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Stability Conditions for Coupled Autonomous Vehicles Formations 

Pablo E. Baldivieso ∗ , J. J. P. Veerman† 

June 3, 2020 

Abstract 

In this paper, we give necessary conditions for stability of coupled autonomous vehicles in R. We focus 

on linear arrays with decentralized vehicles, where each vehicle interacts with only a few of its neighbors. 

We obtain explicit expressions for necessary conditions for stability in the cases that a system consists of 

a periodic arrangement of two or three different types of vehicles, i.e. configurations as follows: ...2-1-2-1 

or ...3-2-1-3-2-1. Previous literature indicated that the (necessary) condition for stability in the case of a 

single vehicle type (...1-1-1) held that the first moment of certain coefficients of the interactions between 

vehicles has to be zero. Here, we show that that does not generalize. Instead, the (necessary) condition 

in the cases considered is that the first moment plus a nonlinear correction term must be zero. 

Introduction 

Linear arrays of agents, or particles have been studied in many areas such as flock formations, see [15, 22] 

and vehicular platooning, see [4, 8, 13, 20]. We direct our attention to autonomous vehicular formation in 

R, namely n vehicles driving on a one-lane road. By autonomous vehicles, we mean that each vehicle does 

not have any human assistance other than its own set of initial values and a pre-specified set of interaction 

parameters between its neighbors. 

The systems we study are set up as follows. The symbol z is used for the n positions of vehicles on the 

line. The equations of motion can be compactly written as 

⎞⎛⎞⎛⎞⎛⎞⎛ 

d ⎜⎝ 
z⎟⎠ = ⎜⎝ 

0 I ⎜⎝⎟⎠ 
z⎟⎠ = M⎜⎝ 

z⎟⎠ , (1)
dt ż Lx Lv ż ż 
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where I is the n × n identity, Lx and Lv are n × n so-called Laplacian matrices. If all agents are identical, 

Lx has the following form: 

⎞⎛ 

Lx = gx 

⎜⎜⎜⎜⎜⎜⎜⎝ 

1 ρx,1 ρx,2 · · · 

ρx,−1 1 ρx,1 · · · 

ρx,−2 ρx,−1 1 · · · 
. . . . . . 

⎟⎟⎟⎟⎟⎟⎟⎠ 

, (2) 

and similar for Lv. Equation (1) is meant to express the idea that the acceleration of the kth vehicle depends 

on the positions relative to it of some of his neighbors — this is expressed through the matrix Lx — and 

on the velocities relative to it — expressed through Lv. Vehicles whose response depends only on positions 

and velocities relative to them are called decentralized. The fact they are decentralized implies that Lx and 

Lv have row-sum zero. Ultimately, what we want to know is the behavior of the flock when the following 

happens. For t ≤ 0 the formation is in equilibrium, that is: zi = 0 and żi is constant. At t ≥ 0, the first 

vehicle changes its velocity, and the others “try” to follow. 

In this paper we continue a line of research started in [6, 5] and continued in [11, 10]. The basic idea 

is: via an extension of the so-called periodic conditions [1], we use flocks on the circle as a tool to establish 

properties of the dynamics of flocks on the line. That line of research is distinct from most other work 

in two aspects. First, we allow the interactions to be determined by two non-commuting Laplacians as 

evidenced in equation (1). This renders the system (generally) non-diagonalizable and methods of analysis 

in the previous literature do not apply. Indeed, to be successful one needs some sort of generalization of 

the well-known method using periodic boundary conditions best known from applications in physics [1]. The 

idea is that periodic boundary conditions turn the Laplacian matrices into circulant matrices which can be 

simultaneously diagonalized [12]. This renders the system on the circle, at least in principle, soluble by 

analytical means. The generalization of the method of periodic boundary conditions to asymmetric systems 

is somewhat delicate and was conjectured and discussed in [6, 5], and numerically supported in that and 

other work [11, 10]. 

The second and equally crucial aspect in which our work differs from other work concerns the effect 

of asymmetry in the Laplacians on the dynamics of large flocks. This asymmetry leads to non-orthogonal 

eigenvectors, and this, even for stable systems, can (and does in many cases) lead to exponentially growing 

(in the number of agents) transients (see Definition 1.2 below). This effect cannot be deduced from the 

eigenvalues or eigenvectors of M in equation 1. In the context of traffic, the possibility of such behavior was 
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first pointed out in [21]. Here we illustrate this effect in Figure 3. From the point of view of traffic, systems 

with this property are just as undesirable as systems that are unstable in the usual sense (Definition 1.1 

below). Thus we need to study what systems are stable in both senses. 

From the above references, one can conclude that the general theory for flocks in the line with two 

distinct and asymmetric Laplacians in the line is now reasonably well-established as long as all agents are 

identical. In this paper we take the next step and study this theory in the more realistic case where agents 

are not identical. The ultimate goal here is to give exact conditions for stability for such flocks. This is still 

analytically too hard to solve. In order to get some insight in this problem, we study the dynamics of flocks 

with periodic arrangements of distinct agents. In Section 2 we study periodic arrangements of 3 types of 

agents (· · · 3 − 2 − 1 − 3 − 2 − 1) with nearest neighbor interactions and in Section 3 the subject is periodic 

arrangements of 2 types of agents (· · · 2 − 1 − 2 − 1) with next nearest neighbor interactions. For these types 

of flocks, we develop necessary conditions for stability. 

The methods employed in this paper(and in [10]) can in principle be extended to periodic arrangements 

with nearest neighbor interactions of the type · · · p − (p − 1) − · · · 2 − 1 − p − · · · − 2 − 1 (p different agents). 

In the conclusion we briefly indicate how this can be achieved. A direct extension of the periodic boundary 

principle proposed in [6, 5, 10, 11] will then lead to criteria for stability of flocks on the line of k blocks of 

type p − · · · − 2 − 1 for k large. This, of course, is hardly more realistic than flocks consisting of identical 

vehicles. So our current research is focused on the following question (to which, at present, we do not know 

the answer). To what extent can these results be applied to flocks on the line consisting of arbitrary (distinct) 

vehicles, that is: to flocks of type p −· · ·− 2 − 1 with p large but k = 1? What features of the vehicles can be 

distinct (and to what extent) if we still want to be able to make meaningful statements about the dynamics 

of such flocks? Progress on this research will be reported in future work. 

We follow the strategy implied by the aforementioned conjectures. These say that if for large enough 

n the system with periodic boundary conditions is unstable, then the system on the line (with non-trivial 

boundary conditions) is unstable in either the sense of Definition 1.1) or in the sense of Definition 1.2). Our P 
earlier work for identical agents resulted in the statement that if j 6 ρx,j j 6= 0 (see equation (2)), then=0 

instability arises. In looking to prove a generalization of this statement, we, very unexpectedly, found that 

for more complicated systems — presented in this work — that statement is generally false. Corollaries 2.1 

and 3.1 show that in the cases at hand, a nonlinear correction needs to be taken into account. We note that 

these formulas show that, surprisingly, stability is a co-dimension one phenomenon! Thus, without the help 

of these formulae, it would be very difficult to find stable flocks with non-symmetric interactions. 
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What we just described is a sufficient condition for instability or, equivalently, a necessary condition for 

stability. It is clear that it is not sufficient for stability. For example, if we give the last agent an infinite 

mass (setting gx = gv = 0 for this agent), it cannot change its velocity. Clearly, if the leader changes its 

velocity, a system with that boundary condition cannot evolve towards equilibrium. To find conditions for 

stability that are necessary and sufficient seems, for now, out of reach. 

In earlier studies of the stability of flocks on the line, one usually made several of the following assump-

tions: the number of agents is infinite [20, 7], the interactions are symmetric [18] or are forward-looking only 

[16], interactions are small [3], or Lx and Lv are identical, see [7, 13, 20, 17]. Others [3, 13] have proposed the 

idea of coherence vehicular formation by local and global feedback and the analysis of consensus dynamics 

which are systems of first order ordinary differential equations, see also [9, 19]. In our paper none of those 

assumptions are necessary. 

For future reference, we define two notions of stability. In consequence of the fact that Lv and Lx are 

Laplacians, we see that for arbitrary constant x0 and v0 (1) has an in formation solution zi = x0 + v0t. This 

is desirable for a flock. It does mean, however, that the matrix associated with this linear system must have 

a Jordan block of dimension 2 associated to the eigenvalue 0. In this paper, we will call a system (linearly) 

stable if all other eigenvalues have strictly negative real part. 

Definition 1.1. The system (1) is linearly stable, shortened to stable, if it has one eigenvalue zero with 

geometric multiplicity one and algebraic multiplicity two, and all other eigenvalues have real part less than 

zero. The system is (linearly) unstable if at least one eigenvalue has positive real part. 

If in a stable system that is at rest, the leader acquires an initial velocity v = 1 at t = 0, the system will 

undergo a temporary oscillatory change which will decrease in time. So eventually the dynamics of a stable 

system will converge to an in formation solution. The initial oscillatory movement is called a transient. 

Definition 1.2. The system (1) is flock stable if it is linearly stable and if transients grow less than expo-

nentially fast in the number n of vehicles. It is called flock unstable if the growth is exponential as n tends 

to infinity. 

See [5] for a more detailed discussion of the definition of flock stability. 

Periodic Arrangements with Nearest Neighbor Interactions. 

Linear flocks in R of identical agents have been thoroughly studied ([5, 11, 10]). The necessary condition P3
for stability is that the first moment (or ρx,ii) of the coefficients of the spatial Laplacian must be zero.i=1 
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j = 2 j = 1 

123123 

Figure 1: Periodic arrangement of flocks in R with three types of vehicles, labeled by 1,2, and 3. At time 
t = 0, the first vehicle start moving to the right. 

For flocks of type ...2-1-2-1, the same is true. Details of the latter can be found in [2]. Here we will look 

at the arrangement ...3-2-1-3-2-1. Thus we consider of linear arrays with N = 3n (n of each type) vehicles 

(i)
in which each vehicle interacts with its nearest neighbors. The quantities z are the deviations from theirj 

(i)
equilibrium positions. The quantities ż , i = 1, 2, 3, and j = 1 . . . n are their derivatives with respect toj 

time. 

The equations of motions for each type of vehicle in R are (see Figure 1): 

� � � � 
(1) (1) (1) (1) (2) (1) (3) (1) (1) (1) (2) (1) (3)

z̈ = g z + ρx,1z + ρ j−1 + g żj + ρ zj + ρ ˙j−1j x j j x,−1z v v,1 ˙ v,−1z � � � � 
(2) (2) (2) (2) (3) (2) (1) (2) (2) (2) (3) (2) (1)

z̈ = g z + ρ + ρ + g ż + ρ ż + ρ ż . (3)
j x j x,1zj x,−1zj v j v,1 j v,−1 j � � � � 
(3) (3) (3) (3) (1) (3) (2) (3) (3) (3) (1) (3) (2)

z̈ = g z + ρ + g ż + ρ ż żj x j x,1zj+1 + ρx,−1zj v j v,1 j+1 + ρv,−1 j 

We assume the flocks to be decentralized, that is: the acceleration of an individual depends only on observation 

relative to that individual. For example, the first of the equations in equation (3), should be thought of as: 

h � � � �i h � � � �i 
(1) (1) (1) (2) (1) (1) (3) (1) (1) (1) (2) (1) (1) (3) (1)

z̈ = g ρ z − z + ρ z − z + g ρ ż − ż + ρ ż − ż .j x x,1 j j x,−1 j−1 j x x,1 j j x,−1 j−1 j 

This leads to the following constraints: for i ∈ {1, 2, 3} 

(i) (i) (i) (i)
ρ = −1, ρ = −1 . (4)x,1 + ρx,−1 v,1 + ρv,−1 

(1) (2) (3) (1) (2) (3)
We will assume that gx , gx , gx , gv , gv , and gv are real numbers. 

According to the strategy described in the introduction, instability in the system with periodic boundary 

condition will imply some form of instability (Definition 1.1 or Definition 1.2) in the system on the real line 

if N is large. Thus our task reduces to deriving a criterion for instability for the system, given periodic 
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boundary conditions. The system subject to periodic boundary conditions is described as follows. 

⎞⎛⎞⎛⎞⎛ 
(1) (1)z z⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

= 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

0 0 0 I 0 0 

0 0 0 0 I 0 

0 0 0 0 0 I 

(1)
gx I 

(1) (1)
gx ρ Ix,1

(1) (1)
gx ρx,−1P− 

(1)
gv I (1) (1)

gv ρ Iv,1
(1) (1)

gv ρv,−1P− 

(2) (2)
gx ρ Ix,−1

(2)
gx I 

(2) (2)
gx ρ Ix,1

(2) (2)
gv ρ Iv,−1

(2)
gv I (2) (2)

gv ρ Iv,1

(3) (3)
gx ρx,1P+ 

(3) (3)
gx ρ Ix,−1

(3)
gx I 

(3) (3)
gv ρv,1P+ 

(3) (3)
gv ρ Iv,−1

(3)
gv I 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

d 
dt 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

, 

(2) 

(3) 

(2) 

(3) 

z z 

z z 

(1) (1)ż ż 

(2) (2)ż ż 

(3) (3)ż ż 

(5) 

where P+ and its inverse P− are n × n permutation matrices 

⎞⎛⎞⎛ 
0 1 0 · · · 0 

.. 

0 0 · · · 0 1 

. 

P+ = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

, P− = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. (6) 

. . .0 0 1 1 0 0 0. .. 
. . . . .. . . . . . . . . . . .0 0 1. . .. 

. . .. . . . . . . . . . ..0 0 1 0 0 

1 0 · · · 0 0 0 · · · 0 1 0 

We will abbreviate equation (5) simply as 

⎞⎛⎞⎛ 

d ⎜⎝ 
z⎟⎠ = M⎜⎝ 

z⎟⎠ . (7)
dt ż ż 

2πm Definition 2.1. From now on, we set φm = , m ∈ {0, · · · n − 1}. When there is no ambiguity, we will n 

ijφmoften drop the subscript from φm. We let vm be the n-vector whose jth component equals e . 

Proposition 2.1. The eigenvalues ν and associated eigenvectors uν (φm) of M satisfy 

⎞⎛ 

uν (φm) = 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

�1vm 

�2vm 

�3vm 

ν�1vm 

ν�2vm 

ν�3vm 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

. 
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For each m ∈ {0, · · · n − 1} given, there are six eigenpairs (counting multiplicity) determined by solving the 

following equation for ν and �i: 

⎞⎛⎞⎛⎞��⎛ 
g
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) −iφ+ νg − ν2 g ρ ρ g ρ ρ ex v x x,1 + νgv v,1 x x,−1 + νgv v,−1⎜⎜⎜⎜⎝�g

⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎠ 

�1 

�2 

⎟⎟⎟⎟⎠ 
= 

⎜⎜⎜⎜⎝ 

0 

0 

⎟⎟⎟⎟⎠ 
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

ρ ρ g + νg − ν2 g ρ ρx x,−1 + νgv v,−1 x v x x,1 + νgv � 
. 

v,1 

(3) (3) (3) (3) (3) (3) (3) (3) (3) (3)iφg ρ ρ e g ρ ρ g + νg − ν2 0x x,1 + νgv v,1 x x,−1 + νgv v,−1 x v �3 

⎞⎛ 

Proof. From equations (5) and (7), we see that an eigenvector ⎜⎝ 
z⎟⎠ associated to the eigenvalue ν satisfies 
ż 

iφm −iφmż = νz. Now Pn = I, and so e and vm are the eigenvalues and eigenvectors of P+, and e and vm+ 

of P−. Then by substituting uν into (5), one sees that these are the eigenvectors of M. 

For the second part, note that the eigenvector u derived above has 4 unknowns. We can write 

Mu = νu , (8) 

substitute u of the first part, and substitute that in equation (5). We obtain three non-trivial equations 

(from the last three lines of (5)), which can be simplified and rearranged to give the second part of the 

proposition. (By linearity, if u is a solution, then so is any multiple of u. Thus 3 equations is enough.) 

In short, we can find all eigenpairs by setting to zero the determinant of the matrix in Proposition 2.1. We 

obtain a polynomial Q of degree six in ν. In its full glory, the polynomial is more than a little cumbersome. 

(5)
From now on, we take superscripts g and ρ modulo 3. For example, gx 

(2)
= gx . This allows us to manage 

the expressions a little better. 

Definition 2.2. Let a, b, c, d, and t be real numbers, define 

D(a, b, c; t) ≡ abc(e it − 1) − (1 + a)(1 + b)(1 + c)(e −it − 1) , 

E(a, b, c, d) ≡ ab(1 + c + cd) . 

The following Lemma is the result of substantial bookkeeping which we leave to the reader. 
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Lemma 2.1. When φ = 0, the matrix of Proposition 2.1 has determinant Q(ν, φ = 0) equal to 

P3 (i) (i+1) (i) (i+1)−ν2 E(gx , gx , ρ , ρ )i=1 x,1 x,1 P3 
h 

(i) (i+1) (i) (i+1) (i) (i+1) (i) (i+1) 
i 

−ν3 E(g , g , ρ , ρ ) + E(g , g , ρ , ρ )i=1 x v x,1 v,1 v x v,1 x,1 P3 
h 

(i) (i) (i+1) (i) (i+1) 
i 

−ν4 gx + E(gx , gx , ρ , ρ ) . 
i=1 x,1 x,1 

+ν5 P3 (i) 
i=1 gx 

−ν6 1 

The full expression of the constant term of Q(ν, φ) is a0(φ), where 

(1) (2) (3) (1) (2) (3)
a0(φ) = g g g D(ρ , ρ , ρ x x x x,1 x,1 x,1; φ) . 

To simplify the statement of the main results further, we also need the following definition. 

Definition 2.3. For j and k positive, we define 

(k) (k) (k) (k) (k) (k)
α ≡ ρ and β ≡ ρ − ρ .x,j x,j + ρ x,−j x,j x,j x,−j 

Because of the constraint (4), the α’s are equal to -1 in this case (but not in the next section). 

Theorem 2.1. If any of the following conditions are satisfied, then for large N , the system given by (3) on 

the circle is not (linearly) stable. 

(1) (2) (3)
(i) gx = 0 or gx = 0, or gx = 0. P3 (i) (i+1) (i) (i+1)
(ii) E(gx , gx , ρ , ρx,1 ) = 0.i=1 " x,1 # 

3 3X Y 
(1) (2) (3) (i) (i)

(iii) g g g β β 6= 0.x x x x,1 + x,1 
i=1 i=1 

(1)
Proof. We start with part (i). Suppose for example that gx = 0. Then the first row of the matrix in 

Proposition 2.1 has a factor ν. Since the determinant is a linear function of the rows, it follows that the 

determinant of that matrix also has a factor ν. This implies that the zero eigenvalue has multiplicity of at 

least N , contradicting Definition 1.1. 

Suppose (ii) holds. Then from Lemma 2.1 we see that for φ = 0, we get multiplicity 3 for the eigenvalue 

zero. This violates Definition 1.1. 
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Part (iii), eigenvalues of M in equation (7) are the roots of 

6X 
Q(ν, φ) = ai(φ)z i + 2a1(φ)z + a0(φ) , 

i=2 

where the ai(0) are given in the first part of Lemma 2.1. The second part of that lemma states that 

∂(1) (2) (3) (1) (2) (3) 
x,1; φ)a 0 0(0) = gx D(ρ , ρ , ρ g g .x,1 x,1x x φ=0∂φ 

According to Proposition 5.1, the system is unstable if 

0 a0(0) 6= 0 .6= 0a0(0) = a1(0) = 0 and a2(0) and 

� �1(i) (i)
Substituting ρ = β − 1 in a0(0) (using Definition 2.3 and the constraints (4)) yields part (iii).x,1 x,1 

0 
2 

According to this proof, in case (i) and (ii), the system has too many eigenvalues with zero real part (this 

is called marginal stability), but not necessarily with positive real part. Instability in the sense of Definition 

1.1 requires at least one eigenvalue with positive real part. The conjectures in [5] state that instability on 

the circle implies some form of instability on the line. 

P3 (i) (i+1) (i) (i+1)
Corollary 2.1. Using the conjectures of [5], we obtain that if E(gx , gx , ρ , ρx,1 ) 6= 0 andi=1 x,1 

" # 
3 3X Y 

(1) (2) (3) (i) (i)
g g g β β 6= 0 ,x x x x,1 + x,1 

i=1 i=1 

then the system on the line given by (3) has some form of instability (Definitions 1.1 or 1.2). 

A generalization of Proposition 5.1 shows that the condition a2(0) 6= 0 is not necessary to guarantee the 

presence of eigenvalues with positive real part for large n. Since a2(0) =6 0 corresponds to the first condition 

in the corollary (see Lemma 2.1), we drop that condition from now on. The idea of that generalization is 

briefly given in the appendix. 

We perform simulations to see if this conclusion is borne out by simulations on the real line (independent 

of reasonable boundary conditions). Similar to what was done in [10], we consider two sets of boundary 

conditions. We will call them Type I and Type II boundary conditions. Since we want to maintain the cen-

tralized character of the systems, both sets of boundary conditions must maintain the “Laplacian” property, 

(i) (i)
namely that row-sums of each Laplacian are zero. Type I adjusts the central coefficients ρ x,0, and ρ on v,0 
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Figure 2: Dynamics of a stable system with N = 180 vehicles with ρ = −(0.6, 0.8, 0.142857, 0.3, 0.3, 0.3) and 
g = −(1, 1, 1, 1.3, 1.3, 1.3). (a) Boundary Condition Type I. Maximum amplitude of −221.0 at t = 244.6. (b) 
Boundary Condition Type II. Maximum amplitude of −220.8 at t = −244.4. 

Figure 3: Dynamics of flock unstable systems. (a) Dynamics of a flock unstable system of 180 vehicles with 
ρ = −(0.6, 0.8, 0.10, 0.3, 0.3, 0.3) and g = −(1, 1, 1, 1.3, 1.3, 1.3). (b) Same coefficients as (a), we see that 
amplitude of flock unstable systems increase exponentially as the number N of cars increases. 
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the boundaries as follows: 

(1)
z̈  = 01 � � � � 
(3) (3) (3) (3) (3) (2) (3) (3) (3) (3) (2)z̈ = g −ρ + ρ + g −ρ ż + ρ żn x x,−1zn x,−1zn v v,−1 n v,−1 n 

(i) (i)
In Type II boundary conditions, we keep the central coefficients ρx,0, and ρ equal to 1 and we adjustv,0 

the remaining coefficients accordingly: 

(1)
z̈  = 01 � � � � 
(3) (3) (3) (2) (3) (3) (2)z̈ = g z − z + g ż − żn x n n v n n 

We run simulations of the system in R considering these two boundary conditions with initial condition: 

(i) (i) (1)
z (0) = ż (0) = 0 except ż (0) = 1 .k k 1 

(1) (2) (3) (1) (2) (3)
To shorten our notation, let us write the parameters of our system as ρ = (ρ , ρ , ρ , ρ , ρ , ρ ),x,1 x,1 x,1 v,1 v,1 v,1 

(1) (2) (3) (1) (2) (3)
and g = (gx , gx , gx , gv , gv , gv ). Figure 2(a) and 2(b) are numerical simulations of n = 60 vehicles of 

each type on the line with parameters given in the Figure. These parameters satisfy Corollary 2.1. Thus P3 (i) P3 (i) Q3 (i) 
i=1 βx,1 = −0.0858, while i=1 βx,1 + i=1 βx,1 = 0. So it is far from satisfying the first, but satisfies the 

stability condition derived in this section. From the figures, it is apparent that the system is stable in the 

sense both definitions, and that the outcome is largely independent of the type of boundary condition. 

On the other hand, Figure 3(c) shows the typical dynamics of a flock unstable system. We see that around 

time t = 300, one of the leader-agent distances is roughly 4000 units from its desired value. The largest 

such distance in an otherwise stable system is called the magnitude of the transient. The stability of the 

system guarantees its ultimate return to equilibrium for large t. What happens here is that as the number 

N of agents grows, the magnitude of the transient grows exponentially in N . This is illustrated in Figure 

3(b) where the logarithm of the magnitude of the transients is plotted as function of the number of vehicles. 

Because of this exponential increase, we get very large transients even for moderate N . Obviously, for 

traffic purposes such systems are undesirable. The parameters of Figure 3(a) are similar to Figure 2, except P3 (i)
ρ = −(0.6, 0.8, 0.10, 0.3, 0.3, 0.3) satisfying β = 0, but not the condition derived in this section.i=1 x,1 
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3 Periodic Arrangements with Next Nearest Neighbor Interac-

tions 

Next nearest neighbor interaction means that a vehicle can see up to two vehicles in front and behind it. 

Although such systems with identical vehicles were included in [6], they were more thoroughly studied in 

[10], where it was shown that for certain parameter values, these systems can generate so-called reflectionless 

waves. In this section, we consider the stability problem for the more complicated case of flocks in R of type 

...2-1-2-1 with next nearest neighbor interaction (see Figure 4). With n agents of each type in R, we have 

N = 2n agents all together. 

Similarly as the previous chapter, for k = 1, . . . , n, the relevant equations of motion become 

(1) (1) (1) (1) (2) (1) (2) (1) (1) (1) (1)
z̈ = g (z + ρ + ρ + ρ + ρ )k x k x,1zk x,−1zk−1 x,2zk+1 x,−2zk−1 

(1) (1) (1) (2) (1) (2) (1) (1) (1) (1)
+ g (ż + ρ ż + ρ ż + ρ ż + ρ ż )v k v,1 k v,−1 k−1 v,2 k+1 v,−2 k−1 

. (9) 
(2) (2) (2) (1) (2) (1) (2) (2) (2) (2)(2)z̈ = g (z + ρ + ρ + ρ + ρ )k x k x,−1zk x,1zk+1 x,−2zk−1 x,2zk+1 

(2) (2) (2) (1) (2) (1) (2) (2) (2) (2)
+ g (ż + ρ ż + ρ ż + ρ ż + ρ ż )v k v,−1 k v,1 k+1 v,−2 k−1 v,2 k+1 

Because we assume the equations are decentralized, we get the constraints: 

XX2 2 
(i) (i)

ρ = −1 , ρ = −1 . (10)x,j v,j 
j=−2,j 6 j=−2,j=0=0 6 

As in Section 2, we formulate the system with periodic boundary conditions and investigate its stability. 

That system can be written more compactly as (7). But now M is given by 

⎞⎛ ⎜⎜⎜⎜⎜⎜⎜⎝ 

0 0 I 0 

0 0 0 I 

(1) (1)
gx Bx 

(1) (1)
gx Ax 

(1) (1)
gv Bv 

(1) (1)
gv Av 

(2) (2)
gx Ax 

(2) (2)
gx Bx 

(2) (2)
gv Av 

(2) (2)
gv Bv 

⎟⎟⎟⎟⎟⎟⎟⎠ 

. (11) 

The n × n matrices A and B are defined below in terms of the permutation matrices P± of (6). All matrices 

A and B are circulant n × n matrices. Thus in the basis vm given in Definition 2.1 is an eigenbasis for all, 

and the eigenvalues are trivial to compute. We list all matrices and their eigenvalues here. 
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j = 2 j = 1 

12121212 

Figure 4: Periodic arrangement of flock with two types of vehicles, labeled by 1 and 2. Each vehicle uses 
information from four others; the arrows indicate information flow. At time t = 0, the first vehicle start 
moving to the right. 

(1) (1) (1) (1) (1) (1)
Ax = ρ I + ρ P− ; λx (φ) = ρ −iφ .x,1 x,−1 x,1 + ρx,−1e 

(2) (2) (2) (2) (2) (2) iφAx = ρ I + ρ P+ ; λx (φ) = ρ .x,−1 x,1 x,−1 + ρx,1e 

(1) (1) (1) (1) (1) (1)
A = ρ I + ρ P− ; λ (φ) = ρ −iφ .v v,1 v,−1 v v,1 + ρv,−1e 

(2) (2) (2) (2) (2) (2) iφA = ρ I + ρ P+ ; λ (φ) = ρ .v v,−1 v,1 v v,−1 + ρv,1e 
(12)

(1) (1) (1) (1) (1) (1)iφ −iφBx = I + ρ P− + ρ P+ ; µx (φ) = 1 + ρ + ρ .x,−2 x,2 x,2e x,−2e 

(2) (2) (2) (2) (2) (2)iφ −iφB = I + ρ µ (φ) = 1 + ρ + ρ .x x,−2P− + ρx,2P+ ; x x,2e x,−2e 

(1) (1) (1) (1) (1) (1)iφ −iφB = I + ρ P− + ρ P+ ; µ (φ) = 1 + ρ + ρ .v v,−2 v,2 v v,2e v,−2e 

(2) (2) (2) (2) (2) (2)iφ −iφBv = I + ρ P− + ρ P+ ; µv (φ) = 1 + ρ + ρ . v,−2 v,2 v,2e v,−2e 

The following proposition is derived in the same way as the analogous proposition in the previous Section. 

Proposition 3.1. The eigenvalues ν and associated eigenvectors uν (φm) of M (with periodic boundary 

conditions) satisfy 

⎞⎛ 

uν (φm) = 

⎜⎜⎜⎜⎜⎜⎜⎝ 

�1vm 

�2vm 

ν�1vm 

ν�2vm 

⎟⎟⎟⎟⎟⎟⎟⎠ 

. 

For each m ∈ {0, · · · n − 1} given, there are four eigenpairs (counting multiplicity) determined by solving the 

following equation for ν and �i (we dropped the argument φ): 

⎞⎛⎞⎛⎞⎛ 
(1) (1) (1) (1) (1) (1) (1) (1)− ν2 
x µx + νgv µv gx λx + νgv λ⎜⎝g ⎜⎝⎟⎠ 

�1⎟⎠ = ⎜⎝ 
0⎟⎠ . 

v 

(2) (2) (2) (2) (2) (2) (2) (2)
gx λx + νgv λv gx µx + νgv µv − ν2 �2 0 
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Lemma 3.1. When φ = 0, the matrix of Proposition 3.1 has determinant Q(ν, φ = 0) equal to 

h � � � �i 
(1) (1) (2) (2) (1) (1) (2) (2)

ν2 ν2 + ν g α α + g α α .v v,1 + gv v,1 x x,1 + gx x,1 

The full expression of the constant term of Q(ν, φ) is a0(φ), where 

� � 
(1) (2) (1) (2)(φ) − λ(1)(φ)λ(2)a0(φ) = g g µ (φ)µ (φ) .x x x x x x 

Proof. The full determinant of the matrix in Proposition 3.1 is equal to 

� � 
1 (1) (2)

gx gx � 

(1) (2)
µx µx � 

(1) (2)− λx λx � � �� 
+ν (1) (2)

gx gv � 

(1) (2)
µx µv 

(1) (2)− λx λv 
(1) (2)

+ gv gx � 

(1) (2)
µv µx 

(1) (2)− λv λx �� 
+ν2 (1) (1)−gx µx � 

(2) (2) (1) (2)− gx µx + gv gv � 

(1) (2)
µv µv 

(2) (2)− λv λv . 

+ν3 (1) (1)−gv µv 
(2) (2)− gv µv 

+ν4 1 

Now set φ = 0. From (12) and recalling Definition 2.3, we see that for r ∈ {x, v} and i ∈ {1, 2}: 

(i) (i) 
λ(i) (i)

µ (0) = 1 + α and (0) = α .r r,2 r r,1 

Note that the constraint (10) gives for r ∈ {x, v} 

(i) (i) (i) (i)
1 + αr,1 + αr,2 = 0 =⇒ −µr (0) = λ( 

r
i)(0) = αr,1 . 

Substituting this, and some algebra, yields the Lemma. 

Theorem 3.1. If any of the following conditions are satisfied, then for large N , the system given by (9) 

with periodic boundary conditions is not (linearly) stable. 

(1) (2)
(i) gx 6= 0 gx 6= 0. 

(1) (1) (2) (2) (1) (1) (2) (2)
(ii) gx α x α ≤ 0 or gv α v α ≤ 0.x,1 + g x,1 v,1 + g v,1h � � � �i 

(1) (2) (2) (1) (1) (1) (2) (2)
(iii) g g α β + 2β + α β + 2β =6 0.x x x,1 x,1 x,2 x,1 x,1 x,2 

Proof. This proof is very similar to that of Theorem 2.1. Part (ii) is now more easily derived by explicitly 
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solving for the roots of Q(ν, φ) when φ = 0 (see Lemma 3.1). In (iii), it is best to differentiate the formula 

in the second part of Lemma 3.1 directly. The derivatives of the λ’s and µ’s are easily expressed directly in 

the α’s and β’s. 

The conjectures of [5] state that instability in the system with periodic boundary imply instability or 

flock instability of the system on the line (i.e. with non-trivial boundary conditions). That gives us the 

following corollary. 

Corollary 3.1. Using the conjectures of [5], we obtain that if 

h i 
(1) (1) (2) (2) (1) (2) (1) (2) − λ(2)λ(2)−g µ − g µ + g g (µ µ ) 6= 0 andx x x x v v v v v v 

φ=0 h � � � �i 
(1) (2) (2) (1) (1) (1) (2) (2)

g g α β + 2β + α β + 2β =6 0 ,x x x,1 x,1 x,2 x,1 x,1 x,2 

then the system on the line given by (9) has some form of instability (Definitions 1.1 or 1.2). 

As in Corollary 2.1, the first condition, which corresponds to a2(0) 6= 0 in Proposition 5.1, can be omitted. 

Figure 5: Behavior of vehicular formations with N = 100, g = −(1, 1, 1, 1), ρx = 
− 1 

60 (5, 15, 20, 20, 27, 9, 12, 12), and ρv = −(0.30, 0.70, 0, 0, 0.30, 0.70, 0, 0). (a) Boundary Condition Type 
I. Maximum amplitude of −72.8 at t = 79.3. (b) Boundary Condition Type II. Maximum amplitude of 
−72.0 at t = 78.5. (c) Dynamics of an unstable system. All parameters are the same as in (a) except 
ρx = −(0.30, 0.25, 0.25, 0.20, 0.30, 0.55, 0.10). 

In order to do the simulations, we define two types of boundary conditions. In type I boundary conditions, 
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(i) (i)
the central coefficients ρx,0, and ρv,0 are adjusted. 

(1)
z̈  = 01 � � 
(1) (1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (1)

z̈ = g −(ρ )z + ρ + ρ n−1 + ρn x x,1 + ρx,−1 + ρx,−2 n x,1zn x,−1z x,−2zn−1 � � 
(1) (1) (1) (1) (1) (1) (2) (1) (2) (1) (1)

+ g −(ρ )ż + ρ ż + ρ ż żv v,1 + ρv,−1 + ρv,−2 n v,1 n v,−1 n−1 + ρv,−2 n−1 � � 
(2) (2) (2) (2) (2) (2) (2) (1) (2) (1) (2) (2)

z̈ = g −(ρ )z + ρ + ρ + ρ .1 x x,−1 + ρx,1 + ρx,2 1 x,−1z1 x,1z2 x,2z2 � � 
(2) (2) (2) (2) (2) (2) (1) (2) (1) (2) (2)

+ g −(ρ )ż + ρ ż + ρ ż + ρ żv v,−1 + ρ v,1 + ρ v,2 1 v,−1 1 v,1 2 v,2 2 � � 
(2) (2) (2) (2) (2) (2) (1) (2) (2)

z̈ = g −(ρ )z + ρ + ρn x x,−1 + ρx,−2 n x,−1zn x,−2zn−1 � � 
(2) (2) (2) (2) (2) (1) (2) (2)

+ g −(ρ )ż + ρ ż + ρ żv v,−1 + ρv,−2 n v,−1 n v,−2 n−1 

(i) (i)
For Type II BC, we keep the central coefficients ρx,0, and ρ equal to 1 and we adjust the remainingv,0 

coefficients accordingly such that the sum of coefficients is zero as follows: 

(1)
z̈  = 01 � � 
(1) (1) (1) (1) (2) (1) (2) (1) (1) (1)

z̈ = g z + ρ + ρ − (1 + ρ )zn x n x,1zn x,−1zn−1 x,1 + ρx,−1 n−1 � � 
(1) (1) (1) (2) (1) (2) (1) (1) (1)

+ g ż + ρ ż + ρ ż − (1 + ρ )żv n v,1 n v,−1 n−1 z,1 + ρv,−1 n−1 � � 
(2) (2) (2) (2) (1) (2) (1) (2) (2) (2)

z̈ = g z + ρ + ρ − (1 + ρ )z1 x 1 x,−1z1 x,1z2 x,1 + ρx,−1 2 � � 
(2) (2) (2) (1) (2) (1) (2) (2) (2)

+ g ż + ρ ż + ρ ż − (1 + ρ )żv 1 v,−1 1 v,1 2 v,1 + ρv,−1 2 � � 
(2) (2) (2) (2) (2) (1) (2) (2) (2)

z̈ = g z + (ρ )z + (ρ )zn x n x,1 + ρ x,−1 n x,2 + ρ x,−2 n−1 � � 
(2) (2) (2) (2) (1) (2) (2) (2)

+ g ż + (ρ )ż + (ρ )żv n v,1 + ρv,−1 n v,2 + ρv,−2 n−1 

We run simulations of the system in R considering these two boundary conditions with initial condition: 

(i) (i) (1)
z (0) = ż (0) = 0 except ż (0) = 1 .k k 1 

As in the previous chapter, we can shorten the notation by writing the coefficients of the system as 

(1) (2) (2) (2) (1) (1) (1) (1) (2) (2) (2) (2)
g = (g , g , g , g ), ρx = (ρ , ρ , ρ , ρ , ρ , ρ , ρ , ρ ), and similarly ρv . Figures 5(a) x x x v x,1 x,−1 x,2 x,−2 x,1 x,−1 x,2 x,−2 

and 5(b) show the dynamics of a system of 100 vehicles in formation with next nearest neighbor interactions 

and boundary conditions Type I and Type II respectively. The parameters were chosen to satisfy Theorem 

3.1. On the other hand, Figure 5(c) shows the dynamics of a system in R with an evident instability of some 
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4 

P (i) (i)
type, see parameters in the caption of Figure 5(c). These were chosen to satisfy β + 2β = 0,i∈{1,2} x,1 x,2 

but not the condition of Corollary 3.1. 

Conclusion 

We consider systems of the form (1) where a) the Laplacians Lx and Lv do not necessarily commute and so 

cannot be simultaneously diagonalized and b) these Laplacians are not necessarily symmetric. Such systems 

cannot successfully be analyzed by methods used in earlier papers: Laplace or Fourier transforms, Lyapunov 

functions, analysis of the eigenvalues and eigenvectors of either M or its constituent Laplacians. Instead, we 

follow the analysis proposed in [6, 5] to analyze these systems. 

Our aim with this work is to find conditions for stability for systems in which the agents are not identical. 

Because this is analytically a very difficult problem, we start in this paper with periodic arrangements of 3 

types of agents (· · · 3 − 2 − 1 − 3 − 2 − 1) with nearest neighbor interactions and periodic arrangements of 2 

types of agents (· · · 2−1−2−1) with next nearest neighbor interactions. For these types of flocks, we develop 

necessary conditions for stability. Corollaries 3.1 and 2.1 show that in each of these two cases, a necessary P 
condition for stability is that ρx,j j plus a nonlinear correction. Thus stability is a co-dimension onej 6=0 

phenomenon. 

We close with a few remarks about these results. The first is that in this context, instability refers to 

two phenomena. One is instability in the usual sense of the word (as spelled out in Definition 1.1), namely 

an eigenvalue has positive real part. The other notion of instability is given in Definition 1.2. This notion 

essentially means that transients increase exponentially fast as the number of agents n increases, even though 

for each n the system is stable in the sense of Definition 1.1. 

The second remark is that certainly the necessary condition derived here is not sufficient. For example, 

if we give the last agent an infinite mass (setting gx = gv = 0 for this agent), it cannot change its velocity. 

Clearly, if the leader changes its velocity, a system with that boundary condition cannot evolve towards 

equilibrium. 

We very briefly comment on how the results in this work may be generalized to arrays of vehicles with a 

· · · p−(p−1)−· · · 2−1−p−(p−1)−· · · 2−1 configuration. We concentrate on nearest neighbor interactions. 

We start by sketching how a more general version of Theorem 2.1 might be derived. It turns out (5) 

(where p = 3) generalizes easily. The result is a matrix M which consists of four N × N blocks. If we write 

these blocks in terms of n × n matrices as in (5) where p = 3, for each of these four blocks, we obtain a block 
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5 

of p × p sub-blocks. The upper two N × N -blocks are easily descibed. The lower two blocks are tridiagonal 

except in the upper right and lower left entries where permutation matrices appear. The equivalent of 

Proposition 2.1 holds also in this case. The most important result from Theorem 2.1 is part (iii). It boils 

down to computing a0(0) and requiring it to be 0. This is done by studying the determinant of the matrix in 

Proposition 2.1. The latter can be simplified by setting ν = 0, which allows us to employ Jacobi’s Formula 

0 

to obtain expressions for a0(0).
0 

The second part of this consists of deriving the signal velocity [6] for these systems and use those to 

derive characterizations of the orbits of individual agents. This is done by evaluating the determinant of the 

matrix in Proposition 2.1 in lowest orders of φ and ν. If several conditions are met, this gives 

a2(0)ν
2 + 2a 0 00 

1(0)νφ + a0 (0)φ
2 + higher order = 0. 

From this equation, using methods similar to the appendix, a first order approximation for ν±(φ) can be 

computed. In turn, this yields the signal velocity for the system [6] from which the rough characteristics of 

the agents’ trajectories can be derived [5, 10]. The details of these computations are quite complicated, but 

it should at least be possible to generate an algorithm that computes these characteristics as function of the 

parameters. A clear example how this is done was given in [10][Theorem 5.2]. 

Finally, once these results are in, the question whether the method of periodic boundary conditions can 

be even further extended than [5] can be studied. Does any part of the result thus obtained continue to 

hold, or have implications, for agent arrays of the type of vehicles with a p − (p − 1) − · · · 2 − 1 where p is 

large, but where the block is not repeated? We currently do not have an answer to that question, but the 

expectation is that at least the signal velocity should not depend very strongly on the boundary conditions. 

Appendix 

Proposition 5.1. For n ≥ 2, define Qn as follows: 

nX 
Qn(z) = ai(t)z i + 2a1(t)z + a0(t) , 

i=2 

where the ai are analytic functions on R modulo 2π into C. Assume further that 

a0(0) = a1(0) = 0 and a2(0) 6= 0 and 0 a0(0) 6= 0 . 
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Then there is a neighborhood N of the origin and an � > 0 in which the zeros of {Qn(t)}t∈(−�,�) form two 

differentiable curves intersecting orthogonally at the origin. 

In particular, it follows that near the origin, the solutions form a perpendicular cross and thus at least one 

on the arms of the cross extends into the right half-plane. 

Proof. We start with n = 2. In this case, we can write out the solutions: 

p r s 
2 2a−a1 ± −a0a2 + a1 a0 1 a1 

z±(t) = = ± − 1 − − . 
a2 a2 a0a2 a2 

Let us define a curve δ(t) to be tangent to a curve η(t) at the origin for t = 0 if δ(0) = η(0) = 0 and 

|δ(t) − η(t)|
lim = 0 . (13) 
t&0 |η(t)| 

One checks that we need all the assumptions on the coefficients ai, i ∈ {0, 1, 2}, to show that z±(t) is tangent s 
0a0(0)to ± − t. 

a2(0) 
We proceed by doing n−2 induction steps. Given Qn, we form all the intermediate polynomials {Qk}n 

k=2. 

Consider t ∈ N� = (−�, �) for � small. We wish to prove thatst ∈ N�, the solutions of Qk form two curves 

a0 
0 (0) 

zk,±(t) tangent (in the sense of equation 13) at the origin to ± − t which we will from now one denote 
a2(0)√ 

by ± ct. See Figure 6. 

zk,+(t) 

√ 
ct 

√ 
Figure 6: The curve γL around zk,+(t) (solid) which itself is on a curve tangent to ct (dashed). 

We proved the statement holds for n = 2. The induction hypothesis is that the above statement holds 

for some fixed k ∈ {2, · · · n − 1}. Fix an arbitrarily large L, (and at least as large as n).. Then fix � > 0 

small enough, so that the conditions in the following hold for all t ∈ N�. Without loss of generality, take 

t ≥ 0 and specialize to one branch, namely zk,+(t). 
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Qk has no other zeros in an 2
p
|c�| neighborhood of the origin. By continuity, for |z| < 

p
|c�|, we can 

write Qk as (z − zk,+)(z − zk,−)Q̃ 
k(t, z), where |Q̃ 

k(t, z)| ≥ 1 |Q̃ 
k(0, 0)| 6= 0. Similarly, we may assume that 2 

|zk,+(t)| is|ak+1(t)| ≤ 2|ak+1(0)|. Let γL(s) be the curve zk,+(t) + e . Then γL contains no zeroes. By theL 
√ 

induction hypothesis, zk,+(t) is tangent to ct or: 

p 1 p � �p � �p
|zk,+(t) − |ct|| ≤ |ct| ⇐⇒ 1 − L−1 |ct| ≤ |zk,+(t)| ≤ 1 + L−1 |ct| . 

L 

|ak+1(t)γ
k+1| ≤ |ak+1(t)| |zk,+(t)|k+1 |1 + L−1|k+1 
L 

k+1 k+1 ≤ 2|ak+1(0)| |1 + 1 |k+1|ct| 2 |1 + 1 |k+1 = 2e2 |ak+1(0)| |ct| 2 .k+1 k+1 

˜|Qk(γL)| = |γL − zk,+| |γL − zk,−| |Q̃ 
k(t, γL)| where Qk(0, 0) 6= 0 

= |zk,+(t)| |zk,+(t) + |zk,+(t)| 
eis − zk,−(t)| |Q̃k(t, z)|L L p p

|ct| |Q̃k(0, 0)|≥ (L−1 − L−2) |ct| . 
2 2 

Thus we can choose t small enough so that, on γL, |ak+1(t)z
k+1| is smaller than |Qk(z)|. Since neither 

k+1function has poles, Rouché’s theorem [14] implies that ak+1(t)z + Qk(z) has the same number of zeros 

inside γL as does Qk(z), namely one. Thus Qk+1(z) has a unique zero within γL. Since we can do this 

for any value of L (at the price of making � small enough), it follows that zk+1,+(t) is tangent to zk,+(t) 
√ 

and hence to ct. Since we need only finitely many induction steps to get to zn,+(t), the statement of the 

proposition follows. 

This result can be generalized to polynomials Qn where the first coefficient ar with ar(0) =6 0 is for r > 2 

instead of r = 2 as in the proposition. Here we present an informal description of the proof of such a result 

for r = 3. Details will appear elsewhere. So assume that Qn and ai are as in Proposition 5.1, except that 

now 

0 a0(0) = a1(0) = a2(0) = 0 and a3(0) =6 0 and a0(0) 6= 0 . 

First take n = 3. The idea is to expand the roots z(t) of Qn as a power series of t1/3 . Retaining only the 

lowest powers of z and t in Qn we may write: 

3 0 2 0 0Q3(z) = a3(0)z + a2(0)tz + a1(0)tz + a0(0)t. 

We are looking for roots z(t) → 0 as t → 0. Thus the middle two terms of the right hand side are clearly 
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0 3smaller than a0(0)t. Therefore that term must be canceled by a3(0)z . Thus in lowest order, the roots z(t) 

of Q3(z) must satisfy for some � > 0 
0a0(0) z(t)3 ∼ − t, 

a3(0) 

as long as t ∈ (−�, �). Thus at t = 0 the roots form 3 differentiable curves (or 6 branches) at equal angles. 

The induction in the second part of the proof is similar to the one in the proof of Proposition 5.1. 
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