
Portland State University Portland State University

PDXScholar PDXScholar

Computer Science Faculty Publications and
Presentations Computer Science

12-23-2021

Workflow Critical Path: A Data-oriented Critical path Workflow Critical Path: A Data-oriented Critical path

metric for Holistic HPC Workflows metric for Holistic HPC Workflows

Daniel D. Nguyen
Portland State University

Karen L. Karavanic
Portland State University, karavan@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/compsci_fac

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Nguyen, D. D., & Karavanic, K. L. (2021). Workflow critical path: a data-oriented critical path metric for
holistic HPC workflows. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 1(1),
100001.

This Article is brought to you for free and open access. It has been accepted for inclusion in Computer Science
Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can
make this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci_fac
https://pdxscholar.library.pdx.edu/compsci
https://pdxscholar.library.pdx.edu/compsci_fac?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fcompsci_fac%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/compsci_fac/314
mailto:pdxscholar@pdx.edu

BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Contents lists available at ScienceDirect

BenchCouncil Transactions on Benchmarks,
Standards and Evaluations

journal homepage: https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-
benchmarks-standards-and-evaluations/

Workflow Critical Path: A data-oriented critical path metric for Holistic HPC
Workflows
Daniel D. Nguyen ∗, Karen L. Karavanic
Department of Computer Science, Portland State University, Portland, OR, United States of America

A R T I C L E I N F O

Keywords:
Critical path analysis
Holistic HPC Workflows
Parallel performance tools
Workflow critical path

A B S T R A C T

Current trends in HPC, such as the push to exascale, convergence with Big Data, and growing complexity of
HPC applications, have created gaps that traditional performance tools do not cover. One example is Holistic
HPC Workflows — HPC workflows comprising multiple codes, paradigms, or platforms that are not developed
using a workflow management system. To diagnose the performance of these applications, we define a new
metric called Workflow Critical Path (WCP), a data-oriented metric for Holistic HPC Workflows. WCP constructs
graphs that span across the workflow codes and platforms, using data states as vertices and data mutations as
edges. Using cloud-based technologies, we implement a prototype called Crux, a distributed analysis tool for
calculating and visualizing WCP. Our experiments with a workflow simulator on Amazon Web Services show
Crux is scalable and capable of correctly calculating WCP for common Holistic HPC workflow patterns. We
explore the use of WCP and discuss how Crux could be used in a production HPC environment.

1. Introduction

The term workflow is used throughout scientific computing with
different contexts and meanings. For example, some scientific appli-
cations are developed with a workflow management system such as
Pegasus [1] or Kepler [2], that schedules, runs, adapts, and summarizes
a large number of lightweight tasks. Yet many computational sci-
ence applications are implemented outside of any structured workflow
management system. They comprise multiple steps, where each is a
distinct library, script, or application with a specific functionality and
design. For example, a science code might call an existing modeling
code that is treated as a black box. These Holistic HPC Workflows are
the focus of this work. Holistic HPC Workflows are an increasingly
important paradigm with the potential for performance bottlenecks
caused by movement and copying of large datasets, and inefficient
interfaces between the separate components and applications. Today
these workflows often include analysis and visualization of very large
data sets, using methods developed for Big Data such as machine
learning, analytics, and visualization. This growing complexity requires
new ways of characterizing performance at the workflow level [3].
Workflow management systems (WMS) like Pegasus offer researchers
a way to organize, execute, and analyze their scientific jobs. However,
the performance analysis is tightly coupled to the WMS, thus these
systems do not solve the problem of holistic performance analysis for
workflows designed outside of such a system.

Analyzing the performance of Holistic HPC workflows presents a
challenge for many existing performance tools, that are able to ac-
curately and efficiently diagnose the performance of each individual

∗ Corresponding author.
E-mail addresses: ddn2@pdx.edu (D.D. Nguyen), karavan@pdx.edu (K.L. Karavanic).

component, but not to diagnose problems that span across them [4,5].
For instance, tools such as HPCToolkit [6] and TAU [7] use profiling
and tracing techniques to detect performance bottlenecks in parallel
applications. Some tools such as Darshan [8] and IPM [9] use I/O
tracing to characterize I/O behavior of parallel applications. These
tools were designed to analyze the performance of a single parallel
code using the common approaches of message passing interface (MPI),
multithreading (OpenMP), acceleration (CUDA), or a hybrid approach.
However, diagnosing Holistic HPC Workflows requires integrated anal-
ysis across the separate components. A recent U.S. Department of
Energy report on the future of scientific workflows called out this need
for research ‘‘extending single-application performance validation tools
to workflows of applications’’ [10].

One motivating example for our work is the Groningen Machine
for Chemical Simulations (GROMACS) [11]. GROMACS is a scientific
framework for simulating molecular dynamics of biochemical modules
such as proteins, lipids, and nucleic acids. It models these molecu-
lar dynamics by solving Newtonian equations of motion for systems
with hundreds to millions of particles. A common workflow pattern
in GROMACS involves setting up a simulation environment, adding
a solvent medium, generating an initial molecular model, calculating
energy minimization, calculating initial equilibrium, and calculating
actual molecular dynamics [12]. Each step can correspond to a single
application using a shared file system, managed by a job scheduler like
SLURM. Analyzing the workflow performance of GROMACS proved dif-
ficult; attempts included using a top-down approach by deconstructing

https://doi.org/10.1016/j.tbench.2021.100001
Received 6 August 2021; Received in revised form 11 October 2021; Accepted 20 October 2021
Available online 23 December 2021
2772-4859/© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

KeAi
CHINESE ROOTS
CL08AI. 1 M.CT

https://doi.org/10.1016/j.tbench.2021.100001
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://https://www.keaipublishing.com/en/journals/benchcouncil-transactions-on-benchmarks-standards-and-evaluations/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tbench.2021.100001&domain=pdf
mailto:ddn2@pdx.edu
mailto:karavan@pdx.edu
https://doi.org/10.1016/j.tbench.2021.100001
http://creativecommons.org/licenses/by-nc-nd/4.0/

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Fig. 1. Application layer of DroughtHPC workflow.

workflow into I/O, communication, and computation components and
subsequently instrumenting the workflow applications to record these
metrics [13].

A second motivating example is DroughtHPC [14]. This application,
developed at Portland State University, predicts drought for a target
geographical area. It utilizes the Variable Infiltration Capacity model
(VIC) [15] to simulate meteorological samples over a given time period.
A python script is used to perform data assimilation and call VIC in
a loop (see Fig. 1). Every call to VIC inputs and outputs 25 files.
The number of calls equals the number of samples needed multiplied
by the number of days needed. Locating workflow bottlenecks for
DroughtHPC, particularly due to dataflow and the control flow of the
entire workflow, was challenging [16]. To investigate performance
bottlenecks, researchers manually ran a variety of measurement tools
to focus attention to the key bottlenecks. The overhead of calls to the
VIC hydrologic model from within a python loop and significant file
creation, reads, and writes, represented main performance bottlenecks.
The DroughtHPC study shows a need for one performance tool that
can detect common dataflow patterns and diagnose runtime bottlenecks
across different phases in a scientific workflow.

Holistic HPC Workflow Diagnosis is also an important aspect of
the procurement process for major new systems at large science labs.
Describing the workload accurately is essential to matching the ca-
pabilities of the future systems to the needs of the lab. Fig. 2 shows
an example of the phases associated with common large-scale scien-
tific simulation workflows, with data retention timescales divided into
temporary, campaign, and forever. The temporary timescale describes
application data that is typically discarded at completion of a phase
or run. The campaign timescale includes data used throughout the
execution or set of executions of the entire scientific workflow. The
archive timescale describes data stored for longer archival purposes.
This type of diagram is modeled after those developed by The Alliance
for Application Performance at Extreme Scale (APEX) [17].

In this paper we present our initial work to address this need.
Workflow Critical Path (WCP) is a data-oriented critical path metric
for Holistic HPC Workflows. Building on earlier work on Critical Path
Analysis for individual MPI applications [18–20] we have developed a
technique for determining the critical path across an entire Holistic HPC
Workflow. This has the potential to help researchers better understand
data movement patterns and potential bottlenecks occurring across the
complex memory hierarchy and storage systems in a large-scale HPC
cluster. Our approach is designed to focus developers’ optimization
efforts, avoiding the need to separately analyze each participating
application and manually determine where to focus. It also allows the
detection of performance bottlenecks related to moving from one stage
of the workflow to the next, for example, copying and transforming
simulation output data for analysis with a visualization tool.

The key contributions of this paper are:

1. We define Workflow Critical Path (WCP), a novel perfor-
mance metric for Holistic HPC Workflows. WCP describes the
critical path for an entire HPC workflow by defining a program
activity graph (PAG) where vertices represent data state and
edges represent data mutations.

2. We present Crux, a distributed, runtime tool that calculates
WCP. Crux follows a service-oriented architecture and deploys

Fig. 2. APEX style workflow diagram. The brown boxes along the bottom show the
major steps in the workflow, and the blue rectangles show the levels of memory and
storage for the data at each step.

on a target number of nodes in an HPC cluster. Crux provides
an API for building workflow PAGs and computing WCP. It also
provides a user interface (UI) for visualizing WCP data. Our
Crux prototype can be deployed in the Cloud using Amazon Web
Services or locally using Docker.

3. We developed a configurable HPC workflow simulator
framework, and used it for a detailed capability, scaling
and performance study. The configurable workflow simulators
allow users to simulate representative workloads.

This represents a first step towards Holistic HPC Workflow perfor-
mance diagnosis [21].

2. Related work

There are a number of workflow management systems in use to-
day, for example Kepler and Pegasus. Such systems generally include
performance monitoring infrastructure, however the applications must
be specifically implemented for the specific workflow management
system. Crux on the other hand targets Holistic HPC Workflows, that
comprise separately developed components to solve a single problem.

Annotation-based (also referred to as application-instrumented) dis-
tributed monitoring schemes developed for commercial server envi-
ronments rely on applications to explicitly tag every record with a
global identifier that links these message records back to the originating
request. These systems tend to be very accurate but potentially slow, as
all system components must be instrumented. One example is Dapper,
developed by Google [22]. It has been used for a large, production
distributed systems tracing framework. In a Dapper trace tree, the tree
nodes are basic units of work which are referred to as spans. The edges
indicate a causal relationship between a span and its parent span. A
span is a simple log of timestamped records which encode the span’s
start and end time, any RPC timing data, and zero or more application-
specific annotations. A span can contain information from multiple
hosts and in fact every RPC span contains annotations from both the
client and server processes. Crux follows an annotation-based approach,
however it greatly reduces the overhead by only creating nodes for data
operations.

Facebook’s end-to-end performance tracing infrastructure, Canopy,
is another example of a large-scale, runtime performance tool that can
record and process over 1 billion traces per day [23]. Canopy has
several features similar to WCP. Canopy models trace data as DAGs with
nodes representing events in time, with events defined more broadly
and at a lower level than WCP. Canopy authors noted how infeasible

2

Loop number of days

Drought
Prediction

Stage
In

Pre
Process

MPI
Post

Process
Viz

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

it was to expose traces at that particular level of granularity since
end-users, i.e. Facebook engineering teams, would not understand the
mappings to higher-level concepts. To address this, Canopy constructs
a modeled trace of events, which are higher-level representations of
lower-level performance data. WCP focuses on the end-to-end move-
ment and transformation of data across an entire HPC workflow instead
of performance within any particular workflow component. For exam-
ple, WCP is not intended to diagnose one MPI application. Like WCP,
Canopy also derives the critical path of its trace data and visualizes the
critical path to the end user.

Research into CPA for parallel programs started in the 1980s with
work such as Yang & Miller [20]. Their approach involved construct-
ing a directed, weighted graph, called program activity graph (PAG),
whose vertices represent events (e.g. send/receive and process cre-
ation/termination events) in a program and whose edges represent the
duration of the event. They were able to return the longest path on
a scale of tens of thousands of nodes. Critical path analysis evolved
in the 1990s with techniques such as using piggybacking critical path
data on MPI messages to compute the critical path profile during
runtime [19] Hollingsworth demonstrated that using this technique,
most programs can tolerate a 5%–10% level instrumentation overhead
without suffering significant change of the critical path length. Critical
path for individual MPI applications has continued to be improved
and scaled up with increasing numbers of MPI ranks [24–27]. Overall,
critical path analysis is useful in identifying the cause of a program’s
total execution time, diagnosing bottlenecks to application scalability,
and predicting overall performance [24].

Our work targets holistic HPC workflows, thus requiring a novel
approach to monitor separate components and merge their graphs. In
preliminary work towards this same goal, Herold & Williams introduced
a top-down performance analysis approach to monitor workflow appli-
cations [18]. They implemented a tracing infrastructure that interfaces
with the resource manager to provide summarized performance metrics
for workflow, jobs, and job steps. In contrast, we focus on defining a
specific metric, WCP, and a runtime approach to its calculation and
visualization.

3. Workflow critical path (WCP)

Workflow Critical Path is calculated by constructing a program
activity graph (PAG) spanning all components of a holistic workflow,
representing data state as vertices and data mutations as edges. The
result is a PAG that can be analyzed for data state patterns through an
entire HPC workflow (Fig. 3).

A data state comprises:

• Size — the size of the data, for example 10 MB;
• Time — the creation timestamp;
• Origin — the original application that produced the state;
• Location is the current storage location, for example ‘‘node1

disk1’’ ; and
• Label - a meaningful descriptor for the data state (e.g. file.csv,

byte_stream).

An edge represents a data mutation, an operation that changes a data
state. An edge comprises:

• cost — the elapsed time between two connected data states; and
• mutation — the operation performed on a data state resulting in

a state change.

The resulting graph allows WCP to describe a data set evolving
over time. This focus on data generalizes time: unlike profilers, the
‘‘cost’’ captured in each edge includes all computation and I/O activity
between each two data states. Reducing I/O activity cost thus poten-
tially changes or improves the critical path. Reducing computation
time also potentially changes or improves the critical path, just as in
computation-oriented approaches.

Fig. 3. Trivial example of a data state undergoing different mutations. Vertex A
represents a 10.0MB file called file.csv on a disk belonging to Node1. Vertex A
undergoes a SPLIT mutation that divides file.csv into file1.csv and file2.csv. The result
is two new data states, B and C. Vertices B and C undergo a TRANSFER mutation that
transfers file1.csv and file2.csv from disk on Node 1 to memory on nodes 2 and 3
respectively.

3.1. Critical path algorithm

The critical path represents the longest path through the graph
of data state mutations based on execution time. Thus, critical path
algorithms are typically shortest path algorithms modified to find the
path with the longest execution time [28]. A well-known algorithm
that solves the single source shortest path (SSSP) problem is Dijkstra’s
algorithm which has a worst-case performance of O(|E|+|V| log |V|)
where |V| is the number of vertices and |E| is the number of edges.
Delta-stepping [29] is a distributed variant that divides Dijkstra’s al-
gorithm into phases that can be executed in parallel on distributed
memory architectures for an average-case time of 𝑂(log3𝑛∕log log 𝑛). For
our WCP prototype we use a version of Delta-stepping implemented
for shared memory architectures described by Kranjčević et al. [30].
The input of the Δ-stepping algorithm is a graph given by its vertices
V, edges E, and the cost function c, a source node s, and an optional
parameter 𝛥 > 0 used to divide all the outgoing edges of each vertex
into two categories, called light and heavy edges, based on whether
the cost of that edge is smaller or larger than Δ. The Kranjčević et al.
implementation of Delta-stepping performs 𝑂(|𝑉 |

1+ 1
𝑑) operations total

for graphs representing d-dimensional square lattices. Their testing
showed an average parallel efficiency of at least 50% over Dijkstra. The
pseudocode for this algorithm is shown in Fig. 4.

Traditional PAGs where nodes represent computations and edges
represent computational activities typically store the duration of com-
putational activities as the edge weight and employ a longest path
algorithm to return the critical path [28]. Since WCP represents data
state as vertices and data mutations as edges, we use the elapsed time
between data states as the edge weight.

We store a weight property, called cost, for edge E such that the cost
equals the inverse of elapsed time, i.e. difference between timestamped
values of vertex A and vertex B.

𝑐𝑜𝑠𝑡𝐸 = 1
𝑡𝑖𝑚𝑒𝐵 − 𝑡𝑖𝑚𝑒𝐴

The inverse elapsed time means that edges between data state vertices
with large time differences will receive a small cost value and vertices
with small time differences will receive a large cost value.

4. The crux prototype

To enable further study of WCP, we implemented a prototype, Crux,
along with the tooling needed to build and deploy. Crux comprises the
following modules:

3

mutation: TRANSFER

cost: 2s

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Fig. 4. Pseudocode for the Delta-Stepping Algorithm.

Crux API: An HTTP, application programming interface (API) that ex-
poses representational state transfer (REST) endpoints to work-
flow HPC applications. The Crux API server implements routines
to build workflow PAGs; interfaces with the Crux Database;
performs data integrity checks; and manages Crux’s performance
metadata;

Crux Database: A database that stores a workflow PAG and executes
Crux’s critical path algorithm for finding the WCP;

Crux UI: A user interface (UI) to visualize workflow PAGs and WCP.

In the remainder of this section we describe each of these modules,
Crux deployment, and examples of Crux.

4.1. Crux API

The Crux API is an HTTP API that follows a representational state
transfer (REST) architecture, chosen for benefits such as scalability
and portability. The Crux API must follow several constraints. First, it
must define stateful objects as API resources for clients to access. The
API resources should map to Crux’s data state schema. For example,
a client should be allowed to query a specific data state vertex in the
database by sending an HTTP GET request to an API. Second, the Crux
API must be a manager of the Crux database. It must implement logic
that tells the database how to perform simple CRUD actions such as
creating a vertex or updating an edge, or more complicated actions
like submitting queries needed to calculate the critical path from two
data state vertices in the PAG. Third, it must enforce the Crux data
state schema so that clients cannot send malformed requests. Fourth,
the API must provide support to the Crux UI for any backend requests
and must provide common application features such as user login and
access token management (See Fig. 5 and Table 1).

We identified the following properties as most important when
comparing different backend tools and languages for the Crux API pro-
totype: rapid development, high performance and asynchrony. Thus we
chose to implement the Crux API using Python’s Asynchronous Server
Gateway Interface (ASGI), a core library used by a popular Python

Fig. 5. Crux API interaction with HPC clients. (1) HPC applications (green) make API
calls to Crux (blue) through HTTP requests to the API server. (2) The API server
communicates to the graph database using a compatible protocol. (3) The UI is a
standalone application making HTTP requests to the API server for CRUD (create, read,
update, and delete) actions on the graph database.

backend framework, Django. We chose FastAPI [31], a framework built
around Starlette, which is a lightweight ASGI framework. FastAPI is a
fast Python framework that integrates with standards for OpenAPI and
the JSON schema.

REST-based web services are typically organized into resources,
logical objects we want to expose to the user. The Crux API includes two
resources: states and mutations. A resource is identified by a Uniform
Resource Identifier (URI). Clients can access that resource by sending
an HTTP request method to that URI. RESTful web APIs typically de-
ploy URIs following the pattern scheme://host:port/version/
resource. Parameters can also be used in URIs. For example, an
API might have a path parameter /users/{ID} which lets the client
specify a certain user with a specific ID. Parameters can also exist in the
form of query parameters which lets a client sort or filter on a particu-
lar resource. For example, /states?location=disk01 returns all
data states located on disk01. For Crux, we use a combination of path
and query parameters for clients to access resources.

Our Crux prototype includes six types of data mutations, based on
common data operations observed in scientific applications:

TRANSFER — Transfer of data between one physical location to
another (e.g. staging in data from storage to compute node)

CONVERT — Conversion of data format or schema (e.g. JSON to
CSV)

APPEND — Appending data to existing data (e.g. adding timestamps
to data points in a file)

SPLIT — Splitting of data into multiple locations (e.g. mpi_scatter())
MERGE — Merging data from different sources (e.g. mpi_gather())
DELETE — Permanent deletion of data

4.2. Crux database

The Crux Database is the backend storage for the Crux API. The
database must support concurrent control to manage write operations
from multiple API instances, and scaling to accommodate collected
PAG data, representing vertices, i.e. data state, and edges, i.e. data
mutations, of an entire HPC workflow. For an example workflow of 5
applications, each generating 100 data states and performing 100 data
mutations, Crux’s database must hold 50,000 entries.

For the Crux prototype, we wanted a solution that was well doc-
umented, showed strong concurrency use cases, and came with graph

4

3

4

5

6

7

8

9

function .0.-Stepping(V,E,c,s,.O.) :
for each vertex v i n V:

heavy[v) ► {(v,w) e E c(v , w) > 6}
light[v) ► {(v,w) e E c(v,w) <= 6}

tent [vi

end for
relax(s,0)
i ► 0

10 while B ~ 0:

11 S ► 0
12
13

14
15
16

17
18

19

20
21
22

while B[il ~ 0:
Req ► {(w,tent(v)+c(v,w)) v e B[i) and (v,w) elight[v)}

s ► suBCil

B[i) ► 0

for each (w,d) e Req: relax(w,d)

end while
Req ► {(w,tent(v)+c(v,w)) : v e Sand (v,w) e heavy[v)}

for each (w,d) e Req: relax(w,d)

i i+l
end while
return tent{]

23 end function
24

25 function relax(w,d):
26 if d<tent [w)

27 tent [w) ► d

28 B[Ltent[w)/6)) ► B[Ltent[w)/6J) \ {w}

29 B [ld/6J) ► B [ld/6J) u {w}
30 end if

31 end function
32

Appl App2

(1)

App3

Graph

Database

Appn

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Table 1
The Crux API.

HTTP Method Path State Info Description

GET /states Returns a list of data states

GET /states/{ID} Returns a data state with matching ID

POST /states Creates a new data state

GET /mutations Returns a list of data mutations

POST /mutations/transfer start state, end state Creates a TRANSFER data mutation between a start data state
vertex and an end data state vertex.

POST /mutations/convert start state, end state Creates a CONVERT data mutation between a start data state vertex
and an end data state vertex.

POST /mutations/split start state, end states Creates a SPLIT data mutation between a start data state vertex and
ending at all end data state vertices

POST /mutations/merge start states, end states Creates a MERGE data mutation between all start data state vertices
and ending at an end data state vertex.

POST /mutations/append start state, end state Creates an APPEND data mutation between a start data state vertex
and an end data state vertex

POST /mutations/delete start state, end state Creates a DELETE data mutation between a start data state vertex
and an end data state vertex

POST /wcp start state: id, end state:id Returns a list of data state vertices representing the workflow
critical path between a start data state vertex and an end data state
vertex

algorithm support optimized for that database. To this end, we chose
a graph database, Neo4j [32], with a large ecosystem of tools and
support. Neo4j uses a query language called Cypher and uses a con-
vention of referring to vertices as nodes and edges as relationships.
Cypher can be used to describe patterns of nodes and relationships
and filter those patterns based on labels and properties. For example,
the following Cypher query returns all data state nodes with matching
property values:

To integrate Neo4j into Crux, we use a containerized version. We
developed a custom Python library to express Crux data state, and
data mutation schemas as proper Cypher queries to create nodes and
relationships. We use a Python Neo4j client to execute write transac-
tions between Crux API server and Neo4j. We calculate WCP using
Neo4j’s algo.shortestPath.deltaStepping() routine which
implements delta-stepping for shared memory architectures described
by Kranjčević et al. The Cypher query:

4.3. Crux UI

The Crux UI is a user interface to visualize critical path data in
the Crux Database. This includes visualizing program activity graphs,
critical paths, and various metadata like workflow runtime. In addition,
the Crux UI provides features such as user authentication and profiles.
The Crux UI runs as a standalone application and communicates to the
Crux database via the API server. For users to access the Crux UI, the
UI application must be properly exposed so authenticated end users can
reach it from their location. For example, if end users are outside of
the HPC cluster environment, the Crux UI can sit behind a public load
balancer which routes public traffic to the UI instance.

We implemented the Crux UI for our prototype with the Neo4j
Browser. The Neo4j Browser is a general-purpose UI that lets users
query, visualize, administrate and monitor a Neo4j database. With this
simpler approach, users can view a workflow PAG being constructed
during runtime and submit Cypher queries against the graph database.

To visualize WCP in the Neo4j browser, we use the algo.
shortestPath.stream() routine in the following Cypher query:

We needed to make one adjustment to the default behavior to
ensure correctness for MERGE data mutations. A MERGE data mutation
signifies the combining of two or more data states, such as combining of
data from files to create a new file. When this occurs in Crux, a new data
state vertex gets created and edges from each of the pre-merge data
state vertices get added. At this point, each edge receives an elapsed
time calculated from the parent vertex’s timestamp and the timestamp
of the new data state vertex. However, the critical path should be the
path that includes the pre-merged date state vertex or vertices with the
smallest elapsed time to the new data state vertex For Neo4j’s shortest
path algorithm to correctly return this path, we assign a large integer
value as the cost for the other non-critical paths (see Fig. 6).

We were able to accomplish most needed functionality for Crux
with Neo4j, however, the browser falls short of our particular needs.
A production version of Crux would require a different approach for
the Crux UI.

Fig. 9 shows a diagram of Crux installed in an HPC cluster. A basic
installation of Crux requires the following:

• Minimum of 3 nodes located in the HPC cluster. These allocated
nodes shall be on the same network as other compute nodes and
accessible via HTTP.

• Crux UI installed on 1 node behind a load balancer or reverse
proxy. This allows end users outside the HPC cluster network to
reach Crux. The UI shall target HTTP requests to the Crux API
server via another load balancer.

• At least one instance of the Crux API server installed on at least
1 node. Depending on workflow size, it may be appropriate to
install multiple instances over multiple nodes. We expect pri-
vate load balancer(s) to distribute API calls from client HPC
applications efficiently to an API instance.

5

MATCH (n)
WHERE n.size = {size} and

RETURN n

MATCH (start)

n.location = {location} and
n.time = {time} and
n.origin = {origin}

WHERE id(start) - {start id}
CALL algo.shortestPath.deltaStepping.stream

(start, ncost", 3.0)
YIELD nodeid, distance
RETURN algo.getNodeByid(nodeid)

AS destination, distance
ORDER BY distance

MATCH (start), (end)
WHERE id(start) - {start id} and

id{end} - {end_id}
CALL algo.shortestPath.stream (start, end,

"cost")
YIELD nodeid, cost
RETURN algo.asNode(nodeid), cost

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Fig. 6. Handling MERGE data mutations to use with Neo4j’s shortest path algorithm. Top image shows a PAG with timestamped values for data state vertices A, B, C, D, and
E along with data mutation edges with elapsed time (ET) and cost (inverse ET) shown. The intention is to merge vertex D and E. Vertex D took 6s to create from A whereas E
took only 2s to create. Vertex F represents the new data state vertex from merging E and D. Bottom image shows Vertex F created at t=1:08 resulting in an elapsed time of 2s
between D and F and 6s between E and F. Since the critical path must be ABCDF, we assign edge EF a high integer value in order for Neo4j’s shortest path algorithm to return
ABCDF as the critical path between A and F.

• Crux database installed on 1 node.

The Crux API is designed as a stateless server. It does not track or
store data from clients. Clients of Crux must make appropriate API calls
to Crux. This means that client HPC applications must support the same
protocol (e.g. HTTP) to communicate with Crux. Furthermore, clients
must know how to create data state information defined by Crux’s
schema. The following pseudocode shows an application loads in a data
file input.txt. In order to model this in Crux, a total of 3 Crux API
calls are needed.

4.4. Example

To illustrate WCP and Crux in practice, we instrumented two appli-
cations written in Python and C that perform similar I/O operations.
Both programs stage in data, perform computation on the data, and
write the results out to a new file. We inserted a total of 6 Crux API calls
in each program. In the Python application, we included our custom
Python library called Crux to access utility functions that help create
and manage Crux data states. In C we also include utility functions that
wrap around the libcurl library to help execute HTTP requests (see
Figs. 7–9).

5. Crux workflow simulator

In order to effectively test WCP, we developed a workflow simu-
lator for Crux, with a system of distributed applications to simulate
representative scientific workflows. The simulator system serves as a
lightweight, local testbed to examine Crux’s performance (see Fig. 10).

We designed five representative workflows, each of which exhibits a
characteristic element or pattern we have observed in HPC workflows,
motivated in particular by the APEX report and DroughtHPC. The 5
workflows are:

1. Generic. These jobs include staging in data, preprocessing data,
MPI, postprocessing data, and visualizing data. We consider
this the simplest of workflows in that there is only one data
source and the critical path will depend on the MPI rank that
takes the longest. Simulators used: ’Stagein’, ’Preprocess’, ’MPI’,
‘Postprocess’, and ‘Viz’. TOTAL_MPI_RANKS = 4 (see Fig. 11).

Fig. 7. Crux API calls for capturing a load from input.txt.

2. Data Splits. MPI-based workflow with data splitting across a
number of physical nodes. These jobs include staging in data,
preprocessing data, MPI, postprocessing data, and visualizing
data. Simulators used: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Postpro-
cess’, and ‘Viz’.

3. Checkpoint. A workflow that includes more than one run of
a parallel codebase with a checkpoint file created in between
runs. The time duration to transfer the file is configurable.
We simulate checkpoint files being written to storage between
runs of parallel tasks representing the scientific simulation. Sim-
ulators: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Checkpointout’, ‘Check-
pointin’, ‘MPI2’, ‘Postprocess2’, ‘Viz’.

4. Multiple Sources. Simulates a workflow that involves loading
more than one source of data. The loading occurs between work-
flow jobs. Simulators: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Postprocess’,
‘Load’, ‘MPI2’, ‘Postprocess’, ‘Viz’.

5. Create Delete. Simulates a workflow that involves creating tem-
porary files and deleting them between runs of a scientific
simulation. Simulators: ‘Stagein’, ‘Preprocess’, ‘MPI’, ‘Filecreate’,
‘Postprocess’, ‘MPI2’, ‘Postprocess’, ‘Viz’.

6

t=l:02

t=l:00

t=l:02

t=l:DZ

\
PRE-MERGE \

PRE-MERGE

10
11
12
13

\
\ ",,, .

\
\

\

t=l:06

\
\

\
\

\

// loadfile() implies a TRANSFER data mutation where data is read into memory We
// use one AP! call to create the new data state vertex, another call to fetch the
// previous data state vertex, and a final call to create the data mutation edge
// Total Crux API calls: 3

data_fi le = load Fi le(" input 01. txt")

// API call to create new data state vertex
httpPost{cruxServerURL + '/states', { label : 'stagein', size: sizeof(data_file),

time: getTime(), location: 'memory', origin: 'myapp'
})

14 // API call to fetch previous state when input01.txt was created
15 prev_s tate = httpGet(cruxServerURL + '/states?location=input01.txt')
16
17 // API call to create TRANSFER data mutation
18 httpPost{cruxServerURL + '/mutations/TRANSFER',
19 start_state : prev_s tate,
20 end_state : { label: 'stagein ', size: sizeof(data_file),
21 time : getTime(), location: 'memory', origin : 'myapp '
22 }I

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Fig. 8. Example of a simple C code with the inserted Crux API calls shown in boldface.

To make the simulators extensible, we create a common configura-
tion file from which each simulator loads. This file parameterizes values
such as maximum wait time between jobs or input dataset size. Each
simulator starts an HTTP server and implements run_simulation()which
takes a list of previous data states and returns a list of new states once
all simulated jobs have completed. The pseudocode below highlights
the basic logic in each simulator (we use the terms ‘‘nodes’’ and
‘‘relationships’’ to refer to vertices and edges respectively in order to
follow Neo4j’s naming convention).

Fig. 9. Deployment of Crux in an HPC cluster. Crux components (blue) are deployed
on 3 dedicated nodes. Two load balancers (yellow) are used to route traffic: a public
load balancer which securely handles HTTPS requests from a user outside the HPC
cluster network, and a private load balancer which routes traffic from compute nodes
to Crux API server instance (in this case 3 running instances). The public load balancer
can also be a reverse proxy. Storage nodes (orange) are displayed for reference.

In order to orchestrate simulator applications at runtime, we design
a controller application called simulator manager. Simulator manager
knows when to schedule each simulator’s main routine. It also facil-
itates the passing of data between applications and performs health
checks on each before starting. Simulator applications therefore only
need to communicate with the simulator manager and not each other.
The simulator manager’s main routine receives an ordered list of URLs
to each simulator. It initiates a null data state and enters a loop to call
the first simulator with the null data state. The return value is a new
data state which gets assigned to the previous state variable. The loop
is then continued with the second simulator being called and so on. The
pseudocode below outlines the basic algorithm.

We use Docker to package Crux components as container images.
Containers are isolated environments by OS-level virtualization. A con-
tainer shares a host’s kernel with other containers, but each container
will only the see contents assigned to it. Docker is a set of tools for
building and deploying containers. We choose to implement Crux with
Docker for a variety of reasons. First, using containers for development
offers benefits such as isolation, reproducibility, portability, and ver-
sion control. Second, container images are lightweight compared to
most virtual machine images. This is important when deploying Crux
with workflow simulators since all Crux components and simulators
run as individual containers (the largest being the API container at
∼900MB and the smallest being a simulator container at ∼115MB).
Third, containers make it easy to deploy to cloud environments, which
we leverage for testing purposes. (See Fig. 10).

Workflow Simulator components are implemented as standalone
applications:

7

int main(int argc, char *argv[])
{

char *startVertex, *inputVertex,
*data Vertex;

char *relationshipData;
char *url, *data;

*endVertex,

// Init Crux and curl library
curl_global_init(CURL_GLOBAL_ALL);
startVertex = connectCrux();

data~ readFile("input.txt");

// API calls to create new data state for
// loading an input file into memory and to
// create new data mutation TRANSFER to
// represent loading a file
inputVertex = newDataState("input.txt", 0);
post(newURL (HOST, "/nodes/myapp"), inputVertex);
post(newURL(HOST, "/relationships/transfer"),
newRelationship(startVertex, inputVertex));

sampleComputation(data);

// API call to create new data state shows
// data converted after computation in memory
// API call to create new data mutation CONVERT
dataVertex = newDataState("", strlen(data));
post(newURL(HOST, "/nodes/myapp"), dataVertex);
post(newURL(HOST, "relationship/convert"),

newRelationship(inputVertex, dataVertex));

writeFile("output.txt", data);

// API call to create new data state for writing
// to the new file, output.txt
// API call to create new data mutation TRANSFER
// to represent creating a file
endVertex = newDataState("output.txt", 0);
post(newURL(HOST, "/nodes/myapp"), endVertex);
post(newURL(HOST, "relationships/transfer"),
newRelationship(dataVertex, endVertex));
curl_global_cleanup();
return O;

// Input: Previous data state vertex, prev_state
// URL string to Crux API, url
// Output: New data state vertex, new state
run simulator(prev state, url)

// Simulate new preprocess data state
new state= simulateDataState('preprocess')

// Call Crux API to create new data state vertex
postRequest(url + '/nodes/preprocess', new_state)

// Call Crux API to create new data mutation edge,
/ / APPEND,

// between new data state and prev data state
postRequest(url + '/relationships/append',

prev_state, new_state)
return new state

User

Compute Nodes

Private Load Balancer

.. ..
1l z
I!
§;

// Input : ordered list of urts to each simulator , si.llulator_urls
// Output: voi d
run(simulator _urls)

prev_state ;:; nu ll
for url in simu tator_urls

prev_state = sta rtS imulato r(ur l , prev_state)
return voi d

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Fig. 10. Example of local deployment of Crux with simulators using Docker. Crux
components and workflow simulators (blue) running locally as Docker containers.
Network interfaces (green) shown to illustrate how containers run on separate virtual
network than the host.

• The Simulator Manager is a controller and communicates with
all simulator applications via HTTP. It knows when to launch a
certain simulator app and send data between apps when needed.

• Simulator apps are configured to represent common HPC work-
flow jobs such as pre-processing data, running an MPI job, or
performing post analysis. Each simulator app makes API calls to
the Crux API server.

• The Crux API server, implemented in Python, sends Cypher
queries via the Bolt protocol at bolt://graphdatabase.crux:7687.

• The web browser opens the Neo4j Browser at http://localhost:
7474/browser/.

6. Evaluation

We conducted a series of experiments to demonstrate Crux capabil-
ities and performance. For these tests we used Docker 19.03.5, Docker-
compose version 1.24.1, Terraform v0.12.5, Python 3.7.6, Neo4j 3.5,
Neo4j Graph 3.5.4.0, and AWS ECS Agent 1.32.0. The AWS EC2 Im-
age used was Amazon Linux AMI 2018.03.y x86_64 ECS HVM GP2
t2.medium (2 vCPU, 4 GB RAM), and the local system was macOS
Mojave (10.14.6) running on a 2.9 GHz Intel Core i9 (12 core) with
32 GB 2400 MHz DDR4.

6.1. Capability and WCP correctness

To explore WCP correctness, we configured the Crux workflow
simulator to generate and execute the five characteristic workflows
detailed in Section 6. The workflow simulator is deployed locally and
makes API calls to a Crux instance on AWS. We kept runtimes short
with modest total vertices in order to better provide screenshots of the
entire PAG and workflow critical path.

For each of the 5 workflows, we configured a Crux simulator, then
deployed it locally using a tool called Docker-Compose which launches
all simulator components as containers. The simulator containers make
API calls to a remote deployment of Crux on AWS. The workflow sim-
ulation is complete when we receive a JSON string from the Crux API
which contains the workflow critical path. At this point, we collected
screenshots of the visualized workflow PAG and workflow critical path
via Crux’s Neo4j Browser. Results are shown in Table 2 and Fig. 11.
WCP was correctly computed in all cases. While the five cases do
not cover every possible workflow pattern, we believe they cover key
workflow patterns and thus are representative. The next step will be to
explore WCP with full applications.

Table 2
Results of 5 simulator studies.
Workflow WCP Correct? Cost Elapsed time (s)

Generic Yes 9.492 6.584
Data Splits Yes 22.159 57.590
Checkpoint Yes 74.854 7.616
Multiple Sources Yes 67.242 6.5413
Create Delete Yes 74.868 7.2561

6.2. Performance and scalability

To characterize the scalability of the Crux prototype we measured
the time required to create data state vertices on local and remote (AWS
based) deployments of Crux (Fig. 12). Next, we scaled out the instances
of Crux’s API server to 1, 2, and 3 instances, and performed the same
time measurement (Fig. 13).

6.3. Crux overhead

The main overhead of Crux will scale with the number of instru-
mented API calls required to create a full program activity graph. To
approximate the number of Crux API calls needed for a smaller scale
HPC application we used the DroughtHPC example. We estimated the
number of Crux data states that would have to be created at 300k
for VIC and 12k for the python code, for a total of 312k Crux API
calls. A full-scale deployment will be required to accurately assess the
overhead.

Dedicating nodes to deploy Crux in an HPC cluster implies taking
nodes away that could otherwise be used as compute resources. How-
ever, we demonstrate Crux’s ability to run as containers on modest EC2
instances. A small HPC cluster could potentially dedicate one node for
running Crux on virtual machines or containers instead of directly on
bare metal systems.

6.4. Discussion

Our performance experiments suggest that network proximity of
Crux to application clients improves Crux’s performance. This is con-
sistent with our original expectations. Surprisingly, we observed that
scaling out Crux API instances did not improve overall performance of
Crux on AWS. This suggests that the limiting factor to Crux’s perfor-
mance may be the load balancer responsible for distributing traffic to
the API instances. Another limiting factor could be the performance of
Crux’s database. Having multiple API instances would have diminishing
returns if Crux’s Neo4j instance is unable to process more requests.

Through our tests we observed limitations with the capability of the
Neo4j Browser for Crux: inability to highlight a path within a graph;
incorrect inclusion of one or more edges; and poor scaling to more than
2,000 vertices. Also, Neo4j Browser did not offer ways for us to visu-
alize results from previous workflow runs or easily export graph data.
Although sufficient for our initial prototype, a more comprehensive UI
would be warranted for a production tool.

7. Conclusions and future work

In this paper, we introduced a novel metric, Workflow Critical Path
(WCP) for Holistic HPC Workflows. We described a prototype tool
called Crux for calculating WCP. To evaluate Crux we developed a set
of simulators to simulate HPC workflows and workflow patterns; and
designed a cloud-based, test environment on AWS. Early results suggest
that Crux can be used to efficiently calculate WCP. WCP shows promise
as a useful diagnostic metric focused across an entire workflow.

Our continuing efforts include improvements to the prototype: a
custom Crux GUI to address the limitations we observed with the Neo4j
Browser, and the functionality to easily allow a user to save workflow
critical path results from multiple runs. For Crux to be adopted to

8

B
GET
http:/ /localhost:7474

POST
http://crux-api-server:SOOO

POST I

http://crux-graph-database:7678 :

I
I

~ crux-simulator-x
QI 172.18.0.4/16

crux-a pi-server
172.18.0.2/16

crux-graph
database

172.18.0.3 16

Docker
172.18.0.0/16

Host

http://localhost:7474/browser/
http://localhost:7474/browser/
http://localhost:7474/browser/

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

Fig. 11. Generic workflow PAG and WCP. Top image shows the entire PAG with 5 jobs: stage in (green), preprocess (pink), MPI (red), postprocess (tan), and visualization (blue).
All Crux PAGs begin with a null vertex (orange) created during database initialization. Bottom image shows the WCP. The critical path in this execution is the path with longest
elapsed time through the MPI job. Cost = 9.492.

Fig. 12. Time to add vertices to local and remote deployment of Crux. Measured time
required for a local Python client make Crux API calls to add 100, 1000, and 10000
data state vertices on local and remote deployments of Crux. In all cases, the time to
created vertices was less on the locally deployed Crux. Trendline for both cases suggest
a linear relationship between number of vertices to add and overall time (R2 = 1).

production use, the instrumentation must be automated, whereas the
initial prototype requires manual insertion of instrumentation. We are
currently testing full-scale applications with Crux.

Acknowledgments

David Montoya was instrumental in the development of key insights
and ideas contained in this work. Sonja Johanson performed testing
and documented the Crux tool, and Yasodha Suriyakumar provided
the DroughtHPC example. PSU students Jaspar Alt, Kobe Davis, and
Kristina Frye participated in group discussions. Portions of this work
were conducted at the Ultrascale Systems Research Center (USRC)
supported by Los Alamos National Laboratory, United States under Con-
tract No. DE-AC52-06NA25396 with the U.S. Department of Energy.
This work supported in part by the New Mexico Consortium.

Fig. 13. Time to add vertices against number of Crux API instances. Measured time
required for a local Python client make Crux API calls to add 100, 1000, and 10000 data
state vertices on a remote deployment of Crux with 1, 2, and 3 API server instances.
There was a significant difference in time to add 100 vertices between 1, 2, and 3 API
server instances at p < .05 [F(2, 6) = 2.6949, p = 0.0135] where 1 API server instance
performed fastest (mean = 1.3792 s). Results did not show significant difference in time
for adding 1000 and 1000 vertices between 1, 2, and 3 API server instances. Trendline
in all cases suggest a linear relationship between number of vertices to add and overall
time (R2 = 1).

References

[1] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R. Mayani,
W. Chen, R.F. d. Silva, M. Livny, K. Wenger, Pegasus, a workflow management
system for science automation, Future Gener. Comput. Syst. 46 (2015) 17–35.

[2] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.B. Jones, E.A. Lee,
J. Tao, Y. Zhao, Workflow management and the Kepler system, in: Concurrency
and Computation: Practice and Experience, vol. 18, (10) 2006, pp. 1039–1065.

[3] E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K.K. v. Dam, K. Moreland,
M. Parashar, L. Ramakrishnan, M. Taufer, J. Vetter, The future of scientific
workflows, Int. J. High Perform. Comput. Appl. 32 (1) (2017) 159–175.

[4] S. Moore, D. Cronk, K. London, J. Dongarra, Review of performance analysis tools
for MPI parallel programs, in: EuroPVM/MPI: European Parallel Virtual Machine/
Message Passing Interface Users’ Group Meeting, Santorini/Thera, Greece, 2001,
pp. 23–26.

[5] J. Sairabanu, M.R. Babu, A. Kar, A. Basu, A survey of performance analysis tools
for OpenMP and MPI, Indian J. Sci. Technol. 9 (43) (2016) 1–7.

9

140
120

_ 100
~
QI

80
E 60
F 40

20
0

0

• \ I

$ MATCH(start), (end) WHERE id(start) "" 57 and id(d) - 38 en - CALL algo.shortestPath.stream(start, end, "cost") YIELD nc

1 G, tmmll) preprocess(1) mD postprocess(1) ma,
l&lmmlllml!!Dlll!Zlllmlfllmllll

133

A

150

~00
QI

E
F 50

0
.•···

0
5000 10000 15000

e l e 2 e 3
Number of vertices added

• Local • Remote

..
,,,

,,••"
··••'

5000

R2 1
-~-1 ,,,~, = 1 ,,,

10000 15000

Number of vertices added

http://refhub.elsevier.com/S2772-4859(21)00001-6/sb1
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb1
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb1
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb1
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb1
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb2
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb2
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb2
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb2
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb2
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb3
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb3
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb3
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb3
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb3
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb5
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb5
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb5

D.D. Nguyen and K.L. Karavanic BenchCouncil Transactions on Benchmarks, Standards and Evaluations 1 (2021) 100001

[6] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
N.R. Tallent, HPCToolkit: Tools for performance analysis of optimized parallel
program, Concurr. Comput.: Pract. Exper. 22 (6) (2010) 685–701.

[7] S.S. Shende, A.D. Malony, The TAU parallel performance system, Int. J. High
Perform. Comput. Appl. 20 (2) (2006) 287–311.

[8] S. Snyder, P. Carns, K. Harms, R. Ross, G.K. Lockwood, N.J. Wright, Modular
HPC I/O characterization with Darshan, in: 2016 5th Workshop on Extreme-Scale
Programming Tools, Salt Lake City, UT, 2016.

[9] D. Skinner, Performance monitoring of parallel scientific applications, 2005, [On-
line]. Available: https://www.osti.gov/servlets/purl/881368-dOvpFA/ (Accessed
15 2021).

[10] E. Deelman, T. Peterka, I. Altintas, C.D. Carothers, K.K. v. Dam, K. Moreland,
M. Parashar, L. Ramakrishnan, M. Taufer, J. Vetter, The future of scientific
workflows, Int. J. High Perform. Comput. Appl. 32 (1) (2017) 159–175.

[11] Gromacs, [Online]. Available: http://www.gromacs.org/ (Accessed 15 2021).
[12] F. Affinito, A. Emerson, L. Litov, P. Petkov, R. Apostolov, L. Axner, B.

Hess, E. Lindahl, M.F. Iozzi, Performance Analysis and Petascaling En-
abling of GROMACS, 2012, [Online]. Available: http://www.prace-ri.eu/
IMG/pdf/Performance_Analysis_and_Petascaling_Enabling_of_GROMACS.pdf (Ac-
cessed15 2021).

[13] C. Herold, B. Williams, Top-down performance analysis of workflow applications,
in: The International Conference for High Performance Computing, Networking,
Storage, and Analysis, Dallas, TX, 2018.

[14] Y. Suriyakumar, K.L. Karavanic, H. Moradkhani, Performance Analysis of
DroughtHPC and Holistic HPC Workflows, ICPP 2018 Research Poster Ex-
tended Abstract, 2018, [Online]. Available: http://oaciss.uoregon.edu/icpp18/
publications/pos131s2-file1.pdf (Accessed 15 2021).

[15] J.J. Hamman, B. Nijssen, T.J. Bohn, D.R. Gergel, Y. Mao, The variable infil-
tration capacity model version 5 (VIC-5): infrastructure improvements for new
applications and reproducibility, Geosci. Model Dev. 11 (8) (2018) 3481–3496.

[16] H. Cooney, H. Yan, K. Karavanic, H. Moradkhani, A Workflow-Based
Performance Study of a Drought Prediction System, 2016, [Online]. Available:
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1002&context=
mcecs_mentoring (Accessed 15 2021).

[17] APEX Workflows, 2016, [Online]. Available: https://www.nersc.gov/assets/apex-
workflows-v2.pdf (Accessed 15 2021).

[18] N. Tallent, D. Kerbyson, A. Hoisie, Representative paths analysis, in: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’17). ACM, 2017.

[19] J.K. Hollingsworth, Critical path profiling of message passing and shared-memory
programs, IEEE Trans. Parallel Distrib. Syst. 9 (10) (1998).

[20] C. Yang, B. Miller, Critical path analysis for the execution of parallel and
distributed programs, in: Proc. of the 8th Intl. Conf. on Distributed Computing
Systems, IEEE, 1988, pp. 366–373.

[21] K.L. Karavanic, Performance Tools and Holistic HPC Workflows, 2018, [Online].
Available: https://dyninst.github.io/scalable_tools_workshop/petascale2018/
assets/slides/Karavanic2018.pdf (Accessed 15 2021).

[22] B.H. Sigelman, L.A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, C. Shanbhag, Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure, 2010, [Online]. Available: https://static.googleusercontent.com/
media/research.google.com/en//archive/papers/dapper-2010-1.pdf (Accessed 15
2021).

[23] J. Aldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K.W. Ong, B.
Schaller, P. Shan, B. Viscomi, V. Venkataraman, K. Veeraraghavan, Y.J. Song,
Canopy: An end-to-end performance tracing and analysis system, in: SOSP ’17:
Proceedings of the 26th Symposium on Operating Systems Principles, 2017, pp.
34–50.

[24] M. Schulz, Extracting Critical Path Graphs from MPI applications, in: 2005
IEEE International Conference on Cluster Computing, Burlington, MA, 2005, pp.
27–30.

[25] I. Dooley, L.V. Kale, Detecting and using critical paths at runtime in message
driven parallel programs, in: 2010 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, 2010,
pp. 19–23.

[26] J. Chen, R.M. Clapp, Critical-path candidates: scalable performance modeling for
MPI workloads, in: 2015 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), Philadelphia, PA, 2015, pp. 29–31.

[27] D. Bohme, F. Wolf, D.R. De Supinski, M. Schulz, M. Geimer, Scalable critical-
path based performance analysis, in: Proc. of the 26th IEEE Intl. Parallel and
Distributed Processing Symp, IEEE, 2012, pp. 1330–1340.

[28] C. Alexander, D. Reese, J. Harden, Near-critical path analysis of program
activity graphs, in: Proc. of the Second Intl. Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems, IEEE, 1994, pp.
308–317.

[29] U. Meyer, P. Sanders, Δ-Stepping: a parallelizable shortest path algorithm, J.
Algorithms 49 (1) (2003) 114–152.

[30] M. Kranjčević, D. Palossi, S. Pintarelli, Parallel delta-stepping algorithm for
shared memory architectures, in: 19th International Workshop on Software and
Compilers for Embedded Systems (SCOPES 2016), 2016.

[31] FastAPI, [Online]. Available: https://fastapi.tiangolo.com/ (Accessed 15 2021).
[32] neo4j, [Online]. Available: https://neo4j.com/ (Accessed 15 2021).

10

http://refhub.elsevier.com/S2772-4859(21)00001-6/sb6
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb6
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb6
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb6
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb6
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb7
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb7
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb7
https://www.osti.gov/servlets/purl/881368-dOvpFA/
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb10
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb10
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb10
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb10
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb10
http://www.gromacs.org/
http://www.prace-ri.eu/IMG/pdf/Performance_Analysis_and_Petascaling_Enabling_of_GROMACS.pdf
http://www.prace-ri.eu/IMG/pdf/Performance_Analysis_and_Petascaling_Enabling_of_GROMACS.pdf
http://www.prace-ri.eu/IMG/pdf/Performance_Analysis_and_Petascaling_Enabling_of_GROMACS.pdf
http://oaciss.uoregon.edu/icpp18/publications/pos131s2-file1.pdf
http://oaciss.uoregon.edu/icpp18/publications/pos131s2-file1.pdf
http://oaciss.uoregon.edu/icpp18/publications/pos131s2-file1.pdf
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb15
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb15
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb15
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb15
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb15
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1002&context=mcecs_mentoring
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1002&context=mcecs_mentoring
https://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1002&context=mcecs_mentoring
https://www.nersc.gov/assets/apex-workflows-v2.pdf
https://www.nersc.gov/assets/apex-workflows-v2.pdf
https://www.nersc.gov/assets/apex-workflows-v2.pdf
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb19
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb19
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb19
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb20
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb20
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb20
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb20
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb20
https://dyninst.github.io/scalable_tools_workshop/petascale2018/assets/slides/Karavanic2018.pdf
https://dyninst.github.io/scalable_tools_workshop/petascale2018/assets/slides/Karavanic2018.pdf
https://dyninst.github.io/scalable_tools_workshop/petascale2018/assets/slides/Karavanic2018.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/papers/dapper-2010-1.pdf
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb27
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb27
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb27
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb27
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb27
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb28
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb28
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb28
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb28
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb28
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb28
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb28
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb29
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb29
http://refhub.elsevier.com/S2772-4859(21)00001-6/sb29
https://fastapi.tiangolo.com/
https://neo4j.com/

	Workflow Critical Path: A Data-oriented Critical path metric for Holistic HPC Workflows
	Let us know how access to this document benefits you.
	Citation Details

	Workflow Critical Path: A data-oriented critical path metric for Holistic HPC Workflows
	Introduction
	Related work
	Workflow critical path (WCP)
	Critical path algorithm

	The crux prototype
	Crux API
	Crux database
	Crux UI
	Example

	Crux workflow simulator
	Evaluation
	Capability and WCP correctness
	Performance and scalability
	Crux overhead
	Discussion

	Conclusions and future work
	Acknowledgments
	References

