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ABSTRACT 

Landslides pose a significant threat to property and personal injury, estimated at 3.5 

billion dollars and 25-50 deaths per year respectively (Schuster, 1996). The triggers that cause 

landslides are well understood and include intense precipitation events, seismic shaking, 

destabilizing activities, and the over-steepening of slopes. However, these triggers were absent 

when the Silt Creek Landslide initiated, and determining this landslide’s subsurface hydrologic 

conditions is the focus of this study. Located on the western slopes of the Cascade mountain 

range in Oregon and within an active logging area, the landslide reactivated during the summer 

of 2014 at a site that had previous landslides dating back to at least 1994. The area is underlain 

by poorly welded tuffs capped with basaltic flows. Considering the near-drought to drought 

conditions that existed 3 years’ prior, it has a relatively high rate of slip of approximately 15 

m/yr. On March 4th, 2016 I obtained twelve water samples from surface flow and springs on the 

landslide for isotope analysis of oxygen (18O) and deuterium (D). Comparing the resultant mean, 

-10.09‰ δ18O, against well-defined linear elevation/ δ18O relationships for western Oregon and 



the Global Meteoric Water Line for δ18O / δD the source of surface flow and groundwater likely 

originates from a pond above the head scarp. Analysis of precipitation data over a 42-year period 

prior to reactivation confirms the drought-like conditions existing at time of reactivation. These 

conditions align with the ‘bathtub’ model wherein an older landslide creates the conditions for 

repeated failures by aligning platy clay minerals such that the hydraulic conductivity is reduced 

to the point that a perched aquifer forms. This provides lubrication for subsequent landslides 

even during periods of low precipitation. Understanding the mechanisms operating on this 

landslide can inform future assessments of hazard and risk as well as appropriate mitigation 

strategies.  

INTRODUCTION 

Landslides pose a significant threat in terms of economic damage and personal injury. 

Landslides in the United States cause an estimated 3.5 billion dollars in damage and 25-50 deaths 

per year (Schuster, 1996). Landslide types are broadly categorized into bedrock based, such as 

rockfalls and topples, and soil based, which include slides and flows, and may exhibit a spectrum 

of intermixing attributes depending on composition and angle (Cruden and Varnes, 1996). 

Velocities range from the extremely slow rate of 0.06m/yr for slides to the extremely rapid rate 

of 3m/s for rockfall and debris flows (Ritter, 2011).  The causes of slope failure are well 

established and include such typical triggers as intense precipitation events, seismic shaking, 

destabilization activities, and the over-steepening of slopes. Failure occurs when shear stresses 

exceed the internal shear strength threshold of a hillslope resulting in mass movement (Lambe 

and Whitman, 1969). Commonly this occurs when the pore pressures between individual 

sediment grains increase such that these grains begin to slide past or rotate over each other 

(Terzaghi, 1950). Increased pore pressure is commonly linked to precipitation events or longer 



term trends in groundwater levels, for example the wetter than average conditions that occurred 

over months to years that preceded the Oso landslide, which caused 43 deaths in Washington 

State in 2014 (Iverson, 2015). As precipitation infiltrates and contributes to sub-surface water 

flow the water table raises causing a decrease in effective normal stress and therefore a decrease 

in shear strength. Groundwater underneath a landslide may receive contributions that extend 

beyond the local recharge area and experience fluxes that reflect temporal variations beyond the 

near present.  

Located approximately 7.5km due south of Mill City, OR within an active logging site, 

operated by Weyerhaeuser Columbia Timberlands, the Silt Creek Landslide resides in the 

Thomas Creek Watershed on the western slopes of the Cascade mountain rage (Figure 1). 

Reactivation of an older, 3.5km long landslide complex began approximately summer 2014, with 

a debris flow affecting the upper part of the landslide, and slower sliding occurring in the 

landslide’s transport zone with an overall transport rate of ~15 m/yr. It is characterized as a 

composite earthflow-earthslide (Cruden and Varnes, 1996), with superimposed debris flows 

occurring near the head scarp. Earthflows-earthslides are defined as being composed of 

predominantly fine-grained soils while debris flows are composed mostly of coarser grained soils 

(Ritter, 2011). The summer of 2014 reactivation is unique in that the largest debris flows have 

occurred during the summer season under near-drought to drought conditions existing 3 years 

prior. Under these conditions, both groundwater recharge and pore pressure from sub-surface 

water flow are assumed to be typically low.  



 
Figure 1.  Overview map of study showing the location of Silt Creek Landslide (red star).                          

Thomas Creek Watershed is outlined in black. Meteorological analysis was completed                                   

from data gathered at the climate station LaComb, identified as a green colored box.  

 

Surface water flow contributes to groundwater by infiltrating vertically downward from 

the surface through the soil. The rate of infiltration is governed by the unsaturated hydraulic 

conductivity of the soil. Soil that has low permeability tends to have a low rate of infiltration due 

to it’s a low unsaturated hydraulic conductivity. Surface flow at the study site originates as 

precipitation from air masses that form over the Pacific Ocean. As these air masses migrate 

eastward they raise in elevation up over the terrain. In doing so they cool, and precipitation falls 

when they reach a relative humidity of 100% (the dew point). The heavier isotopes of oxygen 

and hydrogen, 18O and 2H. precipitate out first, such that the higher elevations have isotopically 

lighter precipitation than do the lower elevations.  

Oxygen and hydrogen isotopes in water can be useful for fingerprinting the sources of 

surface and groundwater. Isotopes are atoms of the same element with a different number of 

neutrons, and those with more neutrons have greater mass. This difference in mass results in a 



fractionation response that produces water with a unique isotopic composition signature. The 

following processes influence the isotopic composition of water: temperature (and therefore 

altitude), distance inland from a coast, timing and duration of precipitation, humidity levels, 

seasonal fluctuations, location, and humidity. 

Considering the conditions present prior to the reactivation I hypothesize that regional 

groundwater beyond the surface extent of the landslide itself is infiltrating and destabilizing the 

slope. The primary goal of this thesis is to develop an understanding of the hydrological structure 

of the landslide through 1) using stable isotope analysis of oxygen and hydrogen, sampled from 

overland flow and springs on the landslide, to establish groundwater recharge elevation 2) 

estimating the area of groundwater recharge to the landslide based on recharge elevation and 3) 

analyzing past meteorological conditions contributing to the landslide reactivation.  

GEOLOGIC SETTING 

 Residing in the heavily eroded Western Cascades, the Silt Creek Landslide occurs in 

deposits that have their origins ranging from the middle-to-late Eocene, approximately 40ma, to 

a lesser eruptive output at 17ma, and to High Cascade volcanism from 7.4ma to present (Orr, 

2012). Predating the modern Cascades by 35ma the Western Cascades are centered on a more 

westerly arc than their modern counterparts, which is the result of the steeply descending 

Farallon Plate (a precursor to the modern day Juan De Fuca plate), and ongoing clockwise 

rotation of western Oregon (Wells, 2000). This produced “volcanogenic deposits of basalt and 

basaltic andesite, including flows and breccia, complexly interstratified with epiclastic and 

volcaniclastic deposits of basaltic to rhyodacitic composition” including “extensive rhyodacitic 

to andesitic ash-flow and air-fall tuffs, abundant lapilli tuff and tuff breccia, andesitic to dacitic 

mudflow (lahar) deposits, poorly bedded to well-bedded, fine- to coarse-grained tuffaceous 



sedimentary rocks, and volcanic conglomerate” (Walker and Macleod, 1991). Due to the age, 

amount of erosion, and deformation of the Western Cascades, the delineation between 

formations are complex, subtle, and at times not fully understood nor agreed upon. In light of 

this, principal formations listed are limited to widespread distribution and of diagnostic features. 

Therefore, primary formations associated with these deposits are the Breitenbush Tuffs, Mehama 

Volcanics and Quaternary landslide deposits (Figure 2). The majority of the Silt Creek landslide 

occurs in the Breitenbush Tuffs, with its head scarp possibly extending into the Mehama 

Volcanics. 

 
Figure 2. Geologic map of Silt Creek Landslide. The landslide boundary is in black. Geologic units are: Quaternary 

landslide deposits (Qls), Breitenbush Tuffs (Tu), and Mehama Volcanics (Tba). The blue line represents Thomas Creek.  

 

Breitenbush Tuffs (Oligocene) (Tu) 

Thayer (1939) identifies these tuffs as poorly to moderately welded, and suggests that they are 

the result of ignimbrite flows that form deposits approximately 580 to 915m thick. They are a 

ubiquitous layer throughout the North Santiam River region due to their thickness and 



colorization that ranges from pale green to light grey/olive. These tuffs are present throughout 

most of the lower elevations of the regions valleys (Hammond, 1976).  

 

Mehama Volcanics (Miocene) (Tba) 

The Mehama Volcanics is a small subset of the larger Sardine formation. These volcanics are 

comprised of thick layers of basaltic to dacitic lavas that reach upwards of 1300m in thickness 

(Thayer, 1939). Interbedded within these flows are lahars and tuffaceous rocks. Rocks of this 

unit are identifiable as porphorytic with plagioclase phenocrysts (White, 1980). The unit includes 

flow breccia, olivine andesite, basaltic-andesite, and basalt. This resistant formation is 

constrained to ridges and ridge-tops.  

 

Quaternary Landslide Deposits (Qls) 

Deposits are composed of “Unstratified mixtures of fragments of adjacent bedrock…Largest 

slides and debris flows occur where thick sections of basalt and andesite flows overlie clayey 

tuffaceous rocks.” (Walker and Macleod, 1991) 

 

Structurally, the Silt Creek Landslide lies between the Mehama anticline to the West and the 

Sardine syncline to the East. To the Southeast the Breitenbush anticline extends from Mt. Hood 

to south of the landslide. On all sides at an average of 7.5km from the landslide are four normal 

faults.  

SAMPLING & METEORLOGICAL METHODS 

On March 4th, 2016 I collected 12 water samples from a combination of surface flow, Silt 

Creek, and springs throughout the landslide over 200m of vertical relief (Figure 3). Samples 



were taken from as high as 300m below the main head scarp down to the confluence of Silt 

Creek and Thomas Creek at the toe of the landslide. Sampling from higher elevations up to the 

main head scarp was not possible as concerns about instability were present and demarcated off-

limits by Weyerhaeuser. Surface flow and Silt Creek samples were sealed in glass jars to isolate 

atmospheric exchange and to allow for settling of suspended sediments. Spring water samples 

were clear and free of suspended sediments therefore these were placed directly into 2mL auto 

sampling vials and sealed onsite to isolate any atmospheric exchange. All samples were placed 

into 2mL auto sampling vials and submitted to UC Davis Stable Isotope Facility for analysis of 

18O and D/H isotope ratios and compared against IAEA (International Atomic Energy Agency) 

standard reference of VSMOW (Vienna Standard Mean Ocean Water). VSMOW is an 

international measurement standard for stable isotope analysis that provides the values of δ18O 

and δ2H in ocean water as a baseline (Coplen, 1996). These analyses were used to establish the 

sample’s elevation source and to compare the composition against well-established standards. 

The δ18O value is is defined as δ18O = (Rsample/Rstandard – 1) *1000, where Rsample is the ratio of 

18O to 16O in the sample, and Rstandard is the same, but for VSMOW. This equation is also used for 

δD (Deuterium ‘D’) values for the isotopic ratios of H and 2H.  



 
Figure 3. Geologic location map of water samples. Samples 1-3, 6, 7, 10, & 12 were obtained from surface water while samples 

4, 5, 8, & 9 were from springs.  Geologic units are: Quaternary landslide deposits (Qls) 

 

In the Northwest for example, on the windward side of the Cascades precipitation occurs 

as mid-latitude cyclones, formed over the Pacific Ocean, which migrate eastward and experience 

orographic uplift. During uplift the cyclones experience cooler temperatures and as such the dew 

point is reached resulting in precipitation. 18O is a heaver isotope than 16O and is therefore 

preferentially condensed resulting in an enrichment of 18O in precipitation. Hence lower 

elevations experience greater levels of 18O in precipitation. The net result is that higher 

elevations have depleted values of 18O. By comparing the 18O/16O ratio (δ18O) against a well-

established “altitude-isotope” profile (Jefferson, 2006) the elevation at which groundwater was 

recharged can be estimated. Brooks et al. (2012) have developed the most extensive empirical 



relationship between δ18O values and recharge elevation for the Northwestern US by the 

following equation:  

δ18O = -0.0028x – 8.05     (1) 

where x is recharge elevation in meters. Natural variability from this linear trend is 

approximately ± 1.5 per mill. Other studies have determined this relationship and are in general 

agreement with the equation of the linear fit varying from δ18O = -0.0016x-10.57 (Jefferson et 

al., 2006) to δ18O=-0.0018x-10.9 (James et al., 2000).  

 The global meteoric water line (GMWL) is a plot of δD vs δ18O of ocean water that 

follows the following linear relationship (Craig, 1961): 

    δD = (8* δ18O) + 10             (2) 

Deviations in the slope for local meteoric water lines (LMWL) can be used to infer the amount 

of evaporation that has occurred (Gat, 1981). For example, under low humidity conditions the 

slope of δD should be lower than the 8 of the GMWL, which can be an indication that high 

evaporation conditions existed.  

To provide a meteorological context, make an additional estimate of the transit time for 

precipitation to reach the landslide’s failure plane, and to understand the conditions leading up to 

reactivation, an analysis of precipitation events and volumes was conducted following an Iverson 

et al. (2015). The analysis involved gathering precipitation totals and duration of precipitation 

events from NOAA station LaComb at an elevation of 177m and 20.5km away from the study 

site. Comparing the recurrence intervals for different windows of time preceding the landslide 

reactivation in 2014 to historical values will aid in identifying wetter or drier periods with 

different timescale leading up to and during the activation of the landslide. I hypothesized that 

the timescale associated with the wettest period leading up to the landslide reactivation would 



provide an order of magnitude estimation of the transit time for precipitation to enter the 

recharge area and travel through the groundwater system to reach the landslide failure plane.   

RESULTS  

To provide an accurate estimation of the average water recharge elevation for each 

sample collected, I delineated the watershed corresponding to each to water sample by using the 

Hydrology Tools in ArcMap (Figure 4). Based on this, the average watershed elevation was 

determined for each sample and 𝛿 18O was plotted against these elevations (Figure 5). The 

isotopic results and mean watershed elevations of the samples located in Figure 3 are listed in 

Table 1. Values of 𝛿 D values range from a -70.0‰ to -65.1‰ and 𝛿 18O values range from -

10.57‰ to -9.83‰, while sample elevations ranged from 503 to 739m, a range of 236m. These 

samples plot slightly above the Global Meteoric Water Line (GMWL) (Figure 6). The slope of 

the LMWL of 5.56 is markedly lower than that of the GMWL slope of 8, and the two lines 

converge at a value of -8.339 𝛿 18O. A plot of 𝛿 18O values vs. average watershed and spring 

elevations (Figure 5), does not show a negative slope as predicted for the Western Cascades 

(Jefferson, 2006 & James et. al., 2000), and instead shows variability around a mean value of -

10.09, which is comparable to the analytical error of each sample of 0.13 for 𝛿 18O. Therefore, no 

trend in 𝛿 18O as a function of recharge elevation could be ascertained. Instead, these values are 

consistent with local meteoric water that falls during winter storms at similar elevations in the 

Western Cascades (Brooks et. al., 2010). 

 



 
Figure 4. LiDAR map of watersheds, shown in different semi-transparent colors, of surface water samples. Outline of landslide in 

pale orange & yellow. Watersheds for samples #3,7,12 overlap, such that the entire area of watershed 3 (yellow) is contained 

within watershed 7(green), both of which are contained within watershed 12 (blue). Blue line represents Thomas Creek. 

 
Figure 5. Recharge elevation based on mean watershed elevation of Silt Creek samples. 𝛿 18O values are expressed in per mill 

(‰) as a function of elevation in meters. The Local Meteoric Water Line (LMWL) are from results of isotopic fractionation of the 

𝛿 18O  = -0.0028(elevation in m) - 8.05
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Willamette River Basin completed by Brooks (2012). The expected relationship is lighter isotopes (i.e. more negative 𝛿 18O) 

occur at higher elevations. Deviations from this can provide insights into localized particularities. 

 

 
Figure 6. Silt Creek samples (Local Meteoric Water Line (LMWL)) of both surface water and springs, plotted as blue triangles, 

compared against the Global Meteoric Water Line (GMWL) (Craig, 1961), plotted as orange dots. 𝛿 18O and 𝛿 D  are expressed 

in per mill (‰).  Comparing local sources against the GMWL can provide insights into the atmospheric condition affecting 

localized water systems.  

 
Table 1. Isotopic and physical data for Silt Creek Landslide samples. Sample elevation is the exact elevation that sample was 

taken. Average Watershed Elevation refers to ArcMap calculated average elevation of the watershed feeding into sample 

location. Spring sources lack Average Watershed Elevation as ArcMap hydrology tools are limited to surface flow. VSMOW 

refers to Vienna Standard Mean Ocean Water and is an international reporting standard for stable isotopes.  

SAMPLE 

ID 

SOURCE SAMPLE 

ELEVATION 

(M) 

AVG. 

WATERSHED 

ELEVATION (M) 

VSMOW 

𝛿 D (‰) 

 

VSMOW 

𝛿 18O (‰) 

1 Surface 739 790.4 -66.4 -10.23 

2 Surface 721 785.0 -65.1 -10.02 

3 Surface 639 902.4 -65.6 -9.89 

4 Spring 636 NA -70.0 -10.57 

5 Spring 645 NA -65.3 -9.83 

6 Surface 645 738.9 -66.0 -10.16 

7 Surface 598 893.8 -67.9 -10.04 

8 Spring 621 NA -66.0 -10.06 

9 Spring 620 NA -66.1 -10.14 

10 Surface 604 681.7 -66.7 -10.07 

11 Spring 602 NA -67.5 -10.01 

12 Surface 503 851.1 -68.4 -10.08 

 

Meteorological analysis of precipitation data gathered from 1973 to 2014 (Figure 7) at 

the LaComb weather station operated by the USGS at an elevation of 158.5m at a distance of 

y = 5.5567x - 10.375
R² = 0.5073

𝛿D = 8(𝛿 18O ) + 10
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20.7km SW of the landslide (Figure 1) are provided in Table 2. The estimated date of landslide 

reactivation is assumed to have occurred sometime within the month of July. Therefore, for the 

duration of days preceding reactivation the greatest amount of precipitation that ended within the 

month of July was ascertained and compared against all other similar durations over the 42-year 

span. For example, the greatest 30-day precipitation total that concluded within July 2014 was 

57.15mm ending on July 13. This total was greater than 31% of 30-day periods throughout the 

42 years. For comparison the greatest 30-day precipitation was 586.74mm that ended on 

12/21/2006. Total precipitation measured over time periods ranging from 1 week to 3 years 

tended to be near or lower than average leading up to the landslide reactivation, while 

precipitation measured over the 4 to 5 years leading up to the reactivation was above average. 

 
Figure 7. Precipitation total over 42-year period at LaComb weather station. Precipitation totals are in mm. Dates are listed as 

year followed by month number. For example, 197301 is Janurary 1973. Date interval is every 24months. Note the cyclic pattern 

of high and low precipitation totals. Winter season experiences the greatest totals while summer experiences the lowest.  

 

Table 2. Meteorological analysis of precipitation totals from LaComb weather station over a 42-year period from 1973 to 2014. 

Duration of precipitation that ended during the month of reactivation, July 2014, were compared against all similar durations 
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over the 42-year span. For example, the greatest 30-day precipitation total that concluded within July 2014 was 57.15mm ending 

on July 13. This total was greater than 31% of all 30-day periods throughout the 42 years.   

Precipitation ending in July 2014 Greatest Precipitation on 

Record 

Duration of 

precipitation 

period (days) 

Precipitation 

total (mm) 

Ending date 

of 

precipitation 

period in July 

2014 

Prior 

precipitation 

totals 

exceeded 

Greatest 

Precipitation 

(mm) 

Ending date 

of greatest 

precipitation 

7 32.77 7/1/2014 67% 250.44 11/08/2006 

10 34.04 7/3/2014 56% 281.94 11/11/2006 

14 47.75 7/1/2014 53% 365.76 11/22/2006 

30 57.15 7/13/2014 31% 586.74 12/21/2006 

45 76.45 7/2/2014 25% 842.52 01/09/2007 

60 135.38 7/3/2014 32% 896.11 01/12/1997 

180 833.37 7/1/2014 67% 1671.83 04/16/1974 

1,2,3,4,5 year precipitation ending July 31, 2014   

365 1368 7/31/2014 39% 2014.9 07/30/1997 

730 2685.5 7/31/2014 50% 3558.2 7/30/1998 

1095 4336.2 7/31/2014 62% 5251.6 7/30/1999 

1460 6055.2 7/31/2014 90% 7076.8 7/30/1998 

1825 7546.3 7/31/2014 75% 8770.2 7/30/1999 
 

DISCUSSION 

Surface water samples from the landslide have similar 𝛿 18O values across the 230m 

range of elevations (Figure 5), and these values are consistent with local meteoric water. This 

implies that the surface water and springs on the landslide are not being supplied with water from 

higher elevations above the landslide complex. Instead, the landslide’s groundwater recharge 

area might be confined to the areal extent of the landslide itself. Below, I discuss physical 

process that may have caused the isotopic composition of my samples to differ from previously 

determined local and global meteoric water lines, and suggest a conceptual model for 

groundwater recharge and flow within the landslide complex consistent with the measured 

isotopic values. 

As documented by Brooks (2012) and Jefferson (2006) the Willamette Basin experiences 

an enrichment of the ‘lighter’ oxygen isotope in precipitation at higher elevations such that 𝛿 18O 



values become more negative. In those studies, samples were obtained over years and covered a 

large geographic area such that there was enough differentiation in results. The deviation of my 

samples from expected values may be the result of one or more of the following: a small range of 

sample elevations, the effect of evaporation, seasonal variability in 𝛿 18O fractionation, and 

atmospheric conditions at time of sampling. 

At the time of sampling the uppermost portion of the head scarp was inaccessible limiting the 

sampling vertical relief to 236 m. Comparing Figure 6 with the non-evaporated results from 

Brooks (2012) in Figure 8, 236 m of relief corresponds to a predicted change in the mean 𝛿 18O 

values that is small compared to the natural variability at an elevation of ~800 m, which ranges 

approximately -11‰ to -8.5‰. Brooks’ values occur over the entire Willamette River Basin over 

a 2-year period.  Given that my values are from a single sampling session at one location it is 

reasonable that my results fall within the natural variability of 𝛿 18O values over a narrow 

elevation range. Furthermore, the mean 𝛿 18O value of -10.09‰ across the landslide is wholly in-

line with the regional values.  

 



 
Figure 8. Plot of variations of stable isotopes O & H (Brooks, 2012). The blue dots of Cascade Range (not 

evaporated) are of comparable data. 𝛿 18O and 𝛿 D  are expressed in per mille (‰). By comparing this plot 

to the results in Figure 6 the mean values of 𝛿 18O (-10.09‰ 𝛿 18O )  conform to regional expectations of the 

Western Cascades. 

 

Samples in Figure 6 were sourced from surface flow from just below the internal head 

scarp to the confluence of Silt Creek and Thomas Creek. Surface flow appears to be sourced 

from water emanating from the wall of the internal head scarp, below which it forms braided 

streams throughout the middle section of the landslide. From there it coalesces into the main 

trunk of Silt Creek. Previous reconnaissance of the area identified a pool of water behind the 

internal head scarp. It is this pool of water that may be the main contributor for the current Silt 

Creek and groundwater, and if so, could be the reason for the similar oxygen isotope values 

across elevation. Furthermore, the deuterium-oxygen isotope relationship plots higher and with a 

lower slope than that of the GMWL. This may be an indication that evaporation has occurred 

(Gat, 1981) (Figure 9) as the lighter isotopes are preferentially evaporated.  



 
Figure 9. Departures from the GMWL with lower slopes indicate evaporation has occurred (Gat, 1981). 𝛿 18O and 𝛿 D  are 

expressed in per mille (‰). The lower the slope the greater the evaporation and lower the humidity the body of water 

experienced. By comparing this plot to Figure 6 the water sample may have experienced some evaporation. 

The deviation of oxygen isotope values in figure 6 off the GMWL trend may also be 

result of seasonal variation. The NW coast of North America has its lowest 𝛿 18O values during 

the winter, of approximate range of  -11.25‰ to -10.25‰,  and highest during the summer, of 

approximate range of -8‰ to -8.5‰. (Figure 10)(IAEA, 2016) Sampling took place during 

March, and the mean 𝛿 18O of -10.09‰ is consistent with that of early spring precipitation 

(Figure 10.)  



 
Figure 10. Plot of monthly variability in 𝛿 18O values from Victoria, BC (IAEA, 2016). 𝛿 18O are expressed in per mille 

(‰). For the west coast of N. America 𝛿 18O are heaviest, i.e. least negative, during the summer, and lightest during 

the winter.   

 

The atmospheric conditions on the day of sampling had 0.76 mm of precipitation, 89% 

humidity, and a high of 16 degrees Celsius. Precipitation occurred throughout the sampling area 

and mixed with surface flow. While the GMWL is an average of stable isotope values over time 

and space, the results of my samples for Figure 5 reflect only the surface water available that 

day. There is a strong possibility that any groundwater signal present was obscured by the influx 

of local precipitation. 

The precipitation totals preceding the reactivation of the Silt Creek landslide in the short 

range (7-180 days) that concluded within July 2014 exceeded 25% to 67% of similar durations 

over the entire 42-year period. For the long range (one to five years), precipitation totals 

exceeded 39% to 90%. It is challenging to relate the short duration precipitation events to the 

reactivation in part because the exact date of reactivation is unknown. Furthermore, these short 

duration precipitation events are not atypically high, as was observed, for example, preceding the 

Oso Landslide (Iverson, 2015). For comparison, the largest short duration precipitation values 

occurred in 1974, 1997 2006, and 2007, which I assume too far removed from reactivation to 



have any influence on this landslide. The low to average values for time periods of 1 week to 

three years document the drought to drought-like conditions experienced in western Oregon 

between 2012 and 2014. On the other hand, the total precipitation for the most recent 4 years 

exceeded 90% of all other four-year precipitation totals and may suggest the timescale for the 

landslide to respond to fluctuations in precipitation. Further investigation is needed to ascertain 

whether or not this is the case. The greatest precipitation totals in the record occurred in the 

1997/1998 winter, and are not likely to have had a direct influence on the reactivation.  

 The landslide occurred within a formation that is poorly welded and composed of 

tuffaceous materials that weather readily to clay minerals and capped by resistant flows of basalt. 

Aerial photos dating as far back as 1994 and as recent as 2011 show indications that this specific 

location is prone to sliding, and its morphology suggests that the landslide complex is much 

older. Landslide movement tends to align platy clay minerals along the failure plane, such that 

hydraulic conductivity is reduced resulting in an impermeable layer and a perched aquifer (Baum 

and Reid, 1995). In this conceptual model, which has been documented for a clay-rich landslide 

in Hawaii (Baum and Reid, 1995), any water that infiltrates the surface of the landslide collects 

along its base and contributes to a reduction in frictional strength of the shear zone. Similarly, 

water infiltrating outside the landslide would remain isolated from the water within the landslide, 

which is consistent with our isotopic results. This ‘bathtub’ model is a plausible cause of failure 

on Silt Creek, and may be the reason for failure during the dry summer months.   

 

 

 

 

 



CONCLUSIONS 

 This investigation used isotopic analysis of surface water and analysis of precipitation 

records to determine the relationship between landslide initiation and groundwater at a western 

Cascades landslide. The Silt Creek Landslide reactivated during the summer of 2014 in the midst 

of state-wide drought-like conditions that existed for the previous two years. Since then the slide 

has continued to move at a relatively high rate of ~15m/yr. The location of the slide occurs 

within a formation that is poorly welded and composted of tuffaceous materials that readily 

weather to clay minerals and are capped by resistant flows of basalt. LiDAR imagery has shown 

that several other landslides have occurred in the valley indicating that the entire upper Thomas 

Creek Watershed is unstable and prone to failure. This will likely continue as fluvial incision 

continues to undercut and over-steepen structurally unstable slopes. For this particular landslide 

groundwater and surface flow likely does not originate from higher elevations, as suggested by 

the oxygen isotope results. Instead the isotopic signature indicates a source of local meteoric 

water that has been subjected to evaporation. Ponded water below the landslide’s head scarp is 

therefore a plausible source for groundwater and surface flow further down the landslide. 

Precipitation records highlight the dry conditions that existed for up to 3 years before 

reactivation, suggesting that instead of a storm driven trigger, precipitation may have contributed 

to the accumulation of groundwater within the landslide complex over a longer time scale. The 

local geologic conditions and areas of groundwater infiltration support the proposed “bathtub 

model” of landslide hydrology, which may be a mechanism for this landslide’s continued 

reactivation. Identifying what specifically triggers a slope failure can be challenging, and this 

study suggests that analysis of stable isotopes in surface water at high spatial and temporal 

resolution may provide useful clues to pinpoint hydrologic triggering mechanisms.  
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