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We analyze the asymptotic behavior of general first order Laplacian processes on digraphs.
The most important ones of these are diffusion and consensus with both continuous and
discrete time. We treat diffusion and consensus as dual processes. This is the first complete
exposition of this material in a single work.
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1. Introduction

Directed graphs (or digraphs) are an
important generalization of undirected graphs
and they have wide-ranging applications.
Examples include models of the internet [1] and
social networks [2], food webs [3], epidemics
[4], chemical reaction networks [5], databases
[6], communication networks [7], the Pagerank
algorithm [8], and networks of autonomous agents
in control theory [9] to name but a few. In many
of these applications, it is of crucial importance
to understand the asymptotics (as t → ∞) of
solutions of the first order Laplacian differential
equation

ẋ = −Lx and ṗ = −pL. (1.1)

We will show how the first these equations is
associated with the physical process of consensus
and the second with diffusion. We will give a
unified treatment of both of these in which one
is treated as the dual to the other. We also show
how this extends to the discrete versions of these
processes.

We describe the basic theory of Laplacian
dynamics on directed graphs that are weakly
connected. The restriction of this theory
to undirected graphs is well documented in
textbooks (see [10], [11]), but as far as we know,
this is the first complete exposition of the general
theory (directed graphs) in a single work.

Many of the results we will discuss had
earlier been “folklore"results living largely outside
the mathematics community and not always with

∗E-mail: veerman@pdx.edu
†E-mail: rlyons@pdx.edu

complete proofs (see [12, 13] for some references).
In the mathematics community, directed graphs
are still much less studied than undirected
graphs (especially true for the algebraic aspects).
As a consequence, there are not many good
mathematics books on the subject.

Part of the reason for that is probably that
directed graphs are a lot messier than undirected
graphs. For example, we will see that while
undirected graphs are either connected or not,
for directed graphs there are various gradations
of connectedness. Another complication is that
while Laplacians of undirected graphs are
diagonalizable and have real eigenvalues, neither
statement is necessarily true for Laplacians of
digraphs. Thus, many statements for undirected
graphs take more work to prove, or are wrong.

Another reason for confusion is that there
is no standard way to orient a graph. The in-
degree Laplacian of G is the same as the out-
degree Laplacian for G′, the graph with all
orientations reversed. In [13], the convention was
proposed where the direction of edges corresponds
to the flow of information in the underlying
problem. While here we are not discussing any
particular applications, we can still make use of
that convention. So in the case where there is a
directed path from vertex i to vertex j, where will
write that information goes from i to j, or, more
succinctly, j “sees"i.

The set-up of this paper is as follows.
In Section 2 we give the necessary definitions
concerning directed graphs, and in Section 3 those
concerning Laplacians. In Section 4, we discuss
the spectrum of graph Laplacians, in particular
the fact that all non-zero eigenvalues have positive
real part. That means that the asymptotic
behavior of the solutions of equations (1.1) is
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A Primer on Laplacian Dynamics in Directed Graphs 197

determined by the kernel of the Laplacians. Thus,
in Section 5 we give a convenient basis for those
eigenspaces. This allows us in Section 6 to write
the asymptotics in terms of that basis. This
results in Theorem 6.1, which is perhaps the main
result in this paper. In Section 7, we apply this
to the most important of the Laplacians, namely
the “random walk" Laplacian. This Laplacian is
particularly suited to discretization of time, and
we show that the asymptotics of the solution of
the discretized equations is again essentially the
same of that of the continuous time equations. We
provide examples for all of our main statements.

Finally, a few notational issues. By
"Laplacian we mean a matrix of the form
E − ES, where E is diagonal with positive
entries on the diagonal and S is row stochastic
(details are in Section 3). Everything in this
article goes through for matrices of the form
E − SE. One only needs to exchange left and
right eigenvectors. In the interest of brevity, we
have not pursued this.

We use the notation 1S for the vector whose
ith component is 1 if i ∈ S and 0 elsewhere. That
also means that 1{i} means the unit vector whose
ith component equals 1 while being 0 everywhere
else. The symbol ei is used for the ith diagonal
element of the matrix E.

These notes outline part of a series of 4
lectures given in summer-school/conference on
mathematical modeling of complex systems in
Pescara, 2019 [14]. Most of this theory was
described in [12, 13] and those are the two
references that we rely most heavily on. However,
various of those proofs have been substantially
simplified, and other statements have been
generalized (most notably Theorem 5.2).

2. Graph theoretic definitions

Definition 2.1. A directed graph (or digraph) is
a set V = {1, · · ·n} of vertices together with a set
E ⊆ V × V or ordered pairs (the edges).

The graph in Figure 2.1 will serve as our example
of a digraph. Edges will be indicated by i→ j or
(i, j) (or ij for short). So the graph in the figure
has edges (1, 2), (1, 6), (6, 7), et cetera, but it
does not have the edges (2, 1) and (6, 1). Directed
paths from i to j are denoted by i  j. We will
express this informally as: information goes from
i to j, or: j “sees"i. For example, the graph in
Figure 2.1 has a path 4 6, but there is no path

1
2

5

6
7

4

3

FIG. 2.1. This graph will serve as an example
throughout the paper.

6 4.
Connectedness for undirected graph is

straightforward: an undirected graph is either
connected of it is not. However, for a digraph,
the situation is slightly more complicated. We
need the notion of underlying graph. This is
the undirected graph one obtains by erasing the
direction of the edge. Equivalently, it is the graph
obtained by adding to each directed edge an edge
in the opposite direction.

Definition 2.2. i) A digraph G is strongly
connected if for every ordered pair of vertices
(i, j), there is a path i  j. Equivalently, if for
every pair i and j: i! j.
ii) A digraph G is unilaterally connected if for
every ordered pair of vertices (i, j), there is a path
i j or a path j  i.
iii) A digraph G is weakly connected if the
underlying undirected graph is connected.
iv) A digraph G is not connected if it is not weakly
connected.

A subgraph which is strongly connected is called a
strongly connected component. We will frequently
abbreviate this to SCC.

The study of a graph that is not connected
is of course equivalent to the study of each
its components. So the most general graph we
want to study is weakly connected. The graph
of Figure 2.1 is an example of such a graph. We
will need some terminology to indicate certain
subgraphs. We borrow our terminology from [12]
and [13].

Definition 2.3. i) Let i ∈ V . The reachable set
R(i) consists of all j ∈ V with i j.
ii) A reach R is a maximal reachable set, or a
maximal unilaterally connected set.
iii) A cabal B ⊆ R is the set of vertices from
which the entire reach R is reachable. If it is a
single vertex, it is usually called a leader or a
root. iv) The exclusive part H ⊆ R are those
vertices in R that do not “see"vertices from other
reaches.
v) The common part C ⊆ R are those vertices in

Nonlinear Phenomena in Complex Systems Vol. 23, no. 2, 2020



198 J. J. P. Veerman and R. Lyons

R that also “see"vertices from other reaches.

Note that every reach has a single non-empty
cabal. We illustrate these ideas using the graph
in Figure 2.1. That graph has two reaches, R1 =
{1, 2, 6, 7} and R2 = {3, 4, 5, 6, 7}. Their exclusive
parts are H1 = {1, 2} and H2 = {3, 4, 5}. The
common parts are C1 = C2 = {6, 7}. Finally, the
cabals are B1 = {1} and B2 = {3, 4, 5}. It is
an interesting exercise to reverse the orientation
of the edges and do the taxonomy again. It is
easy to see that the graph has again two reaches.
But in general the number of reaches need not be
constant under orientation. Consider for example
the graph 1 → 2 ← 3. The relation i ! j
between vertices of G that defines an SCC (see
Definition 2.2) an equivalence relation. Thus it
gives a unique partition of the vertices of G.
Definition 2.4. The condensation SC[G] of G
is the graph obtained by identifying vertices of
the same SCC (or grouping them together). See
Figure 2.2.

1

2

5

6 7

43

FIG. 2.2. The condensation SC[G] of G in Figure 2.1.

These equivalence classes respect the
categories of Definition 2.3. For example, given
that i is in a cabal, then i! j is equivalent to
j is in the same cabal. We leave it to the reader
to check the other categories. Notice that SC[G]
can have no cycles and therefore all the cabals
are singletons.
Definition 2.5. Given a digraph G with vertex
i, then Ni stands for the set of vertices j such
that there is an edge j → i. This is also called the
(in-degree) neighborhood of i.

3. Graph Laplacians

Definition 3.1. The combinatorial adjacency
matrix Q of the graph G is defined as Qij > 0 if
there is an edge ji (if “i sees j") and 0 otherwise.
If vertex i has no incoming edges, set Qii = 1
(create a loop).

The last convention, on loops, is only adopted
to ensure that the degree matrix D, defined
below, can be taken to be non-singular (and thus
invertible). One can drop the convention, but then
one has to define the so-called pseudo-inverse of
D. This is the approach taken in [12]. The two
approaches are equivalent. The non-zero values
of Qij are the weights of the edges (j, i). In the
interest of brevity, our main example in Figure
2.1 has unit weights. However, everything goes
through in the general case.

Definition 3.2. The in-degree matrix D
is a diagonal matrix whose diagonal entry
corresponding to the vertex i equals the sum
of the weights of the edges ji arriving at i:
di ≡

∑
j Qij.

The matrices D and Q are used to generate
S, a row stochastic (non-negative, every row adds
to 1) version of the adjacency matrix.

Definition 3.3. The (row) stochastic matrix S ≡
D−1Q is called the normalized adjacency matrix.

Definition 3.4. Let E be a non-negative diagonal
matrix. A Laplacian is a matrix of the form
E−ES. Common examples are: the combinatorial
(comb) Laplacian, Lc ≡ D − DS = D − Q, and
the random walk (rw) Laplacian, L ≡ I−S. Here
Q, D, and S are as defined earlier.

If L is a Laplacian matrix, then (Lx)k
is equal to

∑
i 6=k αi(xk − xi) for some

combination of αi. Thus, Laplacians describe
relative observations. This is usually called
“decentralized". Clearly, matrices with this
property must have row sum zero. It shares
this property — and hence the name — with
the discretization of the second derivative (or
“Laplacian") of a function f : R→ R:

f ′′(j) ≈ f(j − 1)− 2f(j) + f(j + 1)

Notice, however, that in Definition 3.4, the above
expression would be the negative of a Laplacian.
This convention we use ensures that Laplacians
have eigenvalues whose real part is non-negative.

As an example, we work out the matrices
corresponding to the graph G of Figure 2.1

Нелинейные явления в сложных системах Т. 23, № 2, 2020
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assuming all weights are 1.

Q =



1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 1

0 0 1 0 0 1 0


D = diag



1

1

1

1

1

2

2


(3.1)

Lc ≡ D −Q =



0 0 0 0 0 0 0

−1 1 0 0 0 0 0

0 0 1 0 −1 0 0

0 0 −1 1 0 0 0

0 0 0 −1 1 0 0

−1 0 0 0 0 2 −1

0 0 −1 0 0 −1 2


(3.2)

The spectrum of Lc is:{
0, 0, 1, 1, 3,

3

2
+ i

√
3

2
,
3

2
− i
√

3

2

}
. (3.3)

The random walk Laplacian L ≡ I −D−1Q
is,

L =



0 0 0 0 0 0 0

−1 1 0 0 0 0 0

0 0 1 0 −1 0 0

0 0 −1 1 0 0 0

0 0 0 −1 1 0 0

−1/2 0 0 0 0 1 −1/2

0 0 −1/2 0 0 −1/2 1


(3.4)

The spectrum of L is given by:{
0, 0,

1

2
, 1,

3

2
,
3

2
+ i

√
3

2
,
3

2
− i
√

3

2

}
. (3.5)

As this example shows the Laplacians do
not necessarily have a real spectrum. Nor, in
fact, do they necessarily have a complete basis of
eigenvectors. We leave it to the reader to verify
that in Figure 3.1, L[G1] and L[G1] (with all
weights equal to 1) have a non-real spectrum and
that L[G2] and L[G3] have a non-trivial Jordan
block of dimension 2.

FIG. 3.1. From left to right, three strongly connected
graphs G1, G2, and G3.

Definition 3.5. Given a graph G, with S =
D−1Q. Let E+ and E be non-negative diagonal
matrices such that E+ ≥ E (entry-wise). A
generalized Laplacian is a matrix of the form
M = E+−ES. The matrix is strict generalized if
E+ 6= E. Common examples are: M c = E+−DS
with E = D (comb), and M = I − ES with
E+ = I (rw).

For us, the importance of this definition lies
in the fact that the characteristic polynomial
of the Laplacian of a digraph is a product
of characteristic polynomials of generalized
Laplacians (see Proposition 4.3). For example,
in equation (3.2), the diagonal blocks are
generalized comb Laplacians, and in (3.4), they
are generalized rw Laplacians.

4. Spectra of graph Laplacians

Lemma 4.1. Let G be an undirected graph. The
eigenvalues of a generalized Laplacian M are
real and the eigenvectors form a complete basis.
Neither holds necessarily even for Laplacians of a
strongly connected digraph.

Proof
A matrix that is conjugate to a real

symmetric matrix has real eigenvalues and its
eigenvectors form a complete basis. Now, recalling
that S = D−1Q and that Q is symmetric because
G is undirected, we set H := ED−1, a diagonal
matrix with positive diagonal, and derive

M = E+ − ES = E+ −HQ
= E+ −H1/2H1/2QH1/2H−1/2

= H1/2
(
E+ −H1/2QH1/2

)
H−1/2.

The last equality holds, because diagonal matrices
commute. Since E+ − H1/2QH1/2 is symmetric,
M is conjugate to a symmetric matrix.

Nonlinear Phenomena in Complex Systems Vol. 23, no. 2, 2020



200 J. J. P. Veerman and R. Lyons

The counter-examples of Section 3, Figure
3.1, establish the second part of the this lemma.

Proposition 4.2. Every non-zero eigenvalue of
a generalized Laplacian has positive real part.

Proof
Denote the diagonal elements of E+ and E

by e+i and ei, respectively. We have e+i ≥ ei > 0.
Apply Gersgorin’s theorem [15] to

(E+ − ES)v = λv.

It follows that all eigenvalues are in the union of
the closed balls

Bei(e
+
i ) = {x ∈ C | |x− e+i | ≤ ei}.

The statement follows.

Proposition 4.3. The adjacency matrix of
SC[G] is lower block triangular after a reordering
of the vertices of G.

Proof
SC[G] (see Definition 2.4) cannot contain

any cycles because the SCC’s represented by
vertices in a cycle of SC[G] would in fact form
a larger SCC. The graph associated with SC[G]
can be drawn with the arrows pointing upward
(see Figure 2.2). Then its vertices can be relabeled
so that the vertex at the upper end (head) of an
edge is greater than the vertex at its tail. This
is equivalent to saying that SC[G] is lower block
triangular.

Corollary 4.4. Any any generalized Laplacian
M = E+ − ES is lower block triangular
after a reordering of the vertices of G. The
characteristic polynomial of M is the product of
the characteristic polynomials of the M [Ki] where
the Ki are the SCC’s of G.

Proposition 4.5. Let G be an SCC. Any strict
generalized Laplacian M is non-singular. Any
Laplacian L has eigenvalue 0 with geometric and
algebraic multiplicity 1.

Proof
Let M = E+ − ES and suppose it has an

eigenpair {0, v}. We can renormalize v so that the

component with the largest modulus is vk = 1.
Mv = 0 gives:

e+k
ek

=
∑
j∈Nk

Skjvj ,

where Nk stands for the neighborhood of k (see
Definition 2.5). The left hand of this equality is
greater than or equal to 1. The right hand is an
average over entries with modulus less than or
equal to 1. The only way the sum can equal 1 is
if vj = 1 for all j ∈ Nk. Thus

e+k = ek and ∀j ∈ Nk : vj = 1. (4.1)

Given any vertex i, there is a path i  k (G is
SCC), and thus (4.1) holds for any vertex i.

The above reasoning proves that M has
eigenvalue 0 if and only if it is an actual Laplacian
(i.e. E+ = E). Furthermore, it shows that all
members of the kernel of an actual Laplacian L
are multiples of 1 (the all ones vector). It remains
to show that, in the case of a Laplacian L = M ,
the algebraic multiplicity of the eigenvalues 0
equals 1.

If 0 has algebraic multiplicity m > 1, there
is a vector x such that

Lmx = 0 and Lm−1x 6= 0.

This means that Lm−1x = L
(
Lm−2x

)
= 1. So

v = Lm−2x has Lv = 1. Suppose that Re(vi) is
minimized at i = k. Then Lv = 1 leads to

ekRe(vk) = 1 + ek
∑
j

SkjRe(vj) ≥ 1 + ekRe(vk),

which is a contradiction.

Remark: An alternative proof is possible using
the Perron Frobenius theorem [8, 16] to solve
Sv = v. For this, one must first note that being an
SCC means that the normalized adjacency matrix
S is irreducible.

Theorem 4.6. Given a digraph G. The algebraic
and geometric multiplicity of the eigenvalue 0
of L equals the number of reaches. A strict
generalized Laplacian is non-singular. All non-
zero eigenvalues have positive real part.

Proof
We can partition the vertices of G in

SCC’s. By Corollary 4.4, upon reshuffling the

Нелинейные явления в сложных системах Т. 23, № 2, 2020
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SCC’s, the resulting Laplacian matrix is lower
block triangular, and each diagonal block is a
generalized Laplacian. By Proposition 4.5, the
geometric and algebraic multiplicity of 0 equals
the number of diagonal blocks (or SCC’s) that are
actual Laplacians. The generalized Laplacian of a
diagonal is an actual Laplacian if and only if that
SCC has no edges coming in from other SCC’s.
But that happens if and only if that SCC is a
cabal. The number of cabals equals the number
of reaches.

5. Kernels right and left

Theorem 5.1. Let G be a digraph with k ≥
1 reaches. The right kernel of a Laplacian
L consists of the column vectors {γ1, · · · , γk},
where:

γm,j = 1 if j ∈ Hm (exclusive)
γm,j ∈ (0, 1) if j ∈ Cm (common)
γm,j = 0 if j 6∈ Rm (not in reach)∑k

m=1 γm,j = 1

Proof
Pick any of the k reaches and denote it by R.

Denote its exclusive respectively, common parts
by H and C. Recall (after Definition 2.4) that
the SCC’s respect these categories. Thus, let X
consist of the SCC’s outside R that are “seen"
by C, and Z the ones that are not “seen" by the
cabals in C.

We can chop up the Laplacian by looking at
the interactions between those four groupings of
SCC’s: H, X, C, and Z. For example, X does not
“see"Z, because otherwise C would also “see"Z.
Similarly, X does not “see because otherwise X
would “see"H, and therefore be part of the
same reach. This way, we obtain the schematic
Laplacian given in equation (5.1). This matrix is
block triangular in agreement with Proposition
4.3.

We obtain an vector in the null space of L if
we can solve the following equation.

LHH 0 0 0

0 LXX 0 0

LCH LCX LCC 0

0 LZX 0 LZZ



1H
0X
xC
0Z

 =


0H
0X
0C
0Z

 .

(5.1)

But this equation boils down to

LHH1H = 0H and LCH1H +LCCxC = 0C .

The first of these is satisfied since L is a Laplacian
(row-sum zero) and therefore so is LHH . The
second of these has a unique, real solution if LCC
is invertible. The latter is true, because we can
partition C into SCC’s Ki in such a way that
LCC becomes lower block triangular (Proposition
4.3) and the restriction of LCC to a block Ki is
a strict generalized Laplacian and so has strictly
positive eigenvalues (Proposition 4.5). Thus LCC
is non-singular (Corollary 4.4).

Denote this real eigenvector with eigenvalue
0 by v. Suppose that the maximum component is
vn. Then the same reasoning that leads to (4.1)
shows that if n "sees" a vertex j, then vj = vn.
Thus, since n "sees" the cabal where vi = 1, we
must have vn = 1. Similarly, by supposing that vn
is the minimum component of vi, see that vn = 0.
Thus all values of vi are in [0, 1].

Every vertex i in C “sees"a vertex inH (with
value 1) and a vertex in X (with value 0). Thus
the value at i is ultimately an average collection of
values that contain both 0 and 1. Thus all entries
(in C) are in (0, 1).

Finally,
∑k

m=1 γm,j = 1, because L1 must
be zero, and

∑k
m=1 γm,j is the only combination

of the γ′s that equals 1 on every vertex of the
exclusive parts.

As an example, we compute the basis of the
null space for the Laplacian given in (3.2) or (3.4)
(they have the same null space).

γ1 =
(

1 1 0 0 0 2
3

1
3

)T
and

γ2 =
(

0 0 1 1 1 1
3

2
3

)T
We now study the left kernel of L. As

a mnemonic, we use the following device: the
horizontal “overbar"on a a vector γ̄ indicates a
(horizontal) row vector.
Theorem 5.2. Let G be a digraph with k ≥ 1
reaches. The left kernel of Laplacian L consists
of the row vectors {γ̄1, · · · , γ̄k}, where:

γ̄m,j > 0 if j ∈ Bm (cabal)
γ̄m,j = 0 if j 6∈ Bm (not in cabal)∑k
j=1 γ̄m,j = 1

{γ̄m}km=1 are orthogonal

Nonlinear Phenomena in Complex Systems Vol. 23, no. 2, 2020



202 J. J. P. Veerman and R. Lyons

Proof
The geometric and algebraic multiplicities of

the eigenvalue 0 of L equal k (Theorem 4.6). All
we have to do is: find k vectors γ̄i in the left kernel
of L = E(I − S).

For each reach R, we split the vertices into
the cabal B of R and the “restX. We obtain an
vector in the left null space of L if we can solve
the following equation.(

x̄B 0̄X

)(
LBB 0

LXB LXX

)
=
(
0̄B 0̄X

)
. (5.2)

B is an SCC and so by by Proposition 4.5, this
has a unique solution of the form γ̄ = (γ̄B, 0̄X).

Set v̄B = γ̄BE
−1. Then v̄B satisfies

v̄B(IBB − SBB) = 0,

where SBB is row stochastic and irreducible. The
positivity of vB follows from Perron Frobenius. (A
direct proof would take a little longer.) Thus γ̄B
is strictly positive. Items ii and iv of the theorem
follow after normalizing.

The left null spaces for the Laplacians in
equations (3.2) and (3.4) are the same and are
spanned by:

γ̄1 =
(

1 0 0 0 0 0 0
)

and

γ̄2 =
(

0 0 1
3

1
3

1
3 0 0

)
.

For future reference, we include this
definition.
Definition 5.3. For a digraph G with n vertices
with k reaches, we define the n×n matrix Γ whose
entries are given by:

Γij ≡
k∑

m=1

γm,iγ̄m,j or Γ =
k∑

m=1

γm ⊗ γ̄m

For the Laplacians given in (3.2) and (3.4),
we obtain

Γ =

k∑
m=1

γm ⊗ γ̄m =
1

9



9 0 0 0 0 0 0

9 0 0 0 0 0 0

0 0 3 3 3 0 0

0 0 3 3 3 0 0

0 0 3 3 3 0 0

6 0 1 1 1 0 0

3 0 2 2 2 0 0


.

(5.3)

Lemma 5.4. Let L be an n × n Laplacian
matrix. The kernels of Theorems 5.1 and
5.2 can be extended to bases of (generalized)
right eigenvectors (columns), {γi}ni=1, and of
(generalized) left eigenvectors (rows), {γ̄i}ni=1,
such that the matrices:

H =
(
γ1 γ2 · · · γn

)
and H̄ =


γ̄1
γ̄2
...
γ̄n


are inverses of one another.

Proof
The right and left eigenvectors of L defined

in Theorems 5.1 and 5.2 already satisfy γ̄iγj = δij
for i, j ∈ {1, · · · k}.

The extension follows directly from the
Jordan Decomposition Theorem [15]. Let J be the
Jordan normal form of L. Then that theorem tells
us that there is an invertible matrix H such that
LH = HJ or H−1L = JH−1. Right multiply
the first equation by the standard column basis
vector 1{i} to show that the ith column of H is
a generalized right eigenvector. Left multiply by
1T{i} to see that the ith row ofH−1 is a generalized
left eigenvector.

Definition 5.5. Let {γi}ki=1 be the (column)
vectors of Theorem 5.1 and {γ̄i}ki=1 the (row)
vectors of Theorem 5.2. Define

H0 =
(
γ1 γ2 · · · γk

)
and H̄0 =


γ̄1
γ̄2
...
γ̄k

 .

From Definition 5.3, we now easily compute
the following.

Lemma 5.6. H0H̄0 = Γ.

Notice the difference between Lemmas 5.4
and 5.6. The matrices H and H̄ are both n × n
so that H̄H = I implies HH̄ = I. However, H0

is a n× k matrix and H̄0 is k× n and there is no
such simplification.
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6. Laplacian dynamics: consensus
and diffusion

Throughout this section, we will assume that
the digraph G has k reaches and that L is a
Laplacian of G. In what follows x will always
stand for a column vector and p for a row vector.
In this section we are interested in solving the first
order Laplacian equations:

ẋ = −Lx with x(0) = x0,

ṗ = −pL with p(0) = p0.
(6.1)

The first of these equations is usually called
consensus and the second is its dual problem of
diffusion. We shall see below why these names are
appropriate and how the solutions of these two
problems are related. We start by discussing the
solutions to the concensus problem.

Theorem 6.1. limt→∞ e−Lt = Γ.

Proof
Let {γi}ki=1 and {γ̄i}ki=1 as in Theorems 5.1

and 5.2, and then extends these sets to complete
basis of generalized) eigenvectors {γi}ni=1 and
{γ̄i}ni=1 as in Lemma 5.4. Let λi be the eigenvalue
associated with the ith (generalized) eigenvector
γi (or γ̄i). So an initial condition x0 = y0 + z0 can
be decomposed as

x0 = y0 + z0
where y0 =

∑k
i=1 αiγi

and z0 =
∑n

i=k+1 αiγi .

(6.2)

From the standard theory of linear
differential equations (see, for example, [17]), one
easily derives that the general solution of the
consensus problem ẋ = −Lx is given by

x(t) = e−Ltx0 =

n∑
i=1

γie
−λitξi(t) , (6.3)

where ξi(t) are polynomials whose degrees are less
than the size of the Jordan block corresponding to
λi. Furthermore, if the dimension of that Jordan
block equals 1, then ξi(t) = αi. By Theorem 5.1,
we have λi = 0 for i ∈ {1, · · · k}. Also the zero
eigenvalue has only trivial Jordan blocks and so
for i ∈ {1, · · · k}, ξi = 1 and βi = αi. By Theorem
4.6, the λi, in terms with i > k, have positive
real parts, and so these terms converge to zero.

Therefore, substitute equation (6.2) into equation
(6.3) to get

lim
t→∞

x(t) =

k∑
m=1

αm γm = y0 .

Next, we determine the αi. Definition 5.5
and Lemma 5.4 imply that

H0H̄0x0 = H0

(
H̄0

n∑
i=1

αiγi

)

= H0

(
k∑
i=1

αi1{i}

)
=

k∑
i=1

αiγi = y0.

Note the change in the upper limit in the
middle equality. Notice also that the vector 1{i}
is a k-dimensional column vector, as opposed to
γi which is n-dimensional. The result follows from
Lemma 5.6.

Since the the solutions of equation (6.1) are
given by e−Ltx(0) and p(0)e−Lt, we have the
following corollary.

Corollary 6.2. The solutions of (6.1) satisfy:

lim
t→∞

x(t) = Γx0 and lim
t→∞

p(t) = p0Γ

As an example, let us consider the equations
(6.1) for the comb Laplacian Lc of Figure 2.1
with initial conditions x0 and p0 concentrated on
vertex 7 only. Then, from (5.3), we get

limt→∞ x(t) = Γx0 = 0 and

limt→∞ p(t) = p0Γ = 1
9(3, 0, 2, 2, 2, 0, 0).

We return to the first part of equation (6.1)
to explain why this called the consensus problem.
The row sum of the Laplacian is zero, so we have
L1 = 0. Thus 1 is in the right kernel of L.
If the eigenvalue 0 is non-degenerate, then from
Corollary 6.2, we conclude that 1 is the final state
and every component of the vector x has the
same value. The system is, as it were, in complete
agreement or consensus. Write out the differential
equation in more detail and you get

ẋi =
∑
j

eiSij(xj − xi).
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Thus ẋi is influenced by the relative (to xi
itself) positions of xj where ji is a directed
edge. In terms of Definition 2.5, j is in the
(in-degree) neighborhood of i. In other words,
the consensus flows in the same direction as
the information. In our formulation, consensus
describes how the information spreads over the
whole graph. Another way of saying this is that
the influence of a vertex i exercises over the other
vertices is described by Γ1{i}.

Next we explain how do these theorems
apply to the diffusion problem in the second part
of equation (6.1). In this case, the vanishing of the
row sum of the Laplacian implies that

∑
i ṗi =

0. Thus the sum of the components of of p is
preserved. Writing out the equation in full, we
get

ṗi =
∑
j

pjejSji − piei. (6.4)

Thus, if all pj are non-negative and pi = 0, then
ṗi > 0. This means that the the positive p orthant
is preserved. Since probability (or mass) is non-
negative, these two observations together mean
that the second process preserves total probability
or mass. Hence the name diffusion. It is important
to note that (6.4) implies that pi is influenced by
the strengths of pj where ij is a directed edge.
In terms of Definition 2.5, i is in the (in-degree)
neighborhood of j. In other words, diffusion flows
in the direction contrary to the direction of the
information. Diffusion, in our formulation, tracks
the source of the information. Another way of
saying this is that the influencers of a vertex i
are described by 1T{i}Γ.

7. The discretization of the rw
Laplacian

Perhaps the most important example of
Laplacians is the rw Laplacian L of Definition
3.4 (with or without weighting the edges). It
is most frequently used, among other things, to
describe diffusion and consensus related problems,
in discrete as well as continuous time. In contrast
with the more general Laplacian, it is particularly
well-behaved if it is discretized using time step 1.
For the discrete consensus problem, we obtain

x(`+ 1)− x(`) = (S − I)x(`)

=⇒ x(`+ 1) = Sx(`). (7.5)

We get a similar expression for the discrete
diffusion problem, which is usually called the
random walk problem. Thus in this section, we
will explore the following equations.

x(`+ 1) = Sx(`) with x(0) = x0 and

p(`+ 1) = p(`)S with p(0) = p0. (7.6)

For the discrete processes, we have, as for the
continuous ones, a convenient characterization of
the asymptotic behavior. However, in the discrete
case the solution x(`) = S`x0 might exhibit
periodic behavior and so would not converge, as
we shall see in some examples below. Thus we
study the limit of the average instead

1

`

`−1∑
j=0

Sjx0, as `→∞. (7.7)

If S`x0 does have a limit it will be same as the
limit of the average. Using the average, we can
proceed similarly to the continuous case in section
6.

Theorem 7.1. Given a Laplacian L = (I − S)
and Γ as in Definition 5.3. We have
lim`→∞

1
`

∑`−1
j=0 S

j = Γ.

Proof
The proof is very similar to that of Theorem

6.1. The difference is in the analogue of equation
(6.3). This time, λi refers to an eigenvalue of
S, not L, but with otherwise the same notation,
instead of that equation, we now have

x(`) = S`x(0) =

n∑
i=1

γiλ
`
iξi(t). (7.8)

For i ∈ {1, · · · k}, we have λi = 1 and ξi(t) = αi.
The left and right eigenspaces of the eigenvalue 1
are the same as the left and right kernels of the
Laplacian (Theorem’s 5.1 and 5.2).

By Gersgorin’s theorem, the eigenvalues
of S are in the closed unit ball. By Perron-
Frobenius [8, 16], every eigenvalue λ not equal
to 1 but with modulus 1 has equal algebraic and
geometric multiplicity. Thus if v is the eigenvector
corresponding to λ,

1

`

`−1∑
j=0

λ`v = 0.
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All other eigenvalues have modulus less than
1, and so their contribution in the sum also
vanishes.

Corollary 7.2. The solutions x(`) and p(`) of
(7.6) satisfy:

lim
`→∞

1

`

`−1∑
j=0

x(j) = Γx0 and lim
`→∞

1

`

`−1∑
j=0

p(j) = p0Γ.

The fact that in the discrete case, we have to
account for periodic behavior explains why in the
discrete case, we must take a limit of an average,
while in the continuous case, it is sufficient to
just take a limit (see Theorem 6.1). Again, taking
Figure 2.1 as example with L given in equation
(3.4), consider both discrete diffusion and discrete
random walk with initial condition concentrated
on vertex 7 only. As in Section 6, we get

lim
`→∞

1

`

`−1∑
j=0

x(j) = 0 and

lim
`→∞

1

`

`−1∑
j=0

p(j) =
1

9
(3, 0, 2, 2, 2, 0, 0).

Notice that the random walker, when it arrives
at vertex 3, undergoes periodic behavior. We
effectively take the average of that behavior.

To isolate this periodic behavior, take the
subgraph formed by the three vertices 3, 4 and
5 of the graph in figure 2.1. This forms a cycle
graph of order 3. The asymptotic behavior of the
discrete solutions x(`) = S`x(0) are determined
by the eigenvalues of S that have modulus equal
to 1, because all other terms in (7.8) tend to 0
(since the associated eigenvalues have modulus
less than 1). These are exactly the eigenvalues of
the submatrix of S in (7.8) restricted to vertices
3, 4, and 5. Notice that the problem of periodic
behavior “disappears"in the continuous system,
because there we consider the eigenvalues of−L =
S − I. So all eigenvalues shift to the left, and
all but one now have negative real part. This is
illustrated if Figures 7.1 and 7.2.

Finally, we briefly discuss an alternative to
the naive discretization we have been studying in
this section so far. This is the so-called time one

FIG. 7.1: Eigenvalues of S.

FIG. 7.2: Eigenvalues of −L = S − I.

map of the continuous time dynamics of equation
6.1.

x(`) = e−Lx(`− 1) =
(
Sd
)`
x(0),

where we define Sd = e−L. We show that S(d)

is a row stochastic matrix. We start with two
expansions of that matrix.

Sd = e−L =

(
I − L+

L2

2
− · · ·

)
,

Sd = eS−I = e−1
(
I + S +

S2

2
+ · · ·

)
.

(7.9)

From the first of these equations one easily derives
that the matrix Sd has row sum one (just right
multiply by the vector 1). The second equation
implies that all its entries are non-negative.
Therefore, Sd = e−L is a row stochastic matrix.

It is clear that given any Laplacian L we can
(in theory) always compute its time one map e−L.
It is interesting that the opposite is not true. From
the second expansion in (7.9), one can deduce
that for every pair of vertices (i, j) in the graph
associated to the weighted adjacency matrix Sd

such that there is a path i  j, there is an edge
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i → j, though its weight might be very small.
(A graph with this property is called transitively
closed.) Among other things, this implies that no
time one map of a Laplacian can generate periodic
behavior. In addition no Laplacian can generate
a time one map with a zero eigenvalue.

8. Concluding remarks

We analyzed the asymptotic behavior of
general first order Laplacian processes on
digraphs. The most important of these are
diffusion and consensus with both continuous
and discrete time. We have seen that diffusion
and consensus are dual processes. We remark
here that given a continuous time diffusion or
consensus process, it is always possible to find its
time 1 map. But vice versa is not always possible.
The reason is evident from the second part of
(7.9). That equation shows that any in time one
map, every edge is realized, though not with the
same weight. More details are given in [13]. The
theory presented here has more applications than
anyone can write down. We mentioned a few
in the introduction. Here we want to mention

briefly a few specific uses of the algorithms derived
here. The first is that the duality described here
can be used to give a new interpretation of the
famed Pagerank algorithm as described in [8].
The interpretation is that the Pagerank of a
site corresponds to the influence of the owner
managing that site. For details see [13].

We end with two “folklore"results that can
be easily proved with the tools of this paper.G is a
(weakly connected) digraph with rw Laplacian L.
The union of its cabals is called B. Its complement
is denoted as Bc. First, a random walker starting
at vertex j has a probability γm,j of ending up
in the mth cabal Bm. The second result is that
expected hitting time τ(i) for a random walk
starting at vertex i to reach (or hit) B, is the
unique solution of

Lτ = 1Bc with τ |B = 0.
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