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Abstract: The purpose of machining operations is to make specific shapes or surface characteristics
for a product. Conditions for machining operations were traditionally selected based on geometry
and surface finish requirements. However, nowadays, many researchers are optimizing machining
parameters since high-quality products can be produced using more expensive and advanced
machines and tools. There are a few methods to optimize the machining process, such as minimizing
unit production time or cost or maximizing profit. This research focused on maximizing the profit of
computer numerical control (CNC) milling operations by optimizing machining parameters. Cutting
speeds and feed are considered as the main process variables to maximize the profit of CNC milling
operations as they have the greatest effect on machining operation. In this research, the Nelder–Mead
simplex method was used to maximize the profit of CNC milling processes by optimizing machining
parameters. The Nelder–Mead simplex method was used to calculate best, worst, and second-worst
value based on an initial guess. The possible range of machining parameters was limited by several
constraints. The Nelder–Mead simplex method yielded a profit of 3.45 ($/min) when applied to a
commonly used case study model.

Keywords: Nelder–Mead optimization; CNC machining; machining parameters optimization

1. Introduction

Machining operations are used to produce shapes or surface characteristics for a product.
Some common conventional machining operations are turning, boring, drilling, reaming, milling,
and tapping. Conditions for machining operations were chosen based on geometry and surface finish
requirements rather than profit when costs were comparatively low on labor, resource, machines,
and tools. However, nowadays, many researchers proposed optimizing machining parameters to
maximize profit when using expensive modern machine tools.

Milling processes have rotating cutters to make specific shapes or surface characteristics by
eliminating material from the workpiece. There are two basic milling operations, as shown in Figure 1,
namely peripheral (end) milling and face milling. Peripheral milling is usually used for profiling or
slotting works, and face milling is required for making flat surfaces of a workpiece [1]. Milling processes
were used to test an optimization method in this study.
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Based Optimization (BBO) techniques. The PSO technique took initialization with a population of 
random solutions and then updating the generations to achieve an optimal solution. The BBO 
technique optimizes a function stochastically and iteratively. They found that the BBO method 
improved the material removal rate and reduced surface roughness. 

Abbas et al. [6] researched surface roughness optimization of AZ61 magnesium alloy finish 
turning by using a novel Edgeworth–Pareto optimization of an Artificial Neural Network (ANN). 
Cutting parameters were optimized for minimum surface roughness. When they compared the 
theoretical and experimental results, the reliability of ±1.35% was achieved. 

An approach for maximizing the profit of CNC milling operations was proposed by Tolouei and 
Bidhendi [7] without exceeding constraints, such as maximum machine power and maximum cutting 
forces, for each milling operation. Tolouei and Bidhendi [7] suggested using empirical and 
mechanistic functions to estimate the profit of CNC milling operations. 
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Figure 1. Milling operations.

There are many ways to optimize the machining process, such as minimizing production unit
time, minimizing production cost, or maximizing profit.

Karandikar and Kurfess [2] used machining costs to optimize milling operations based on tool
life. They described an approach for experimental design for tool life testing and machining cost
optimization using surrogate modeling and the value of information method. They found that
the proposed approach can be utilized in an industrial setting without explicitly modeling tool life,
and it is better in predicting tool life than the traditional statistical design of experiments such as factorial
designs and central composite design.

Li et al. [3] examined energy saving for multi-objective machining with consideration of the energy
consumption by optimizing machining parameters for the cutting process. They defined a relationship
between cutting parameters and energy consumption in the machining process. They analyzed
the energy consumption and production rate with sets of optimized and unoptimized cutting parameters
for different objectives. They found that the objectives of low consumed energy and high production
rate can be obtained simultaneously by optimizing cutting parameters.

Chen et al. [4] were able to optimize machining parameters with a reduction in energy consumption
and production time for the face milling process. They presented an integrated approach for
minimizing the energy footprint and production time by optimizing cutting tools and cutting
parameters. Three energy footprint-aware optimization models were used to demonstrate the necessity
of the integrated approach. In model 1, the cutting tool-related parameters were preset according to
the machining handbook. In model 2, the cutting tool-related parameters were optimized through
the Cuckoo algorithm with feasible cutting parameters. In model 3, the integrated optimization of
the cutting tool and parameters was used. When the energy footprint of each model was compared,
the integrated approach achieved the most energy-efficient footprint. Therefore, they found that it is
necessary to optimize the cutting tool and cutting parameters in an integrated manner.

Faisal and Kumar [5] researched the optimization of machining process parameters in Electric
Discharge Machining (EDM) by using the Particle Swarm Optimization (PSO) and Biogeography-Based
Optimization (BBO) techniques. The PSO technique took initialization with a population of random
solutions and then updating the generations to achieve an optimal solution. The BBO technique
optimizes a function stochastically and iteratively. They found that the BBO method improved
the material removal rate and reduced surface roughness.

Abbas et al. [6] researched surface roughness optimization of AZ61 magnesium alloy finish
turning by using a novel Edgeworth–Pareto optimization of an Artificial Neural Network (ANN).
Cutting parameters were optimized for minimum surface roughness. When they compared
the theoretical and experimental results, the reliability of ±1.35% was achieved.

An approach for maximizing the profit of CNC milling operations was proposed by Tolouei
and Bidhendi [7] without exceeding constraints, such as maximum machine power and maximum
cutting forces, for each milling operation. Tolouei and Bidhendi [7] suggested using empirical
and mechanistic functions to estimate the profit of CNC milling operations.
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The profit for CNC milling operations generally consists of production cost, production time,
and the sale price of a product. The production cost per part is made up of several components,
including raw material cost, overhead cost, tool changing cost, machining cost, and setup cost.
Setup, material, and overhead costs are not dependent on the selection of machining parameters.
Machining cost tends to decrease with increasing cutting speed, while tool changing cost tends to
increase with higher cutting speeds. Even though low cutting speeds and feed tend to increase tool
life, they will produce a rough surface finish [8].

Production time per part is made up of several components, including machining time,
tool changing time, and setup time. Contrary to the production cost, machining time decreases with
increasing cutting speeds and feed, but this results in increasing tool wear. However, gains in the material
removal rate with increased cutting speeds, feed, and depth of cut are accompanied by decreasing
tool life [9]. Kant and Sangwan [10] investigated the effect of cutting speeds and feed. They observed
that cutting forces and vibrations decrease with high cutting speeds, but high feed causes vibration
and heat generation. Therefore, determining the proper cutting speed and feed was the most crucial
issue in this paper.

As shown in Figure 1, feed is the distance machined by a tool at each revolution of a tool during
the machining operation. The depth of cut is defined as the thickness of metal removed from a
workpiece through the radial or axial direction [11]. The rotational speed of the spindle determines
the cutting speed, which can be expressed as the tangential speed of a cutting tool, regardless of
machining operation. Since the optimum depth of cut is dependent on the interaction between
the cutting tool, the geometry of the product, and workpiece material, it is usually a fixed value
and not a candidate for optimization. Therefore, the cutting speed and feed were considered machining
parameters in this study [1].

The optimization of CNC machining processes using machine learning and numerical algorithms
is a key way to eliminate unnecessary testing, and it will result in saving time, material wastage,
and effort. We expect that the Nelder–Mead Simplex method, when applied to optimize machining
parameters of the CNC milling operation, will yield a higher profit accurately and rapidly.

2. Materials and Methods

2.1. State of the Art

Tolouei and Bidhendi [7] have established an objective function with penalty functions through
a case study. They presented an optimization model that is non-linear with multiple variables
and multiple constraints. Tolouei and Bidhendi [7] optimized the case study using the method
of feasible direction, and feasible starting points were determined by the machining handbooks.
The case study proposed by Tolouei and Bidhendi [7] was subsequently used by researchers such
as Yildiz [12], Abhishek [13], Deepak [14], Gomez and Jurado [15], and Zhai et al. [16] utilizing different
optimization methods.

Yildiz [12] used the Cuckoo search algorithm and Hybrid Differential Evolution Algorithm to
optimize the machining processes. Abhishek [13] employed the Genetic Algorithm to optimize
the machining parameters of milling operations. Deepak [14] used Particle Swarm Optimization (PSO)
to optimize the machining process. Gomez and Jurado [15] utilized a modified Shuffled Frog-Leaping
Algorithm to find the optimal machining parameters in milling processes. Zhai et al. [16] used
a Novel Teaching–Learning-Based Optimization Algorithm with a dynamic assignment learning
strategy (DATLBO) to select the optimum machining parameters in multi-tool milling operations.
In this research, the Nelder–Mead simplex method [17] was utilized to optimize the milling process
using the same case study in Tolouei and Bidhendi [7] to determine whether a better solution can
be achieved.
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2.2. Research Gap

It can be observed from the above literature review that optimization methods such as the Cuckoo
search, the Hybrid Differential Evolution Algorithm, the Genetic Algorithm, Particle Swarm
Optimization, and Shuffled Frog-Leaping have mostly been used for the optimization of machining
parameters. However, these methods are restricted to find a solution rapidly and cheaply, and if
these methods are applied to a more complex optimization problem, it will take more time and effort.
The Nelder–Mead simplex method is more robust in comparison to other methods mentioned
above because it uses feasible individuals instead of functional derivatives. In this research paper,
the Nelder–Mead simplex method was adopted to optimize machining parameters such as the cutting
speed (m/min) and feed (mm/tooth).

2.3. The Nelder–Mead Simplex Method

The Nelder–Mead simplex method [17] can be used to minimize a mathematical function
by evaluating the result. This method is especially employed for non-linear problems for which
the derivatives may not be known. The Nelder–Mead simplex method usually has effective
and computational compact procedures. In n + 1 dimensional space, when x1, . . . , xn, xn+1 are
given, this space can be defined “simplex”, where f (xi) is a function value at xi. When i and j are
different, each function value can be written by xi and xj, and the centroid point between these values
can be defined by C. To find the optimum value when variables change, there are three operations.
Reflection, contraction, and expansion were used to find an optimum value [16].

Starting from an initial value, results calculated in each reflection, contraction, and expansion
algorithm are classified into best (B), worst (W), and next worst (N) values. Equation (4) was used to
terminate the simplex loop as the stopping criteria when the calculated value was below the value of
stopping criteria [18]. In the reflection process, as shown in Figure 2, a new higher point presented by
R, and the reflection function can be represented by:

R = (1 + α)C− B (1)

where α is the reflection coefficient and a positive constant. f (R) is a new value at point R. If the R
variable exists between B and W, the reflection process would be started again with the new simplex,
but if a new R is less than W, R is denoted by W, and f (R) can be replaced by f (W). If R obtained for
reflection step does not meet the criteria, the expansion step is used with the expansion coefficient, γ.
When f (R) is greater than f (W) and the expansion process fails, then N should be replaced by R before
restarting the expansion process:

E = (1 + γ)R− γC (2)

where f (R) is bigger than f (B) for all i, B, R can be replaced by B as a new maximum value. According to
the new maximum value, the contraction process can be represented by:

Ccon = βR + (1 + β)C (3)

The contraction coefficient β should be a number between 0 and 1. In the contraction algorithm,
results are classified into best (B), worst (W), and next worst (N) values. The contraction algorithm
continues until the next best result is smaller than the previous best value. Before restarting the process,
new xi should be replaced by (xi + W)/2. A failed contraction is much rarer but can occur when a valley
is curved, and one point of the simplex is much farther from the valley bottom than the others [16].
The operations of reflection, contraction, and expansion are not significantly affected by the change
in coefficient α, β, and γ. The Nelder–Mead simplex method in this study used the standard coefficients,
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α = 1, β = 2, γ = 0.5, and σ = 0.5. The operation is stopped when f (xi) falls below the criteria value.
The stopping criteria equation is defined by:

f (xi) <

√√√
1

n + 1

n+1∑
i=1

[ f (xi) − f (C)]2 (4)
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The Nelder–Mead simplex method is used to find the best, worst, and second-worst values
through employing a large range of values; this process is illustrated in a flow chart shown in Figure 3.
In practice, some variables need to be limited through the constraints. The Nelder–Mead simplex
algorithm with constraints was programmed by MATLAB software. The hardware was a 2.80 GHz
Intel Core i7 processor, with 8 GB of memory.
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2.4. Adaptive Penalty Function

The penalty function method is commonly used for optimizing a constrained objective function.
In this paper, a self-adaptive penalty function was used because (a) it allows us to employ infeasible
individuals efficiently, (b) the method is simple to utilize, and (c) it does not need parameter tuning.
Feasible individuals of the objective function are the values satisfying all of the constraints. If one of
the individuals does not satisfy at least one of the constraints, that individual is called an infeasible
individual [19].

F(x) = d(x) + p(x) (5)

F(x), a new fitness value called distance value is calculated by the sum of the infeasible individuals,
d(x) in the normalized fitness constraint violation space, and two penalized values, p(x). The best
infeasible individuals in the current populations can be found in the algorithm.

2.4.1. d(x), Distance Value

The distance value of the objective function, d(x), is calculated by:

d(x) =


v(x), if r f = 0√

f ′′ (x2) + v(x2), otherwise
(6)

where
r f =

the number of feasible individuals
population size

(7)

To calculate the distance value of the objective function, the smallest and the largest values
represent f min and f max, respectively. Then f ′(x), a new distance value, is updated by:

f ′(x) = f (x) − fmin (8)

where f (x) is a value of the objective function. Then the new distance value is normalized by:

f ′′ (x) =
f ′(x)

fmax − fmin
(9)

Then v(x), the constraint violation of each infeasible individual, is calculated by:

v(x) =
1
m

m∑
j=1

c j(x)

c max j
(10)

where

c j(x) =

 max
(
0, g j(x)

)
, j = 1, . . . , k

max
(
0,

∣∣∣h j(x)
∣∣∣− δ), j = k + 1, . . . , m

g j is the type of inequality constraint and h j is the type of equality constraint. δ is a tolerance value,
and m is the total number of constraints. In this paper, a tolerance of 10−12 and m of 3 were used.

2.4.2. p(x), Two Penalties

Two penalties are used to decrease the infeasible individuals in the population and identify
the best feasible individuals in the population. p(x), the two penalties, are defined by:

p(x) =
(
1− r f

)
X(x) + r f Y(x) (11)
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where

X(x) =

 0, if r f = 0

v(x), otherwise

Y(x) =

 0, if x is a feasible individual

f ′′ (x), if x is an infeasible individual

In two penalties, X(x) has more impact than Y(x), since X(x) is supposed to have a large value
for individuals with a large number of constraint violations when there are few feasible individuals
in the population.

2.5. Objective Models

Machining parameters, such as the depth of cut, feed, and the cutting speed, have significant effects
on the machining operation. However, the depth of cut is generally predetermined by the geometry of
a workpiece and operation sequence. Therefore, a proper cutting speed and feed combination will be
determined to minimize unit cost and time. The fundamental model describing the profit of producing
a workpiece through machining operation is described as follows [7]:

Pr =
Sp −Cu

Tu
(12)

2.5.1. Unit Cost

Unit cost is the total cost of making a unit of the product, which can be broken into four separate
groups: the cost of the raw material, setup cost, machining cost, and tool changing cost [7].

Cu = Cmat + (Cl + Co)ts + (Cl + Co)tm + (Clttc + Ct + Cottc)
tm

T
(13)

where 

Cmat = The cost of the raw material
Clts = Setup cost for preparing a workstation

Cots = Overhead cost
Clttc = Labor cost for changing a tool

Ct = The cost of a cutting tool
Cottc = Overhead cost for changing a tool

There is some indirect cost that cannot be neglected in preparation for machining operations.
These small costs are calculated by overhead cost, Cots. Tool changing costs are calculated by the sum
of corresponding labor, overhead, and tool cost. Roughly, the unit cost can be defined by the sum of all
these costs. Equation (13) is for a single tool, and it can be extended to multiple tools.

2.5.2. Machining Time

The machining time equation used in Tolouei and Bidhendi [7] is:

tm =
k
fr
=

k
f N

=
k

ftzN
with N =

1000V
πd

(14)

However, overtravel distance should be considered to determine the total tool travel distance.
The addition of the overtravel distance will likely decrease the profit, as the tool is spending more time
moving in the machining envelope. The machining time equation, considering the overtravel distance,
can be redefined as [20]:

tm =
k + ε

fr
=

k + ε
f N

=
k + ε
ftzN

with N =
1000V
πd

(15)
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where 

k = Travel distance of each tool
ε = Overtravel distance of each cutter

fr = Feed per minute (mm/min)
ft = Feed (mm/tooth)

N = Spindle speed (rev/min)
V = Cutting speed (m/min)
d = Cutter diameter (mm)

This equation is simplified to:

tm =
k + ε
ftzN

=
dπ(k + ε)

1000z
ft−1V−1 = K1 ft−1V−1 (16)

where a new constant K1 is defined as:

K1 =
dπ(k + ε)

1000z
(17)

2.5.3. Tool Life

Increasing the cutting speed and feed results in excessive heat generation that causes tool wear at
both flank and rake face of a tool. Contrary to excessive process parameters, insufficient cutting speeds
and feed will lead to low profit. Kronenberg [21] and Boothroyd [20] proposed the specific relationship
between tool life and cutting parameters of a tool as:

T =
60
Q

[
cs(G/5)g

AwV

] 1
n

(18)

where V, cs, and A represent the cutting speed, the cutting speed constant, and chip cross-sectional area,
respectively. G is the slenderness ratio, while g, n, and w are exponents of the slenderness ratio, tool life,
and chip cross-sectional area, respectively. The quality of a tool and workpiece material determines
the cutting speed constant and tool life exponent values. The high-quality tool and workpiece material
usually have a higher value for cs, g, and n. Tool life is negatively affected by the high level of workpiece
hardness, the cutting speed, and feed. Iqbal et al. [8] noted that the workpiece hardness has more
influence on tool life than the cutting speed and feed. In Equation (18), chip cross-sectional area, A,
is aftz, and slenderness ratio, G, is a/ftz, respectively. Therefore, Equation (18) is redefined by:

T =
60
Q

[
cs(a/5 ftz)

g

(a ft)
wV

] 1
n

(19)

Similar to K1, K2 can be grouped in a constant as:

K2 =
60
Q

[
cs(a/5z)g

(az)w

] 1
n

(20)

Then, the tool life equation is simplified to:

T = K2V−
1
n ft−

(w+g)
n (21)

To calculate tool life correctly, an engaged cutting edge should be considered the proportion of
tool contact with a workpiece per revolution. For the milling process used in this study, the proportion
of tool contact with a workpiece per revolution, Q, can be determined by [20]:
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for step milling,

Q1 =
1
π

arcsin
arad

d
(22)

for side milling,

Q2 =
1
4
+

1
2π

arcsin(
arad

d
− 1) (23)

for slot milling,

Q3 =
1
2

(24)

The ratio between machining time and tool life, tm/T, can be defined as:

tm

T
=

K1 ft−1V−1

K2V−
1
n ft−

(w+g)
n

(25)

Defining K3 = K1/K2, the ratio machining time per tool life equation, tm/T is simplified to:

tm

T
= K3V( 1

n−1) ft(
w+g

n −1) (26)

Equations (16) and (26) are plugged into the general cost per unit Equation (13).

Cu = Cmat + (Cl + Co)ts + (Cl + Co)K1 ft−1V−1 + (Clttc + Ct

+Cottc)K3V( 1
n−1) ft(

w+g
n −1) (27)

Equation (27) is the unit cost equation for a machining process that only involves a single tool, and it
is represented as a function of machining parameters, such as the cutting speed and feed. As regards
multi-tool operations, tool changing time should be considered as multi-machining operations are
needed. Equation (27) can be transformed to the i-th term up to m operations, where ttci is the tool
changing time, and Cti is the cost of each cutting tool.

Cu = Cmat + (Cl + Co)ts +
m∑

i=1

(Cl + Co)K1i fti−1Vi
−1+

m∑
i=1

CtiK3iVi
( 1

n−1) fti(
w+g

n −1) +
m∑

i=1

(Cl + Co)ttci (28)

Unit cost equation for multi-tool operations can be simplified to:

Cu = Cmat + (Cl + Co)ts +
m∑

i=1

c1i fti−1Vi
−1 +

m∑
i=1

c2iVi
( 1

n−1) fti(
w+g

n −1) +
m∑

i=1

c3i (29)

where Cmat, Cl, Co, and ts represent the cost of the raw material per part, the cost of setting up the tool,
overhead cost, and setup time, respectively. In the production unit cost equation, several constant
parameters can be grouped by c1i, c2i, and c3i.

c1i = (Cl + Co)K1i (30)

c2i = CtiK3i (31)

c3i = (Cl + Co)ttci (32)

Cmi, the minimum production cost during multi-milling operations, can be optimized by
considering raw material, setup, and tool changing costs, which were not considered during
the optimization of the multi-tool machining process.

Cmi =
m∑

i=1

c1i fti−1Vi
−1 +

m∑
i=1

c2iVi
( 1

n−1) fti(
w+g

n −1) (33)
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2.6. Unit Time

Unit time, Tu, is the time required to make a part. The unit time equation for a single tool proposed
by Tolouei and Bidhendi [7] is:

Tu = ts + tm + ttc

( tm

T

)
(34)

The unit time equation is composed of setup time, ts, machining time, tm, and tool changing time,
ttc, respectively. The equation for tm and tm/T has been derived in the unit cost section. The equation
ttc(tm/T) is used to calculate tool changing time, which could occur due to the tool wear during machining
operation, substituting Equations (16) and (26) in Equation (34):

Tu = ts +
dπ(k + ε)

1000z
ft−1V−1 + ttc

(
K3V( 1

n−1) ft(
w+g

n −1)
)

(35)

and for multiple tools, it becomes:

Tu = ts +
m∑

i=1

K1i fti−1Vi
−1 +

m∑
i=1

ttci

(
K3Vi

( 1
n−1) fti(

w+g
n −1)

)
(36)

2.7. Profit

Pr =
Sp −Cu

Tu
(37)

In Equation (37), Sp, Tu, and Cu refer to the sale price of a component, unit time, and unit
cost, respectively. If feed and the cutting speed increase, unit time decreases, due to increasing
the metal removal rate. However, that results in increasing unit costs. Therefore, great balance
between the cutting speed and feed is required within constraints, such as maximum machine power,
surface finish requirements, and maximum cutting forces. Equation (38) was used as an objective
function in this work. Equations (29) and (36) are plugged into Equation (37).

Pr =
Sp −

(
Cmat + (Cl + Co)ts +

∑m
i=1 c1i fti−1Vi

−1
−

∑m
i=1 c2iVi

( 1
n−1) fti(

w+g
n −1) +

∑m
i=1 c3i

)
ts +

∑m
i=1 K1i fti−1Vi

−1 +
∑m

i=1 ttci

(
K3Vi

( 1
n−1) fti(

w+g
n −1)

) (38)

As the objective function varies significantly with the cutting speed and feed during its machining
operation, the profit should be calculated for each operation:

Pri =
Ri −Cmi

tmi
(39)

This model of optimization is very helpful in verifying the effects of input data. Cmi is the machining
cost of the i-th operation, and tmi is the machining time of the i-th operation. Cmi and tmi, respectively,
can be represented by:

Cmi = c1i fti−1Vi
−1 + c2iVi

( 1
n−1) fti(

w+g
n −1) (40)

and
tmi = K1i fti−1Vi

−1 (41)

Ri is the money earned by a workshop at each operation except raw material, setup, and tool
changing costs. Ri can be defined by:

Ri = R
tmi
tm

(42)

where

R = Sp −

Cmat + (Cl + Co)ts +
m∑

i=1

c3i

 (43)
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2.8. Constraints

The constraints are developed by using mechanical knowledge of milling operations, which is
derived from published papers and empirical data. There are several constraints suggested by Rad [22]
to limit machining parameters. For this study, the cutting speed and feed were limited by several
constraints, such as

• Maximum machine power,
• Surface finish requirement,
• Maximum cutting force permitted by the rigidity of the tool,
• Available feed and spindle speed on the machine tool, and
• Heat generated by cutting.

The cutting fluid has significant effects that (a) reduce cutting temperature, (b) improve the accuracy
of machining, and (c) reduce the tool–chip contact length. The coolants are used to achieve better
accuracy of machining by reducing the temperature of the tool and workpiece because low temperatures
contribute to lower thermal expansion of the workpiece and tool [23]. This study will assume that
coolant is used all the time, so heat generation was neglected. Therefore, maximum machine power,
surface finish requirements, and maximum cutting force were considered as the main constraints.
In the following section, mathematical models of the constraint were defined, and these constraints
were used to find the optimum value of the objective function as the boundary conditions.

2.8.1. Maximum Machine Power

Due to the advancement of CNC machine capacities, the available power of CNC machines
has increased. Maximum machine power was used as a constraint to limit feed and the cutting speed.
MDC [24] proposed the machining power equation, P, that can be calculated by:

P =
Pc

e
=

kcQv

e
(44)

where kc, Qv, and e represent specific cutting force depending on the workpiece material, metal removal
rate, and machine tool efficiency factor, respectively.

Qv, Metal Removal Rate

Qv, the metal removal rate, was defined by MDC [24]:

Qv = frarada =
1000zarada ftV

πd
with N =

1000V
πd

(45)

where ft, z, arad, a, and V represent the feed, the tooth number of each tool, radial depth of each cut,
axial depth of each cut, and the cutting speed of each operation, respectively. Equation (44) can be
transformed into Equation (46) when Equation (45) is plugged into Equation (44).

P =
1000kcaradaz ftV

πde
(46)

The machining power of each operation should not exceed the available motor power, Pm.
Therefore, the power constraint can be written as:

c4V ft ≤ 1 (47)

where
c4 =

1000kcaradaz
πdePm

(48)
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e, Machine Tool Efficiency Factor

The machine tool efficiency factor was classified depending on the type of drive. The machine
tool efficiency factor is listed in Table 1 following the type of drive.

Table 1. e, Machine tool efficiency factor [24].

Type of Drive e Type of Drive e

Direct belt drive 0.90 Geared head drive 0.70–0.80
Back gear drive 0.75 Oil hydraulic drive 0.60–0.90

2.8.2. Surface Finish Requirement

The roughness average (Ra) is the arithmetic average of the roughness profile ordinates, and it can
be used to quantify the quality of a machined surface, where surface quality is critical and needs a
characterizing indicator. Wear, friction, lubrication, fatigue, etc., have been analyzed corresponding
to Ra (µm), because it is a useful guideline of surface texture for describing the surface’s functional
nature [25]. During machining operation, surface finish is affected by feed, the diameter of a cutter, type
of milling operation, run out of cutter forces, tool conditions, and spindle run out. Among the variables,
feed proved to have the highest effect on surface finish. Gains in the contact area between the workpiece
and the cutting tool with increased feed and depth of cut are accompanied by increasing surface
roughness [26]. In the case of a perpendicular tooth, the arithmetic average value of surface finish
in plain milling and end milling can be represented by Equation (49) [27]:

Ra = 318
ft2

4d
(49)

and in face milling, by Equation (50) [27]:

Ra = 318
ft

tan(la) + cot(ca)
(50)

where la and ca represent the lead angle of a tool and the clearance angle of a tool, respectively. Required
surface finish, Ra, must not exceed the maximum attainable surface finish, Ra(at), under the conditions.
Therefore, the surface finish for end milling becomes:

c5 ft2
≤ 1 (51)

where
c5 =

318
4dRa(at)

(52)

and for face milling
c6 ft ≤ 1 (53)

where
c6 =

318
Ra(at)[tan(la) + cot(ca)]

(54)

In the case of a round tooth, surface finish in milling is also affected by a lot of factors that do not
present in turning, and these factors result mainly from differences in tooling and process kinematics.
For face milling, surface finish depends on an insert radius and effective feed. In the feed direction,
the average surface finish can be calculated approximately by using formulas. As regards a round
tooth, the arithmetic value of surface finish in face milling can be represented by [1]:

Ra =
0.0312 ft2

rc
(55)
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Required roughness, Ra, must not surpass the maximum attainable surface finish, Ra(at),
under the conditions. Therefore, the surface finish for the round tool becomes:

c7 ft2
≤ 1 (56)

where
c7 =

0.0321
Ra(at)rc

(57)

2.8.3. Cutting Forces

In the machining process, sufficient cutting forces should be applied to overcome the resistance of
the material. Subramanian et al. [28] found that increasing a chip cross-sectional area by increasing feed
and depth of cut is accompanied by increasing cutting forces. A high cutting speed has a minor effect
on cutting forces when low feed and axial depth of cut are used. Cutting force is the most important
criteria when examining machining performance. The total cutting force applied to a cutting tool is
the result of tangential, feed, and radial forces. The total cutting force, Fc, resulting from machining
operation must not exceed the permitted cutting force, Fc(per). Permitted values of cutting forces have
been introduced by tool manufacturers for different tools. These force values are determined from
Equation (58), due to calculating forces experimentally.

Fc =
[
(FT)

2 + (FF)
2 + (FR)

2
]1/2

(58)

where FF, FT, and FR represent feeding, radial, and tangential forces, respectively [29].
Since the individual components of the cutting forces on the right-hand side of Equation (58) cannot
be measured easily, cutting force is usually calculated by multiplying chip cross-sectional area
and exponent values. Approximately, the total cutting force equation can be defined by:

Fc = kca ftz (59)

where kc value is the specific cutting force of a workpiece. Total cutting force, FC, resulting from
machining operation must not exceed permitted cutting force, Fc(per). Therefore, the constraint of
cutting force can be defined by:

kca ftz ≤ Fc (per) (60)

This equation can be simplified by:
c8 ft ≤ 1 (61)

where
c8 = kcaz/Fc (per) (62)

2.9. Case Study

A case study suggested by Tolouei and Bidhendi [7] was used to optimize machining processes
with the Nelder–Mead simplex method. Machining operations are conducted with a type of machine
and constant values listed in Tables 2–4. Permitted machine power and machine tool efficiency
factor were given by a CNC machine, and machining parameters were determined by the mechanical
properties of a workpiece and cutting tools. The machined product geometry is shown in Figure 4.
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Table 2. Parameters for case study [7].

Type Vertical CNC Milling Machine (Pm = 8.5 kW)

e 95%
Workpiece material 10L50 leaded steel (225 BHN)
Cmat ($) 0.5
Sp ($) 25
Co ($/min) 1.45
Cl ($/min) 0.45
cs of HSS tool 33.98
cs of carbide tool 100.05
g (unitless) 0.14
n of HSS tool 0.15
n of carbide tool 0.3
ts (min) 2
ttc (min) 0.5
kc (MPa) 1800
Kp (W) 2240
W (unitless) 1.1
w (unitless) 0.28

Table 3. Required machining operation for case study [14].

Operation No Operation Type Tool No a (mm) k (mm) ε (mm) Ra (µm) Fc(per) (kN)

1 Face milling 1 10 450 35 2 156.5
2 Corner milling 2 5 90 7 6 17.1
3 Pocket milling 2 10 450 7 5 17.1
4 Slot1 milling 3 10 32 8.4 - 14.3
5 Slot2 milling 3 5 84 8.4 1 14.3

Table 4. Tools data for case study [14].

Tool No Tool Type Quality YTS (MPa) d (mm) CL Z Price ($) SD (mm) Helix Angle la ca

1 Face Carbide 50 2 6 49.5 25 15 45 5
2 Corner HSS 1035 10 6 4 7.55 10 45 0 5
3 Pocket HSS 1035 12 5 4 7.55 10 45 0 5
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3. Results

To illustrate how profit, unit cost, and unit time are affected by the cutting speed, we verified
the model using a feed of 0.3 (mm/tooth). The objective function was considered for face milling,
corner milling, pocket, and two slot millings suggested by the case study. Specific constant values
suggested by the case study, such as travel length, cutting tool type, and labor cost, were utilized.

Figure 5 shows the relationship between unit cost, profit, and unit time as a function of the cutting
speed for all five milling operations assuming a constant feed was used. It was observed that
the maximum profit and corresponding minimum unit cost was obtained at a cutting speed of
approximately 26 m/min, whereas unit production time seems to plateau at approximately 9 min,
corresponding to a cutting speed of 15 m/min.
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Optimum Parameters by the Nelder–Mead Simplex Method

To determine the efficiency of the Nelder–Mead method in solving the range of possible cutting
speeds and feed, we examined each operation of the case study separately. As shown in Figure 6,
optimum machining parameters of the step milling listed in Table 5 were found at iteration 52,
when the initial cutting speed and feed listed in Table 5 were used.
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Table 5. Initial and optimum parameters of step milling.

Initial Value Output Value

Cutting Speed (m/min) Feed (mm/tooth) Cutting Speed (m/min) Feed (mm/tooth)

60 0.03 156.44 0.078

As shown in Figure 7, optimum machining parameters of the corner milling listed in Table 6 were
found at iteration 54, when the initial cutting speed and feed listed in Table 6 were used. Figure 8
shows the optimum machining parameters of the pocket milling parameters using the initial condition
as listed in Table 7.
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Table 6. Initial and optimum parameters of corner milling.

Initial Value Output Value

Cutting Speed (m/min) Feed (mm/tooth) Cutting Speed (m/min) Feed (mm/tooth)

60 0.1 157.85 0.268
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Table 7. Initial and optimum parameters of pocket milling.

Initial Value Output Value

Cutting Speed (m/min) Feed (mm/tooth) Cutting Speed (m/min) Feed (mm/tooth)

30 0.03 145.57 0.145
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Figures 9 and 10 show the optimum machining parameters of the slot1 milling and slot2 milling,
whereas Tables 8 and 9 list the optimized parameters with the initial cutting speed and feed. In general,
we observed that the convergence of a solution is possible with less than sixty iterations.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 17 of 22 
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Table 8. Initial and optimum parameters of slot1 milling.

Initial Value Output Value

Cutting Speed (m/min) Feed (mm/tooth) Cutting Speed (m/min) Feed (mm/tooth)

6 0.03 108.76 0.194

Table 9. Initial and optimum parameters of slot2 milling.

Initial Value Output Value

Cutting Speed (m/min) Feed (mm/tooth) Cutting Speed (m/min) Feed (mm/tooth)

6 0.03 111.78 0.378

4. Discussion

Table 10 summarizes the optimized machining cost and time for the operations used to produce
the model part. Using the results in Table 10, we determined the final unit production time, unit cost,
and profit as shown in Table 11.
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Table 10. Results by using optimum parameters.

Operation No Operation Type Tool No Machining
Cost ($)

Initial
Cost ($)

Machining
Time (min)

Tool Changing
Time (min)

Setup Time
(min)

1 Face 1 2.93 4.3 1.04 0.5 2
2 Corner 2 0.03 0.018 0.5 0
3 Pocket 2 0.31 0.164 0 0
4 Slot1 3 0.98 0.018 0.5 0
5 Slot2 3 0.04 0.021 0 0

Table 11. Unit cost, time, and profit.

Unit Time (min) Unit Cost ($) Profit ($/min)

4.76 8.6 3.45

Constraint values of the maximum machine power are listed in Table 2. Power consumption
for all machining operations should not exceed 8.5 kW to meet maximum machine power proposed
by Tolouei and Bidhendi [7]. Constraint values of surface finish requirements are listed in Table 3,
and surface finish requirements for all machining operations should be satisfied. Lastly, the cutting
forces should not exceed the permitted cutting forces listed in Table 3. Optimized power consumption,
surface finish, and cutting forces using Nelder–Mead methods are listed in Table 12. It should be noted
that the optimum process parameters met specific constraint values by Tolouei and Bidhendi [7].

Table 12. Constraint values of optimum parameters.

Operation Type Vo (m/min) fo (mm/tooth) Machining Power (kW) Surface Finish (µm) Cutting Force (kN)

Face milling 156.44 0.078 3.68 1.9 8.42
Corner milling 157.85 0.268 8.5 0.57 9.64
Pocket milling 145.57 0.145 8.5 0.17 10.4
Slot1 milling 108.76 0.194 8.47 0.25 13.96
Slot2 milling 111.78 0.378 8.48 0.95 13.61

In this paper, the Nelder–Mead simplex method was used to find the maximum profit of
milling operations by identifying optimum process parameters without violating any constraints.
We compared the profit derived in this study with previous studies, as shown in Table 13, and we
found that the Nelder–Mead Method was able to produce a higher profit.

Table 13. Profit of each method.

Method Profit ($/min)

Handbook Recommendation [7] 0.72
Tolouei and Bidhendi Feasible Direction [7] 2.64
Cuckoo Search [12] 2.82
PSO Algorithm [14] 2.88
Hybrid Differential Evolution [30] 2.82
Genetic Algorithm [13] 3.84
Modified Shuffled Frog-Leaping [15] 2.82
DATLBO Algorithm [16] 3.31
The Nelder–Mead Simplex Method 3.45

Even though the profit found by Abhishek [13], using the Genetic Algorithm, is higher than
the Nelder–Mead simplex method, it should be noted that Abhishek arrived at an optimum feed of
0.264 (mm/tooth) for face milling. However, the surface finish requirement of 2 (µm) would limit
the feed to be less than 0.079 (mm/tooth). Therefore, we arrived at a better solution while meeting
the constraints and objective function suggested by Tolouei and Bidhendi. Finally, the Nelder–Mead
simplex method not only improves production profit, but it will also increase productivity by eliminating
unnecessary testing.
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5. Conclusions

From the optimum parameters obtained by using the Nelder–Mead simplex method, the following
can be concluded:

1. Optimization methods that utilize the gradient of an objective function, which are composed
of a non-linear system with constraint functions, have difficulty in arriving at an optimum
solution efficiently.

2. A profit improvement of 30% in the Nelder–Mead simplex method is observed when compared to
Tolouei and Bidhendi feasible direction [7] because (a) it allows us to employ infeasible individuals
efficiently, (b) the method is simple to utilize, and (c) it does not need parameter tuning.

3. Even though overtravel was considered in this study, which was excluded from Tolouei
and Bidhendi [7], a more profitable solution was found by using the Nelder–Mead simplex
method while satisfying the suggested constraints.

4. The Nelder–Mead simplex method used in optimizing the cutting parameters in CNC milling
processes produced a better result than referenced studies.

In conclusion, when the Nelder–Mead simplex method was employed, the profit achieved
was higher than the maximum profit obtained by Tolouei and Bidhendi [7]; this method is also more
effective in predicting a solution. We expect that the Nelder–Mead simplex method will help industries
achieve a higher profit in milling process optimization.

Author Contributions: Conceptualization, Y.L. and A.R.; methodology, Y.L. and A.R.; software, Y.L. and A.R.;
validation, C.W. and S.Y.; formal analysis, Y.L. and A.R.; investigation, C.W. and S.Y.; resources, Y.L. and A.R.;
data curation, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, C.W. and S.Y.;
visualization, Y.L.; supervision, C.W. and S.Y.; project administration, C.W. and S.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This article’s publication was funded by the Portland State University Open Access Article
Processing Charge Fund, administered by the Portland State University Library.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

A Chip cross-sectional area (mm2)
a Axial depth of cut (mm)
arad Radial depth of cut (mm)
C1 The cost of setting up the tools ($)
Cl Labor cost ($/min)
Cmat The cost of the raw material per part ($)
Cmi (i = 1, . . . , 5) The minimum production cost in multi-tool operations ($)
Co Overhead cost ($/min)
Ct The cost of a cutting tool ($)
Cu Unit cost ($)
c1i (i = 1, . . . , 5) The cost of the actual for steps 1 to 5 ($)

c2i (i = 1, . . . , 5)
The cost of doing the actual work over the lifetime of a tool, or depreciation for
steps 1 to 5 ($)

c3i (i = 1, . . . , 5) The cost of switching tools for steps 1 to 5 ($)
c4i (i = 1, . . . , 5) Constant for the power constraint for steps 1 to 5
c5i (i = 1, . . . , 5) Constant for the plain and end milling surface finish for steps 1 to 5
c6i (i = 1, . . . , 5) Constant for the face milling surface finish for steps 1 to 5
c7i (i = 1, . . . , 5) Constant for the surface finish of round tool for steps 1 to 5
c8i (i = 1, . . . , 5) Constant for the cutting forces for steps 1 to 5
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ca The clearance angle of the tool (degree)
cp Feed factor for power constant
cs Constant in the cutting speed equation
d Cutter diameter (mm)
e Machine tool efficiency factor (%)
FC Cutting force (kN)
FC(per) Permitted cutting force (kN)
FF Feeding forces resulting from all active cutting teeth (N)
FR Radial forces resulting from all active cutting teeth (N)
FT Tangential forces resulting from all active cutting teeth (N)
f Feed per minute (mm/min)
fo Optimum feed per tooth (mm/tooth)
fr Feed per revolution (mm/rev)
ft Feed per tooth (mm/tooth)
G Slenderness ratio
g Exponent of slenderness ratio (unitless)
Kp Power constant depending on the workpiece material (kW)
K1i (i = 1, . . . , 5) Coefficients carrying constant values for machining time
K2i (i = 1, . . . , 5) Coefficients carrying constant value for tool life
K3i (i = 1, . . . , 5) Coefficients carrying constant values for the ratio of machining time per tool life
k Distance to be traveled by the tool during cutting (mm)
kc Specific cutting force (MPa)
la The lead (corner) angle of a tool (degree)
N Spindle speed (rev/min)
n Tool life exponent (unitless)
m The number of machining operations required to produce a product
P Required power for the operation (kW)
Pm Maximum motor power (kW)
Pr Total profit ($/min)
Q Contact proportion of cutting edge with workpiece per revolution (unitless)
Qv Metal remove rate (mm3/min)
R Sale price of a product excluding material, setup and tool changing costs ($)
Ra Arithmetic value of surface finish (µm)
Ra(at) Attainable surface finish (µm)
r Tool nose radius (mm)
Sp Sale price of a product ($)
T Tool life (min)
Tu Unit time (min)
tm Machining time (min)
ts Setup time (min)
ttc Tool changing time (min)
V The cutting speed (m/min)
Vo The optimum cutting speed (m/min)
W Tool wear factor (unitless)
w Exponent of chip cross-sectional area (unitless)
z The number of cutting teeth of a tool
ε Overtravel of milling cutter on the workpiece (mm)
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