a new petri 

dish using Excelta 5-SA stainless steel precision tweezers. Petri dish lids were secured 

with two rubber bands, and the filter papers were stored in a cardboard box for 

microscope analysis. All glassware in the vacuum setup was rinsed twice with DI water 

between samples. Nitrile gloves and cotton lab attire were worn during processing to 

minimize contamination. 

Microscope Analysis 

Initial microscope analysis (methodology adopted from the Marine & 

Environmental Research Institute “Guide to Microplastic Identification” nd) 

differentiated the suspected microplastics by color. Each filter was viewed on a Leica 

MZ6 light microscope using 40x magnification. Per method protocol, each filter was 

scanned in its entirety. The physical characteristics of each suspected microplastic were 

assessed using precision tweezers to test malleability. Parameters including thickness, 

homogeneity of color, and presence/absence of cellular structures were assessed visually 

to differentiate plastic from natural materials (“Guide to Microplastic Identification” nd, 

Masura et al 2015). Each suspected microplastic was photographed and shape and color 

were recorded. While assessing each filter, a petri dish with DI water sat at the back of 
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the microscope to collect any potential contamination from the microscope lab room. 

Each control dish was analyzed under the scope after its corresponding filter paper 

sample, and contamination was recorded. This procedure was repeated for each filter 

paper and control pre- and post-Nile Red dye application (April-May, 2019). Field and 

lab controls were calculated and reported as average microplastic contamination per site 

(See Appendix Tables 3 and 4).  

Nile Red dye preparation, application, and microscope analysis 

One mg Nile Red (Santa Cruz Biotechnology, SC-203747C) was mixed with 1 

mL acetone to create a stock solution, that was diluted with 100 mL of hexane to create a 

working solution of 10 µg Nile Red/mL (Wiggin & Holland 2019). After thorough 

mixing with a stir bar for 3 to 5 hours, the working solution was transferred into an amber 

dropper bottle, and the solution was applied to each filter paper until coated (about nine 

drops) and allowed to dry on a 12-hr, 30°C cycle in a drying oven (Wiggin & Holland 

2019).  

Microscope analysis was repeated for each filter paper and microscope control 

post Nile Red dye application. To create proper light conditions for fluorescence, the lab 

room was completely dark and orange safety goggles were taped under the microscope 

lens to create an orange viewing environment. A 455 nm LED flashlight (Arrowhead 

Forensics PART NO: A-6994FK) was used to illuminate the samples (Figure 2), causing 

fluorescence (Wiggin & Holland 2019).  
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Quality Control 

All glassware and lids were rinsed twice with DI water to avoid microplastic 

contamination. Glassware was inverted or covered if not in use, and controls were used 

both in the field and lab to quantify contamination. Proper lab attire included nitrile 

gloves, 100% cotton t-shirt and lab coat to avoid contamination. The following controls 

were included to account for microplastic contamination during field collection and lab 

processing: a mason jar was left open during field sampling, and again in lab during the 

hypersaline procedure; a petri dish was left open during each microscope analysis, and an 

open dish was left in the oven during the drying cycle (Baechler et al. 2019). 

Contamination in the above controls was summed and reported per site (Appendix Tables 

3, 4).  

Data Analysis 

All Nile Red statistical analyses were conducted in R Studio version 1.1.453. To 

test for significant differences, nonparametric t-tests were run between the number of 

fibers and particles before and after dye application. Shapiro Tests revealed data were 

abnormal, thus the non-parametric Wilcox Test was used to compare microplastic counts 

before and after dye application (significance level of <0.05). Tests revealed more 

microplastics post Nile Red dye than initially counted, so Nile Red “after” counts were 

used for the site population comparison. 

Collection site GPS coordinates were used to determine population estimates 

within a 5 km radius of each location using Population Estimation Service, a web-based 

GIS tool developed by NASA’s Center for International Earth Science Information 
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Network (CIESIN) (CIESEN, 2019). Population estimates were derived from the Gridded 

Population of the World (GPW) v4.11 developed by the Socioeconomic Data and 

Applications Center (CIESIN, 2019). Population and site information were projected onto 

a map using ArcGIS Desktop version 15.5.1. (ESRI, 2017).  

 Aggregated daily data from the collection date based on United States Geological 

Survey (USGS) or Oregon Water Resources Department (OWRD) flow meters near each 

sampling location were used to identify flow at or near the sample locations. 

Microplastics concentration data after Nile Red and the flow data converted into m3/sec 

were used to calculate microfibers/sec or particles/sec. We multiplied the per second 

counts by 3600 (60 sec/min X 60 min/hr) to calculate the number of 

microfibers/microplastics flowing through the sampling location hourly. Microfiber and 

microparticle per hour data were regressed onto the 5 km radius human population 

estimate data using simple linear regression in R Studio. Variables were plotted and fitted 

with regression lines to explore the strength of linear relationships. 

Results 

 Plastic particles and fibers were found in all samples collected, although the 

quantity varied significantly. Sizes ranged from 5mm down to 200um as indicated by 

filters used. Nile Red results revealed a total of 265 fibers ranging from 2 to 30 per 

sample. Particles totaled 99, ranging from 0 to 23 per sample. This higher occurrence of 

fibers is consistent with recent literature reporting that microplastic composition in fresh 

and marine water columns is dominated by fibers at 52%, followed by “fragments” at 

29% (Burns & Boxall 2018). For example, the surface water section of the 
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comprehensive San Francisco Bay microplastic study listed the dominant morphology as 

fibers followed by “fragments” (Sutton et al. 2019). Similar conclusions have also been 

demonstrated in estuarine environments (Hitchcock & Mitrovic 2019). Nile Red dye 

affected microplastic identification, particularly with clear and white fibers and particles. 

There was minimal difference in the fiber counts before and after Nile Red dye 

application (Wilcox Test; W statistic =168, p=0.084). However, we positively identified 

significantly more particles after dye application (Wilcox Test; W statistic = 109, 

p=0.001). The highest fiber concentrations were found by the OMSI dock (Portland, 

Oregon), however sample variability within a site was high (Figure 3A, note error bars). 

The highest particle concentrations were seen at Albany, OMSI, and Tumalo (Figure 3B, 

Table 1). Sample collection at Albany occurred during a major rainstorm and plastic trash 

was visible and abundant in the river during sampling.  

Microfiber counts per hour (R²=0.554; F=7.466 on 1 and 6 DF; p=0.034), but not 

microparticle counts per hour (R²=0.183; F=1.343 on 1 and 6 DF; p=0.29), correlated 

with human population density within 5 km (Figure 4A and B).  

Discussion 

 The presence of microplastics in all samples from both urban and rural sites 

further supports the pervasiveness of microplastics in freshwater systems in Oregon. 

Specifically, the Oregon river samples indicate a range of contamination, a projected 144 

to 2.9 million microfibers per hour, and 48 to 122,000 microparticles per hour passing 

sample locations, with correlation of microfibers to adjacent human population. The high 

concentrations of microplastics in Oregon rivers with culturally and ecologically 
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important fisheries (Myers et al. 2006) highlights the need to better understand how 

microplastics are entering these rivers and may affect fish populations and the broader 

ecological communities. In addition, these rivers are of high recreational importance, 

raising the question of how microplastics may affect human recreational users. In systems 

with distinct rainy/dry seasons that are not effluent-dominated, first flush periods can be 

important sources of contaminant loading to downstream systems and tend to have the 

highest concentrations of contaminants (Hurley et al. 2018). Since samples were 

collected in early fall before the rainy season, during the lowest flow period of the year 

(with the exception of the Albany site sampled during an early fall storm), and since we 

only sampled a small section of the water column, these data likely under-represent the 

average fiber concentration throughout the water column and annually. As such, these 

data establish a microplastics baseline representing a snapshot in time. 

Our project further supports the value of Nile Red dye as a validation tool, 

particularly for citizen science-based and student-driven projects that may lack funds to 

validate microplastics using more expensive techniques (also see Maes et al. 2017; 

Wiggin & Holland 2019). Nile Red also saved valuable sample processing time by 

making it easier to isolate plastics. Any sediment obscuring the filter essentially 

disappeared when the lights were turned out (Figure 2), eliminating background material 

that originally took significant time to differentiate. Although Nile Red may be an 

improvement in current practice, it is not a perfect method. Organic debris on the filter 

paper creates the potential for co-staining of biological material (Helmberger et al. 2020). 

Thus, it is important to conduct a digestion step and employ knowledge of plastic 

behavior and visual characteristics to confirm each potential plastic particle or fiber. 
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Specifically, methods including chemical digestion and density separation are essential 

for samples to be as “clean” as possible before dyeing.  

Several potential sources of error exist in our study. The Columbia River could be 

an outlier in terms of number of microfibers per population size (Figure 4A) because the 

samples were collected from a location with a low population within 5km, but the 

collection site is downstream of dense urban populations including Portland, Oregon and 

Vancouver, Washington, potential sources of plastics floating downriver. Similarly, 

Albany microparticle numbers may be an outlier (Figure 4B) since it was the only site 

sampled during a rain event, possibly skewing the microparticle count relative to the 

other sites sampled during drier periods. The plankton tow was submerged approximately 

0.3 to 1m below the surface at each site to maintain a uniform methodology across 

samples, but different densities of plastic float in different depths of the water column 

(Engler 2012, Lenaker et al. 2019); as this variability is not accounted for in our sample 

design, we expect we under-sampled very light as well as very dense plastics both in the 

field and during our density separation step during which we may have lost heavier 

microplastics that sank (Crichton et al. 2017). Additionally, flow was not recorded or 

incorrectly recorded for one Eugene and one W. Rogue sample, so those site averages 

were based on two instead of three samples. When USGS or OWRD flow meter data 

were not in close proximity to the sample sites, daily average flow was calculated by 

combining flow from the gauge upstream with any discharge that came into the river 

from tributaries upstream of the sampling site, per guidance of a USGS hydrologist.  

In an effort to limit false positives or negatives that could misinform managers 

and the public, a number of modifications and/or improvements for future studies are 
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recommended, since study design, quality assurance measures, and microplastic 

quantification remain non-uniform (Burton 2017). First, rinsing and removing large 

organic debris (leaves, sticks, algae) prior to KOH digestion would speed up sample 

processing as presence of large amounts of macro-debris greatly slowed the process. 

Although the relationship between microplastics and human population utilized radial 

population surrounding the site, given potential for visitation and recreational use by 

residents in close proximity, other measures of human population (such as population 

within the upstream watershed) may yield stronger correlation. It is notable that 

microplastics were present at sites with low human influence (Table 1). One driver of 

microplastic presence that we were unable to quantify was the role of improved 

infrastructure in removal of plastic at WWTPs, an interesting avenue for future study. 

Further research is also needed to understand finer scale spatial variability in microplastic 

abundance. Increased understanding of this spatial variability could provide important 

information for managers and policy makers to more effectively implement measures to 

reduce contamination in both marine and freshwater environments. Finally, this study 

supports the existing literature that microplastics are ubiquitous in the natural 

environment, even in remote locations, and that Nile Red dye aids in citizen-science and 

GK-16 student-based microplastic research and monitoring.  

Supplemental Data—The Supplemental Data are available on the Wiley Online Library 

at DOI: 10.1002/etc.xxxx. 
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Figure 1: The eight sampling locations and their respective populations within a 5 km 

radius; population density represented by graduated circles. 

 

Figure 2: Example of Nile Red fluorescence from the Fall Creek 3 sample. 
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Figure 3: Average number of A) fibers and B) particles per m3 of water by site. Sites are 

arranged in descending order from highest to lowest values after Nile Red dye 

application. Bars represent standard error. 
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Figure 4: Scatter plots showing the relationship between population within a 5km radius 

of sampling locations versus the calculated rate per hour of microfibers (A) and 

microparticles (B) at each location. Standard error is shown in the dark grey shaded areas. 

Microfiber rates appear to exhibit a marginal positive linear relationship with population, 

whereas the microparticle rate does not. Note the different scales between A and B. 
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Graphical Abstract: The eight microplastic sampling locations and their respective 

populations within a 5 km radius; population represented by graduated circles. 

Microplastic fibers per cubic meter are also graphed to show differences before (grey) 

and after (orange) the application of Nile Red dye. 

 

Table 1: Population estimates within a 5km radius and microplastic averages after NR at 

each site. The far-right column represents the average microplastic percent that could be 

attributed to contamination. 

Site Name 

2015 

Population 

Estimate Avg Fiber/m³ 

Avg 

Particle/m³ 

% of 

Contamination 

per Site 
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 Woodruff 

Bridge 0 0.063 0.023 

54.20 

Fall Creek 3434 0.009 0.003 0 

Big River 4536 0.034 0.001 18.88 

Tumalo 11815 0.107 0.052 3.76 

Columbia 18887 0.255 0.007 4.89 

GP Rogue 45110 0.013 0.007 14.31 

Albany 49947 0.22 0.249 8.41 

OMSI 192200 3.19 0.064 19.06 
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