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Abstract: Creating ‘what-if’ scenarios to estimate possible futures is a key component of decision-
making processes. However, this activity is labor intensive as it is primarily done manually by
subject-matter experts who start by identifying relevant themes and their interconnections to build
models, and then craft diverse and meaningful stories as scenarios to run on these models. Previous
works have shown that text mining could automate the model-building aspect, for example, by using
topic modeling to extract themes from a large corpus and employing variations of association rule
mining to connect them in quantitative ways. In this paper, we propose to further automate the
process of scenario generation by guiding pre-trained deep neural networks (i.e., BERT) through
simulated conversations to extract a model from a corpus. Our case study on electric vehicles
shows that our approach yields similar results to previous work while almost eliminating the need
for manual involvement in model building, thus focusing human expertise on the final stage of
crafting compelling scenarios. Specifically, by using the same corpus as a previous study on electric
vehicles, we show that the model created here either performs similarly to the previous study when
there is a consensus in the literature, or differs by highlighting important gaps on domains such as
government deregulation.

Keywords: causal model; Fuzzy Cognitive Map; Q&A system; sustainability; text mining

1. Introduction

What-if questions are essential to making decisions by reasoning about the potential
impacts of a situation. The situation could be an intervention (e.g., What happens to the
sustainability of a city if we promote green spaces?) or a continuation of current trends (e.g.,
What happens in ten years if we continue with current emissions of pollutants?) [1]. A what-
if question pertains to a specific system. For example, it would be impossible to answer the
two questions above without a clear definition of the system (e.g., How do we measure
sustainability? What is impacted by green spaces?). A scenario thus raises what-if questions
of interest within the context of a clearly defined system, for example, by listing relevant
factors and connecting them to track causal impacts. In other words, a scenario is a self-
contained story about a potential future [2,3]. Scenarios have several demonstrated benefits
for the decision-making activities of teams, such as raising awareness for the dynamics of
an environment, managing uncertainty, evaluating different products, or breaking away
from groupthink [4–7]. The field of scenario planning has articulated many approaches to
craft such scenarios [8], often with the objective of producing a small number (typically
3–8) of plausible and alternative scenarios that cover different futures [9]. The quality of
these scenarios is assessed through various criteria, such as plausibility [10], creativity [11],
transparency [12], sufficient differentiation [13], relevance [14], or consistency [15].

A recurrent challenge is that scenario planning is a time-consuming and demanding
process, for at least three reasons. First, the complexity of a system often calls for several
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subject-matter experts (SMEs), who are identified and involved via a trained facilitator
to shed light on driving forces and current trends. Comprehensively understanding a
system can thus be a significant endeavor, mobilizing numerous SMEs and necessitating
the availability of a trained facilitator [16,17]. Second, there may be disagreements among
SMEs on how some aspects of a system operate, or such mechanisms may simply by
unknown. Similarly, some existing trends in the system or the actions planned by other
stakeholders may not be known. There is thus a need to represent uncertainty. Third,
under many scenario-planning techniques, teams focus on the ‘big picture’ to assess the
futures of entire markets, industries, or even societies. While this is useful for high-level
strategical thinking, it does not address the needs of teams who need more granular
information to make tactical decisions related to specific products.

Given these challenges, there has been particular interest in automating some or all
of the process of scenario planning, resulting in Foresight Support Systems [18,19]. Text col-
lections have been an essential data source for such systems [20], as an indirect way to
obtain vast amounts of domain expertise. This reflects a broader trend in future studies,
which leverages unstructured data from websites, news posts, or academic journals [21–24].
These text collections have primarily been analyzed through web scrapping and topic
modeling; recent examples include [25–28]. However, none of these studies fully automated
the end-to-end process of scenario generation. For instance, [26] manually map the system,
and [27,28] manually perform desk research and verification. Even works leveraging ad-
vances in natural language processing (NLP), such as BERT, contain a manual step of risk
identification [29]. In this paper, we posit that there is a potential to go further in leveraging
the information connected through massive text collection by using NLP to extract models
of the system and craft scenarios.

In this paper, we improve the automatization of scenario generation by combining
natural language processing and Fuzzy Cognitive Maps (FCMs). Our proposed tool is
named SAAM, for Scenario Acceleration through Automated Modelling, and is available
open source [30]. By emphasizing a fully automatic approach, we seek to drastically reduce
the barriers to scenario development for teams who do not have the time or capacity to
engage with subject-matter experts and trained facilitators.

To demonstrate the efficiency of our tool, we then apply it to a case study regarding
electric vehicles (EVs). EVs were chosen as a guiding example for our technique as there
is a demonstrated need and interest in scenario generation [31–33]. In particular, the sce-
narios covered by our case study include key themes about EVs, such as adoption [34–36],
regulation and policy incentives [37–39], and technological enablers [40,41].

The remainder of this paper is structured as follows: To ensure that the manuscript is
self-contained and usable both for computational scientists and sustainability specialists,
our Background section provides the foundations for NLP and FCMs. Our Methods section
builds on these foundations to introduce our proposed tool, SAAM. To demonstrate the
efficiency of our tool, we then apply it to a case study regarding electric vehicles. Our results
are compared with those obtained on the same corpus in a previous study performed
by another group, showing that our model performs either similarly (with less manual
involvement) or reveals important gaps. Our Discussion section contextualizes the potential
of SAAM and outlines its limitations as well as opportunities for future improvements.

2. Background
2.1. Fuzzy Cognitive Maps

As evoked in the introduction, a scenario exists within the context of a clearly defined
system. In other words, we need to model this system. Suitable modeling approaches
fall into two broad categories. Conceptual models (e.g., causal maps, causal loop diagrams,
mind maps) provide a structure to the system by identifying relevant factors and their
interconnections [42–44]. Conceptual models have several benefits, such as identifying
key factors in a system (e.g., via centrality), revealing themes (e.g., via community detec-
tion), or comparing perspectives (e.g., via Graph Edit Distance) [44–46]. However, these
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models offer limited support for scenario planning. For example, we can ask what will
be impacted in a scenario, and we will follow links in the model to provide a list (e.g.,
via a Breadth-First Search). However, there is no quantification; hence, we cannot say
whether some elements will be impacted more or less. In other words, the inability of
a conceptual model to provide a quantitative estimate limits the decision-support tasks
for which they are suitable. The second category of quantitative (aggregate) models offers
these capabilities, but building them requires significantly more work [47]. Quantitative
models are simulation models, which means that they can provide numerical answers by
updating values based on certain rules. A well-known quantitative approach is System
Dynamics [48], where the model runs differential equations to update concepts based on
rates over time; this approach can provide highly accurate point-estimates, but requires
significant quantitative data. Fuzzy Cognitive Maps (FCMs) do not include the notion of
time; hence, they are simpler to build (e.g., entirely from qualitative data) at the expense of
lower accuracy (i.e., cannot know exactly when an effect will be obtained) [49]. FCMs have
been used in over 20,000 studies [50], including many works on scenario planning, as they
provide quantitative system models that suffice to represent the driving forces that shape
the future (e.g., technology, economy, social trends) and their interdependencies. Recent
examples in sustainability include modeling the wind energy sector [51,52], social sustain-
ability [53,54], planning viewed by rural communities [55] or urbanites [56], or managing
waste flows [57]. Throughout these examples, the FCM is used for simulations by varying
the input values to produce multiple scenarios; since the scenarios are all based on the
same model, they are guaranteed to be internally consistent.

Mathematically, an FCM has two parts: a causal structure (similar to a conceptual
model) and an inference engine (to run simulations). The causal structure is represented as a
directed, weighted, labeled graph G = (V, E), where V is the set of labeled nodes and E is
the set of directed edges. Both nodes and edges have a weight. The weight of each node
changes over each simulation step t to denote the extent to which a concept is present (1)
or absent (1); it is denoted by vt

i ∈ [0, 1]. The weight of each edge is held constant as it is
considered a property of the system (e.g., if there are many anglers, then there are much
less fish), whereas nodes correspond to a case (How many fish are there at a given point?).
Edges are represented with an adjacency matrix, where Wi,j ∈ [−1, 1] indicates the weight
from node i to j. The weight is 0 if there is no relationship, positive if an increase in i causes
an increase in j, and negative if an increase in i causes a decrease in j. The inference engine
operates by synchronously updating all the nodes’ values per Equation (1):

vt+1
i = f

(
vt

i + ∑
j∈V,j 6=i

Wj,i × vt
j

)
(1)

Intuitively, this update means that the next value of a node accounts for its current
value (i.e., there is memory for one step), as well as the values of all incident nodes and the
corresponding causal strengths. The function f serves to keep the output in the desired
range [0, 1]. The update is performed until a stopping condition is met. The desired stopping
condition is that a set of key nodes O (considered as outputs of the system) change by
less than a user-defined value ε between two consecutive iterations. It is possible that this
desired situation is not reached, due to oscillations or chaotic attractors. To ensure that the
algorithm stops in any case, a secondary condition is a hard cap on the maximum number
of iterations τ. Consequently, the updates stop if and only if Equation (2) holds true [58]:

∀o ∈ O,
∣∣∣vt

o − vt−1
o

∣∣∣ ≤ ε or t ≥ τ (2)

As the mathematics of FCMs have been abundantly covered elsewhere, we refer the
reader to seminal reviews for further details [59,60]. In this paper, our interest is on (i)
generating FCMs from text, and (ii) using them to craft scenarios. With regard to (i), we
note that several works have extracted causal maps from text [26,61–63]; hence, they could
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generate the causal structure, but did not produce a complete FCM. Some works have
focused on creating FCMs from summaries or large collection of documents [64,65], but they
needed manual interventions (e.g., manual labeling, expert verification); hence, the process
was only semi-automatic. The objective of (ii) building scenarios with FCMs is pursued by
many studies [66–68], with several examining the role of FCMs as a communication tool to
engage stakeholders in scenario generation [69,70].

2.2. Natural Language Processing

The major companies that own big data (e.g., Microsoft, Google, Amazon) have heavily
invested in model creation and made several of the resulting models available to researchers
and practitioners through their web services. For example, Google provides pre-trained
models for natural language processing via its Natural Language AI. Pre-trained models in
NLP often leverage deep neural networks, resulting in highly used models such as BERT
or GPT [71,72]. BERT is of particular interest here, as it has previously been used to extract
causal models from text [29]. We recently described BERT as follows [73]:

“BERT is a pre-trained deep bidirectional transformer, whose architecture consists of
multiple encoders, each composed of two types of layers (multi-head self-attention layers,
feed forward layers). To appreciate the number of parameters, consider that the text first
goes through an embedding process (two to three dozen million parameters depending
on the model), followed by transformers (each of which adds 7 or 12.5 million parameters
depending on the model), ending with a pooling layer (0.5 or 1 million more parameters
depending on the model). All of these parameters are trainable.”

Intuitively, BERT models are trained by first creating a base model on a large un-
structured dataset that can make predictions such as what word might appear next in a
sentence. Secondly, the previous learnings are transferred, and models are fine-tuned on
specific datasets that allow such functionality as answering questions based on the text in
the dataset. To achieve this, BERT uses multiple layers of encoding so it can predict context
and “understand” the difference between semantically similar terms such as “apple pie” or
“apple tree” by encoding (1) the words, (2) the sentences, and (3) the positions of the words
in the text. This combination of tokens is then fed into a neural network that creates the
base model, which can be fine-tuned on specific text for NLP tasks. For a more detailed
description of BERT, we refer the reader its highly cited source [74].

The core idea of repurposing BERT to extract a causal model is to build a question-
answering (Q&A) system [75] in which we ask the question of what ‘causes’ or ‘results’
from a given factor, and then repeat the process on these causes and consequences to
gradually build a model. In other words, a Q&A system can determine connections and
causality between concepts in the model. By asking the system, “why do people buy more
electric cars?” a human user identifies a concept of interest through the question—in this
case, “electric cars”. Q&A systems provide the answer by treating a pre-selected text corpus
as the context. In this example, the corpus would focus on the electric car industry.

To briefly illustrate this notion within the context of sustainability, consider the fol-
lowing example of the fashion supply chain and the guiding question, “What causes
pollution?” By applying a Q&A BERT-based model from the Hugging Face project [76] on
online books about the fashion supply chain, we obtain a sample output such as in Table 1.
Items in the ‘answer’ columns are concepts, the ‘confidence’ is the degree of certainty with
which the algorithm identified the answer, and the ‘context’ provides an excerpt from the
most relevant document containing the answer. In this example, “fast fashion brands” is
returned with high confidence because it is directly referenced in the text as a cause of
pollution, whereas very low confidence was returned for the other concepts because they
are mentioned together but do not answer the question based on the text provided. The
more text that associates fast fashion brands with pollution, the higher the confidence value
would be. The context can also help to identify more relevant concepts, which can be used
for further questions [77]. For instance, ‘sustainable development’ is mentioned as part
of the answer ‘global climate change’, and it could lead to another line of questioning by
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asking the Q&A system, “What types of sustainable development are happening in the
fashion industry?”.

Table 1. Sample output from an NLP Q&A system when asked, “What causes pollution to increase?”.

Answer Confidence Context

Fast fashion brands 0.489
on the other hand, fast fashion brands such as h & m, Zara, Topshop, have been
blamed for creating poor labor welfare, severe environmental pollution as well
as a massive amount of clothing disposal at the end of the product life cycle.

Global climate change 0.00713
introduction due to the aggravation of environmental pollution and global

climate change, sustainable development has attracted more and
more attention.

Overconsumption of energy 0.00669 by doing so, these companies alleviate conflicts of interest among participants
and reduce pollution and overconsumption of energy.

3. Design of the Proposed SAAM tool
Overview

Our work seeks to automate the process of scenario generation. However, the analysts
still need to be involved in defining the question and pointing to acceptable data sources.
From that point onward, the automatic process can run. Overall, our proposed SAAM tool is
composed of three stages: setup (which is manual), model building (which is automatized),
and model use by humans (Figure 1); each of these stages is explained in a dedicated
subsection below. Several parameters are involved in these stages, as summarized in
Table 2. In short, the automation collects the data, runs the Q&A algorithms to find traceable
answers from the text corpus, and builds the initial model as a Fuzzy Cognitive Map. People
can inspect the answers, define filters, and potentially ask more questions to build out the
model further. Once the model is fully built, people use it to run their scenarios. This process
promotes an interplay of human interaction and Artificial Intelligence, hence following the
human-in-the-loop approach that is increasingly promoted in machine learning to create
more explainable models [78,79].
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Phase 1: Setup by defining questions and identifying relevant data sources.
Depending on the application domain, the modeling team starts by determining the

questions to ask. This does not depend on their computational knowledge. It may depend
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on the stakeholders and commissioners, as is the case for any modeling endeavor [80]. For
instance, if the modeling team seeks to better understand the future of self-driving vehicles,
then they may ask questions that contain key terms such as “self-driving”, “vehicles”,
or “self-driving cars”. That is, they are responsible for identifying a set of seed concepts
(or “nodes” of an FCM) belonging to the domain. If the modeling team is unsure about
keywords that characterize a domain, they can also use NLP on relevant documents to
extract candidate keywords, for instance, by removing stop-words and then extracting
keywords with high frequency using libraries such as RAKE or Gensim. The keywords
need to be structured into a question that can be passed onto a Q&A system. Two main
options are as follows: If the team seeks a model to perform cause-and-effect analyses, then
they may start with questions such as “what causes [phenomenon] to increase” and its
complementary “what causes [phenomenon] to decrease”; this is similar to a facilitated
modeling process investigating risks and protective factors [43]. Alternatively, if the team
seeks a model that explores drivers for a specific technology, then they define questions
based on the Political, Economic, Social, Technical, Environmental, and Legal (PESTEL)
aspects of the technology. The PESTEL framework has been commonly used in scenario
planning [81,82] and will be exemplified in our case study.

The modeling team also identifies appropriate data sources. These may include
journal articles, newspaper articles, or websites that provide detailed information for the
target domain.

Phase 2: Model building through the Q&A System and filtering.
The modeling team is responsible for specifying the number of iterations through

which the system should build a model (i.e., ‘question depth’). For example, after finding
that A causes B, the model could be expanded to know what causes B, leading to another
round of questions on increasing and decreasing causes of B; this would constitute a
question depth of 1 (Figure 2). A modeler may choose a higher question depth if they only
have a single question to start with, or if the corpus used is very large. After a certain
number of iterations, answers typically start to decrease in confidence because they reach
the knowledge limits of the corpus.
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Given (i) the corpus and (ii) the set of questions originating from phase 1, as well
as (iii) the question depth, we use an NLP Q&A system to repeatedly find connections
between concepts. Our work specifically uses the Hugging Face Q&A pipelines, but
implementations can also be achieved via other open-source solutions such as Sentence
Transformers [83]. When a factor X is identified as increasing Y, then we create an edge
from X to Y with the value 1; conversely, if X decreases Y, then the edge has the value −1.
Tracking the polarity of the relationship is important to later create the FCM.

Similar to the example in Table 1, the Q&A system responds to each question by
providing the answer, together with a confidence level between 0 and 1, indicating the
probability that the model got the correct answer, and token markers indicating where in
the document the answer was found. For example, if a document contains the sentence
“Pollution is a direct cause of a lower standard of living,” and the Q&A algorithm asks the
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question, “what causes lower standards of living?”, the model will return “pollution” as
the answer, a high probability such as 0.89, and the beginning position in the document
to where the answer was found. From these values, the answer and confidence score are
directly relevant to assisting the modeler, and the token marker can be used to find the
sentence and the document the answer was found in to give people using SAAM the full
context of the answer. In this example, it is as if the model is saying “I am pretty sure
that pollution is the answer because of this excerpt from the text you showed me”. If
responses were unfiltered, three problems could occur. First, answers with low confidence
could be included, resulting in noise in the model. Second, words that look different but
actually have the same meaning would be kept separately, hence resulting in a seemingly
comprehensive but actually redundant model. Third, the name of a concept is usually a
noun, but answers may consist of other types of words such as adjectives, which would be
harder to interpret as labels in a causal model (e.g., the noun ‘height’ would be preferable to
the adjective ‘tall’).

We handle these three situations through three filters, whose values can be set by the
user. First, to avoid noise, the modeler may only keep connections that were returned with
a high degree of confidence, thus filtering out results whose confidence is below a user-
defined confidence threshold. The threshold depends on the Q&A model used and the corpus;
hence, it should only be determined by the modeler after reviewing the initial results.
Second, to avoid redundancy, the user provides a semantic similarity threshold between
concepts such that answers above this value are deemed similar and merged. The semantic
distance can be defined using Levenshtein or cosine distances. Our implementation uses
the Levenshtein distance provided by the fuzzywuzzy library in Python [84], where a
threshold of 100 is an exact match, and the closer to 0, the larger the distance between
words. Finally, Part Of Speech (POS) tagging gives us the type for each word, and the
user can filter out POS that do not belong to a causal model. We use the spaCy library [85]
for this purpose. The default filter removes adjectives, punctuation, particles, symbols,
and interjections.

Table 2. Parameters and inputs to our proposed SAAM system. Additional libraries were used for the
system as a whole: Azure Machine Learning for data hosting and computing, and Machine Learning
Pipelines for coordination of tasks.

Parameter/Input Values Purpose Libraries Involved

Seed questions String
The modeling team must

define the problem of interest,
which anchors the model.

N/A

Text collection Resource set

Natural language processing
is performed over a text

corpus. It can be provided
directly (e.g., as files or URLs)
or retrieved from databases

with search keywords.

Power Automate Desktop (to
automate data collection)

Confidence threshold [0, 1]

Filter results based on the
confidence returned by the

Q&A algorithm. The
threshold range will vary

based on the context; thus, the
cut-off is up to the modeler.

Hugging Face Q&A
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Table 2. Cont.

Parameter/Input Values Purpose Libraries Involved

Semantic similarity threshold [0, 100]
(100 indicates perfect match)

Combine concepts that are
semantically similar. This can

use Levenshtein or cosine
distance. A lower value will

group many concepts, a
higher value may create a

model with different concepts
but similar meanings.

fuzzywuzzy

POS Filtering Array of POS tags
(universal POS tags [86])

Parts of speech may be
returned as answers, but
would not make intuitive

sense as concepts. In addition,
aggregate models often

limited to only using nouns
as concepts.

spaCy

Phase 3: Using the model.
Phase 2 produces a model in the form of a Fuzzy Cognitive Map. As explained in our

background, scenarios can be built using this FCM, based on situations that are currently
considered by stakeholders. This is illustrated in the next section through our application
of SAAM to electric vehicles.

4. Methods: Applying SAAM to Study Electric Vehicles
4.1. Overview

Our case study demonstrates the ability of our proposed SAAM system to extract
concepts and causal links from a text, structure them into an FCM model, and use the model
to run simulations on alternative future scenarios that are plausible, decision-relevant, and
cover the range of uncertainty. For a fair comparison of the results obtained by SAAM,
our case study follows the published work of another research team, such that we have
matching objectives (study of electric vehicles), but different techniques. Specifically, the
prior work used the PESTEL framework, followed by Latent Semantic Analysis (LSA) and
Fuzzy Association Rule Mining to build a model semi-automatically [87]. The differences
between their work and our approach are visually summarized in Figure 3. Most impor-
tantly, concept mapping was a manual endeavor in the previous study, while our work
seeks to automatize this task as part of model building. Consequently, our comparison
of SAAM’s output with the previous study seeks to determine whether a more automatic
approach can yield a similar model. Our workflow is summarized in Figure 4 and detailed
in the following subsections.

4.2. System Setup: Data Sources, Seed Questions, Parameters

The authors of the comparison study did not publish the data they used. Consequently,
we reconstructed the datasets from their description. Specifically, they scraped five websites:
Siemens [88], MIT Technology Review [89], Kurzweil Accelerating Intelligence [90], World
Future Society [91], and FutureTimeLine [92]. These sites were used by the authors of the
prior work because they all provided articles that were future-oriented, hence, already
containing an analysis of trends and expert insight on potential futures. Note that the prior
work was published in 2016; hence, it would not be a fair comparison if we built a model
based on the data available up to today (2022). In addition, some of the websites have
ceased to exist, hence content may not only have expanded but also have been deleted.
Consequently, we used the web archive Wayback Machine to re-create a dataset that most
closely resembles the content available to authors of the prior work [91]. Specifically, we
(i) only scraped articles discussing electric vehicles or alternative energy, as this filter was
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noted by the authors of the prior work; and (ii) we used the Wayback Machine to scrape
data that would have been available as of March 2016.
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Figure 4. Key steps and specifications for our comparative study on electric vehicles.

Since the prior work used the PESTEL framework for its guiding questions, we also
started by creating a set of questions about electric vehicles for each aspect of PESTEL.
For example, under the environmental category, we asked, “What are benefits to the
environment” and its complementary “What hurts the environment?” The full list of seed
questions for our Q&A system is provided in Table 3. Parameter values for SAAM are
listed in Figure 4.
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Table 3. Seed questions based on PESTEL for our comparative study on electric vehicles.

Question Subject Weight PESTEL Category

What technology is needed for electric
vehicles?

EV adoption

1 Technology

Why use an electrified vehicle? 1
Open

What are impediments? −1

What are political factors? 1 Political

What are the benefits to the environment? 1
Environmental

What hurts the environment? Environment −1

What are social benefits?

EV adoption

1

SocialWhat are social problems? −1

What social aspects affect electric vehicles? 1

What are the economic benefits?

Economy

1

EconomicWhat are economic problems? −1

What are economic drivers? −1

What are legal problems?

EV adoption

−1

LegalWhat are legal drivers? 1

What are legal benefits? 1

4.3. Comparison: Model Content and Simulated Scenarios

Models can be compared on the basis of their structure (e.g., which variables do they
include? How are they connected?) and outputs (e.g., given the same input, which results
do they produce?).

To compare the structure of the models, we examined the terms that they contained.
To guide the comparison, we grouped the content of the SAAM model using the same
categories as in the prior work. We stress that our objective is not to find models with the same
structure. Rather, the structural comparison can tell us whether the models include similar
categories, or aspects where one model was more comprehensive than the other. In contrast,
we do expect more similarities when comparing the output of the models. For each scenario, we
ran the SAAM model by creating inputs corresponding to the ones used in the original study,
and then we compared the outputs of the two models. The original study had four high-
level scenarios: (1) application of EV to tourism, (2) failure to develop battery technology,
(3) failure of EV adoption in general, and (4) relaxation of government regulation. Changes
were necessary in our comparative study, for two reasons. First, the prior work grouped
the terms “economy”, “consumer”, “customer”, “growth”, and “tourism” in the tourism
category by assuming that tourism is driven by consumers and is directly related to the
economy. To avoid this narrow assumption, we broadened the scenario to study economic
factors. Second, scenarios (1) and (3) are actually linked because (1) studies the effects of
widespread EV adoption, whereas (3) examines the failure of widespread EV adoption.
If we performed two scenarios on the same aspect, then that specific aspect of the model
would artificially be counted twice. Consequently, we ran simulations on three scenarios:
(i) economic factors affecting EV adoption, whether the economy is good or bad; (ii) what
happens if battery technology does not develop; and (iii) what happens if the government
decides to not help the EV industry at all by removing any incentives for EV and stopping
any regulation efforts to increase adoption.
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5. Results
5.1. Structural Comparison: Content of the Models

After filtering, the model produced by SAAM resulted in 52 unique concepts with
110 connections, as compared to the 15 concepts and 44 connections from the original study.
The terms identified are shown in Box 1. As described in the previous section, we start
our comparison by applying the categories from prior work to group the terms found by
SAAM. The comparison is shown in Table 4. SAAM identified some of the same terms that
were identified in the original study (green highlights), but also found concepts that were
not detected in the prior work. For example, SAAM identified aspects such as consumer
confidence, infrastructure investments needed, and natural resources required to build
required batteries. This more comprehensive assessment can provide deeper insight into
the data and hence support the creation of more robust models. Asking specific questions
about social impacts led to answers such as ‘thinking globally and acting locally’, which
was not in the LSA method. On the other hand, a few of the topics identified only make
sense when knowing the context; for instance, ‘your gas guzzler’ refers to today’s cars that
run on gas, while ‘aboriginal training’ came from an Australian article about retraining
individuals from underserved communities to work in new jobs created by the electric
vehicles industry. Note neither the list of terms identified by SAAM nor those covered
in the original study claim to address every facet of electric vehicles; rather, they extract
information from a corpus focused on technology development. For example, emerging
aspects such as electric mobility education [93] were absent from the corpus; hence, they
are also absent in the list of terms.

5.2. Scenario Comparisons

Numerical results for each scenario are provided in the Table A1. Note that in the
deregulation scenario, results are only indicative since the system oscillates instead of
reaching stable values.

The original study showed that applying EV to tourism resulted in increased employ-
ment, a better economy, lower pollution levels, and improved energy efficiency. However,
none of the data had articles about tourism; hence, the SAAM model did not directly cover
tourism. After noting that the original study grouped tourism with economic benefits (see
Section 4), we broadened the scenario to the economy. Specifically, we set the constructs
‘employment’, ‘business development’, ‘current unit sales’, ‘economic activity’, ‘economic
and safety benefits’, and ‘wealth’ to high in one case (good economy) and to low in the
other (poor economy). The SAAM model output a different result than the original study,
noting that in a good economy ‘no exhaust emissions’ are adopted, but ‘greenhouse gas
emissions’ increase and negatively affect ‘the air’. In addition, we got richer results with
SAAM, through some of the concepts that were not identified in the prior work; for instance,
‘think globally act locally’ decreases in a good economy, ‘public investment’ increases, and
‘lack of infrastructure’ decreases (meaning that the infrastructure will start to improve).
In a good economy, ‘EV adoption’ decreases and ‘your gas guzzler’ (representing existing
gas-powered vehicles) increases. In a bad economy, the inverse happens. Although this may
seem counterintuitive at first, the transparency of the SAAM model lets us realize that,
while several variables (technology, consumer confidence, battery technology) are high, the
focus on sustainability decreases and volatility in gas prices decreases, which ultimately
hurts the adoption of EVs. In short, this scenario implies that in a good economy, several
technological aspects improve (EV infrastructure, battery technology, energy efficiency),
but there is no strong drive for consumers to adopt EV technology.
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Table 4. Comparison of concepts found by our SAAM system with the prior work’s use of LSA.
Categories are taken from the prior work to facilitate the alignment of the two models. Simple
matches are shown in green, while noting that additional terms are equivalent within this context.

Category SAAM Concepts LSA Concepts

Air pollution
greenhouse gas emissions, no exhaust

emissions, the air, your gas guzzler,
energy pollution

Temperature, environment, pollution,
atmosphere, carbon dioxide emission,

greenhouse gas, CO2, eco

Alternative energy technology clean renewable energy sources,
polarization systems

Renewable energy, diesel, biofuel, biomass,
geothermal, petroleum, gasoline, hybrid,

photovoltaic, solar energy

Battery technology batteries, power and mileage limits,
recharge speed

Lithium battery, ion battery, acid battery,
storage, battery life, lightweight, BMS,

lithium ion battery

Charging technology a comprehensive charge station network,
generic supercharging stations

Wireless power, charger, recharge, power
transmission, charger

Costs reduction EVs cost, the falling price of
batteries, incentives

Cost reduction, incentive, support,
maintenance cost

Economic revenue business development, current unit sales,
wealth, economic activity

Economy, growth, sales, investment,
revenue, GDP, trade, import, export

Energy efficiency energy efficiency
Energy efficiency, energy consumption,

efficiency improvement, energy
density, mileage

Government regulation
carbon pricing, cities conservation,

governments, incentives, public
investment, regulation

Regulation, incentive, policy, government,
limitation, standard, tax reduction, policy

Industry-university collaboration scholarships, aboriginal training Company, startup, university, laboratory,
investment, partnership, entrepreneur, grid

Job creation employment Job, worker, manufacturing, services,
employment

Motor technology electric motor Engine, inverter, magnet, DC, AC, torque,
capacity, motor

Usability information technology Automation, sensor, network connection,
software, comfort, assistant, internet

Public transportation Self-driving vehicles Transportation, electric bus,
driver, passenger

Safety economic and safety benefits,
self-driving vehicles

Safety, driverless, collision, vibration,
pressure, security, stability, obstacle

warning, monitoring

Other

thinking globally and acting locally, a
completely carbon neutral transportation
option, biomimicry, confidence, durability,

environmentally conscious citizens

Application to tourism Consumer, customer, tourism,
growth, economy
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Box 1. List of terms identified by SAAM.

‘EV’, ‘a completely carbon neutral transportation option’, ‘a comprehensive charge station network’,
‘aboriginal training’, ‘artificial intelligence’, ‘batteries’, ‘biomimicry’, ‘business development’, ‘car-
bon pricing’, ‘cities conservation’, ‘clean renewable energy sources’, ‘confidence’, ‘current unit sales’,
‘durability’, ‘economic activity’, ‘economic and safety benefits’, ‘electric motor’, ‘employment’,
‘energy efficiency’, ‘energy pollution’, ‘environmentally conscious citizens’, ‘evs cost’, ‘fear’, ‘gaps’,
‘generic super charging stations’, ‘governments’, ‘greenhouse gas emissions’, ‘harmony’, ‘incentives’,
‘information technology’, ‘infrastructure’, ‘lack of hydrogen infrastructure’, ‘liability’, ‘no exhaust
emissions’, ‘oil and gas volatility’, ‘polarisation systems’, ‘potential roadblocks’, ‘power and mileage
limits’, ‘public investment’, ‘rare earth metals’, ‘recharge speed’, ‘regulation’, ‘remote communities’,
‘save lives’, ‘scholarships’, ‘self-driving vehicles’, ‘significant technology improvements’, ‘sustain-
ability’, ‘the air’, ‘the falling price of batteries’, ‘the power and mileage limits’, ‘thinking globally
and acting locally’, ‘traffic congestion’, ‘transform mobility’, ‘wealth’, ‘your gas guzzler’

In the scenario where battery technology fails to develop, the original study con-
cluded that there will be less job creation, less tourism, a poor economy, and an increase in
pollution. To investigate this scenario, we set the corresponding variables in our model to
low: ‘batteries’, ‘lithium-air batteries’, ‘lithium-ion’, ‘lithium-ion batteries’, ‘recharge speed’,
‘power and mileage limits’, and ‘energy efficiency’. SAAM also found that ‘employment’
decreased, and terms associated with the economy (‘economic activity’, ’business develop-
ment’, ‘current unit sales’, ‘wealth’) all ended on low values. However, as in the previous
scenario, SAAM had an inverse relationship between the economy and the environment;
hence, it forecasted a decrease in ‘greenhouse gas emissions’ with an accompanying in-
crease in the quality of ‘the air’. In this scenario, EV adoption starts to improve even though
the cost of EVs (‘EVs cost’) is driven up. Although battery technology fails to improve,
an increased desire for sustainable solutions (‘sustainability’) and growing investment from
the government (‘public investment’) help to offset the high cost of EVs.

Finally, in the scenario of relaxing government regulations, the prior work concluded
a reduction in costs, an increase in safety, and an increase in energy efficiency. We simulated
this scenario by setting all relevant concepts to low (‘regulation’, ‘incentive’, ‘policy’,
‘government’, ‘limitation’, ‘standard’, ‘tax reduction’). Our simulation produced a limit
cycle rather than a stable state. This indicates that if the government does nothing, then
consumers would oscillate between EV adoption and rejection as the environment shifts
from one preference to another based on competing factors. This sensitivity of our model
to regulation suggests that it is a key concept in the adoption of EVs; hence, it deserves
particular consideration when examining future strategies.

6. Discussion
6.1. Findings and Implications

Examining future scenarios is necessary to support decision-making activities [4–7].
These scenarios are created by teams and run on quantitative causal models, which forecast
potential effects based on the evidence base. Creating a model is thus the cornerstone
of scenario generation, yet it has long been a labor-intensive task [8,9]. Several works
have brought automation to this process [18,19], in particular by deriving models from
an evidence base consisting of a text corpus [25–28]. The recent work of Feblowitz and
colleagues at IBM [29] is the closest to our approach in numerous regards: starting from a
set seed of concepts (or ‘risk forces’), it automatically fetches documents (multiple times
daily via the Watson Discovery service) and uses a Q&A system powered by Hugging
Face’s Transformers to extract a model, noting when concepts can be deemed equivalent.
A key limitation in previous works is that several steps continue to be performed by
humans, as is the case in [29] where (meta)data on causal relationships is obtained via a
crowd-sourced questionnaire, whereas we use the weights from the Fuzzy Cognitive Maps.
In this paper, we proposed a step further in automation by only asking the modeling team
to provide the initial guiding questions and the evidence base, and then creating a model.
We demonstrated that the model could be used to investigate scenarios, by focusing on a
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case study in electric vehicles (EVs). EVs were chosen as a guiding example since (i) they
have been the subject of several studies involving carefully crafted scenarios [31,94], and
(ii) a previous study [87] with partial automation offered a direct comparison point with
the model produced by our approach.

There are two key differences between our proposed approach (SAAM) and the prior
study, which used less automation and involved Latent Semantic Analysis (LSA). First,
LSA is used to find topics in a text collection and group terms together. Our system is
not designed to perform such grouping, as we instead focus on finding terms by asking
direct questions. The models are thus structured differently, with more granular content
in SAAM offering a larger number of factors. However, it is possible that some of the
content becomes too granular and needs to be interpreted given the context (e.g., ‘the air’).
Second, our proposed method and the previous one both have parameters that should be
tuned by users. However, the methods are different; hence, the parameters offer control
on different aspects. In SAAM, the modeling team can control filters, for instance, to force
a simplification of the model by (i) combining semantically similar concepts and/or (ii)
only accepting concepts where the system has high certainty. In contrast, the LSA method
requires people to set a topic cluster size and manually name each final topic. Although
our machine learning algorithm requires some human intervention to set parameters, we
note that involving humans to train algorithms has been shown to facilitate co-learning
between people and computers [95], and give analysts a better overall understanding of the
model [96]. The potential benefits of a human-in-the-loop approach are noteworthy since
our work is based on BERT, which is part of the set of artificial neural networks that have
historically been characterized as ‘lacking interpretability’ and hence faced drawbacks in
terms of trustworthiness by human decision makers [97].

Scenarios are supposed to help us step back and see the bigger picture, think outside
the box, and consider alternatives that might not be obvious. Our results have shown that
SAAM was able to generate alternative future scenarios that met this objective. We also
demonstrated that the scenarios created via SAAM often agree with those created in the
prior study, or propose a plausible line of reasoning when results differ. We emphasize
that the application to electric vehicles provided a thorough evaluation of SAAM, but
our tool is not limited to this specific application as it constitutes a reusable approach to
generate scenarios. SAAM could thus be applied to similar issues in sustainability, such
as autonomous vehicles [98], which have already been the subject of scenario generation
studies using Fuzzy Cognitive Maps [99]. Our tool can more broadly benefit areas that
frequently engage in the development of data-informed scenarios [100,101].

6.2. Limitations and Opportunities for Future Studies

One limitation of our comparison was the inability to use the same data as the original
study, since it did not publish it. We re-created a dataset based on the sources and selection
criteria mentioned, and ensured that it reflected what was available to the authors at the
time. However, we did not detect any application to tourism in the evidence base; hence,
this aspect was missing from the model and ultimately the scenario based on tourism was
broadened to the economy.

The inspiring work by Feblowitz and colleagues suggests several improvements [29].
In particular, they were able to automatically generate trajectories from their model, using
a planner and a clustering algorithm. To the best of our knowledge, planners able to
generate a set of high-quality solutions (i.e., top-k planners) have not been applied to Fuzzy
Cognitive Maps; hence, such algorithms would have to first be developed before we can
produce trajectories.

The ability to transparently examine how the model reached a certain conclusion
also holds particular promise for future studies. Indeed, the socio-environmental systems
examined in sustainability studies are often complex, and models are at risk of becoming
a ‘black box’ by being almost as complex. Maeda and colleagues stressed that “as the
increasing complexity of models starts to influence policy making, it is important for scien-
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tists to create new approaches to communicate their underlying assumptions, reasoning,
data and methods to stakeholders” [102]. Future work can thus contribute further to this
communication component, for instance, by leveraging the Q&A system not only to build
the model but also to ask how conclusions were reached.

7. Conclusions

Generating scenarios is essential for decision-making activities, but it involves a labor-
intensive step of model building. We proposed a system (SAAM) that goes beyond previous
automation initiatives, and we demonstrated that the system can result in well-formed
scenarios by contrast to a previous study on electric vehicles. As the first manuscript
detailing and applying SAAM, there are several opportunities for future work in improving
components of the system or applying it for other fields of sustainability that heavily
depend on scenario generations.
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Appendix A

Table A1. Each scenario is designed by setting the values of relevant factors in the model. For each
scenario, we note the effect on other variables, as well as on the key construct of adopting electric
vehicles (bottom row).

Categories Concepts Bad Economy Good Economy Battery Fail Deregulation

air pollution greenhouse
gas emissions −0.952398323 0.952398323 −0.957583063 −0.959324401

air pollution no exhaust emissions −0.952398323 0.952398323 −0.957583063 −0.959324401

air pollution the air 0.957140415 −0.957140415 0.937957076 0.957801403

air pollution your gas guzzler −0.952398323 0.952398323 −0.957583063 −0.959324401

alternative energy
technology

clean renewable
energy sources 0.156727117 −0.156727117 0 0.121182442

alternative energy
technology polarisation systems −0.952398323 0.952398323 −0.957583063 −0.959324401

battery technology batteries −0.691699732 0.691699732 −1 −0.646327877

battery technology power and
mileage limits 0.156727117 −0.156727117 −1 0.121182442

battery technology recharge speed 0.156727117 −0.156727117 −1 0.121182442
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Table A1. Cont.

Categories Concepts Bad Economy Good Economy Battery Fail Deregulation

other thinking globally and
acting locally 0.156727117 −0.156727117 0 0.121182442

charging
technology

a comprehensive charge
station network −0.952398323 0.952398323 −0.957583063 −0.959324401

charging
technology

generic super
charging stations −0.691699732 0.691699732 0 −0.646327877

costs reduction evs cost 0.957140415 −0.957140415 0.961179751 0.957801403

costs reduction the falling price
of batteries 0.957500995 −0.957500995 −0.929606356 0.932011183

economic activity economic activity −1 1 −0.985312975 0.990740486

economic revene business development −1 1 −0.957583063 −0.959324401

economic revene current unit sales −1 1 −0.957583063 −0.959324401

economic revene wealth −1 1 0 0.121182442

energy effeciency energy efficiency −0.952398323 0.952398323 −1 −0.959324401

energy pollution energy pollution 0.388947408 −0.388947408 0.796604556 −0.510951584

government
regulation carbon pricing 0.156727117 −0.156727117 0 0.121182442

government
regulation cities conservation 0.873254834 −0.873254834 −0.774093871 −1

government
regulation governments 0.156727117 −0.156727117 0 −1

government
regulation incentives −0.691699732 0.691699732 0 −1

government
regulation public investment −0.902626096 0.902626096 0.686233755 −1

government
regulation regulation −0.691699732 0.691699732 0 −1

industry-
university

collaboration
scholarships −0.952398323 0.952398323 −0.957583063 −0.959324401

job creation employment −1 1 −0.90171281 0.940099166

motor technology electric motor 0.972982612 −0.972982612 0.999909188 0.976648732

other
a completely

carbon neutral
transportation option

−0.952398323 0.952398323 −0.957583063 −0.959324401

industry-
university

collaboration
aboriginal training −0.952398323 0.952398323 −0.957583063 −0.959324401

usability artificial intelligence 0.156727117 −0.156727117 0 0.121182442

other biomimicry 0.156727117 −0.156727117 0 0.121182442

other confidence −0.952398323 0.952398323 −0.957583063 −0.959324401

other durability 0.156727117 −0.156727117 0 0.121182442

other environmentally
conscious citizens 0.156727117 −0.156727117 0 0.121182442
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Table A1. Cont.

Categories Concepts Bad Economy Good Economy Battery Fail Deregulation

usability information technology 0.156727117 −0.156727117 0 0.121182442

other infrastructure 0.96315824 −0.96315824 −0.774093871 0.995526376

other lack of hydrogen
infrastructure 0.924293982 −0.924293982 0 0.915954432

other liability 0.156727117 −0.156727117 0 0.121182442

other oil and gas volatility 0.156727117 −0.156727117 0 0.121182442

other potential roadblocks 0.957140415 −0.957140415 0.937957076 0.957801403

other rare earth metals 0.156727117 −0.156727117 0 0.121182442

other remote communities 0.156727117 −0.156727117 0 0.121182442

other significant technology
improvements −0.957479374 0.957479374 −0.060843278 −0.957345752

other sustainability 0.255551223 −0.255551223 0.817909946 0.497931899

other the power and
mileage limits 0.924293982 −0.924293982 0.961179751 0.915954432

other traffic congestion 0.156727117 −0.156727117 0 0.121182442

other transform mobility −0.952398323 0.952398323 −0.957583063 −0.959324401

public
transportation Self-driving vehicles −0.74299687 0.74299687 0.542424672 −0.816448312

safety economic and
safety benefits −1 1 −0.957583063 −0.959324401

EV adoption 0.901968281 −0.901968281 0.798453798 0.889187005
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