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Recurrent neural networks (RNN) are simple dynamical systems whose computational power has
been attributed to their short-term memory. Short-term memory of RNNs has been previously
studied analytically only for the case of orthogonal networks, and only under annealed approxima-
tion, and uncorrelated input. Here for the first time, we present an exact solution to the memory
capacity and the task-solving performance as a function of the structure of a given network instance,
enabling direct determination of the function–structure relation in RNNs. We calculate the memory
capacity for arbitrary networks with exponentially correlated input and further related it to the
performance of the system on signal processing tasks in a supervised learning setup. We compute
the expected error and the worst-case error bound as a function of the spectra of the network and
the correlation structure of its inputs and outputs. Our results give an explanation for learning
and generalization of task solving using short-term memory, which is crucial for building alternative
computer architectures using physical phenomena based on the short-term memory principle.

Excitable dynamical systems, or reservoirs, store a
short-term memory of a driving input signal in their in-
stantaneous state [1]. This memory can produce a desired
output in a linear readout layer, which can be trained ef-
ficiently using ordinary linear regression or gradient de-
scent. This paradigm, called reservoir computing (RC),
was originally proposed as a simplified model of infor-
mation processing in the prefrontal cortex [2]. It was
later generalized to explain computation in cortical mi-
crocircuits [3] and to facilitate training in recurrent neu-
ral networks [4]. A central feature of RC is the lack of fine
tuning of the underlying dynamical system: any random
structure that guarantees a stable dynamics gives rise
to short-term memory [3, 4]. Analogous behavior has
also been observed in selective response in random neu-
ral populations [6]. Furthermore, fixed underlying struc-
ture in RC makes it suitable for implementing computa-
tion using spatially distributed physical phenomena[13–
15, 17–21]. Such approaches can give us a way to store
and process information more efficiently than with von
Neumann architecture [7].

Short-term memory in neural networks has been stud-
ied for uncorrelated input u(t) under annealed approxi-
mation, i.e., connectivity is resampled independently at
each time step [8]. That study considered only linear or-
thogonal networks, where the columns of the connectiv-
ity matrix are pairwise orthogonal and the node transfer
functions are linear. A memory function m(τ) was de-
fined to measure the ability of the system to reconstruct
input from τ time steps ago, i.e., u(t−τ), from the present
system state x(t). It was shown that the total memory
capacity cannot exceed the N degrees of freedom in the
system. For networks with saturating nonlinearity, the
memory scales with

√
N [1]; however, by fine-tuning the

nonlinearity one can achieve near-linear scaling of mem-

ory capacity [9]. In nonlinear networks, it is very diffi-
cult to analyze the complete memory function and even
harder to relate it to the performance on computational
tasks, as is evident from many works in this area with
hard-to-reconcile conclusions (see Ref. [5]).

Model— Consider a discrete-time network of N nodes.
The network weight matrix Ω is N × N with spectral
radius λ < 1. A time-dependent scalar input signal ut
is fed to the network using the input weight vector ω.
The evolution of the network state xt and the output yt
is governed by

xt+1 = Ωxt + ωut, and (1)

yt+1 = Ψxt+1, (2)

where Ψ = (XXᵀ)
−1

XŶᵀ is an N -dimensional column
vector calculated for a desired output ŷt. Here, each
column of X is the state of the network at time xt
and each column of Ŷᵀ is the corresponding desired
output at each time step. In practice it is sometimes
necessary to use Tikhonov regularization to calculate the

readout weights, i.e., Ψ =
(
XXᵀ + γ2I

)−1
XŶᵀ, where

γ is a regularization factor that needs to be adjusted
depending on Ω,ω, and ut [5].

Calculating Ψ for a given problem requires the follow-
ing input-output-dependent evaluations (Appendix A):

XXᵀ =
∞∑

i,j=0

ΩiωRuu(i− j)ωᵀ(Ωᵀ)j , and (3)

XYᵀ =

∞∑
i=0

ΩiωRuŷ(i), (4)

where Ruu(i − j) = 〈utut−(i−j)〉 and Ruŷ(i − j) =
〈utŷt−(i−j)〉 are the autocorrelation of the input and the



2

cross-correlation of the input and target output. This
may also be expressed more generally in terms of the
power spectrum of the input and the target:

XXᵀ =
1

2T

∫ T

−T
Ω−1+ ωSuu(f)ωᵀΩ−1− df, (5)

XYᵀ =
1

2T

∫ T

−T
Ω−1+ ωSuŷ(f)eifτdf. (6)

where Ω+ =
(
I− eifΩ

)
and Ω− =

(
I− e−ifΩ

)
, Suu(f)

is the power spectral density of the input, and Suŷ(f)
is the cross-spectral density of the input and the target
output.

The performance can be evaluated by the mean-
squared-error (MSE) as follows:

〈E2〉 =
〈

(ŷ(t)− y(t))
2
〉

= ŶŶᵀ − ŶY (7)

= ŶŶᵀ − ŶXᵀ (XXᵀ)
−1

XŶᵀ. (8)

The MSE gives us a distribution-independent upper
bound on the instantaneous-squared-error through the
application of Markov inequality:

P
[
(ŷ(t)− y(t))

2 ≥ a
]
≤ 〈E

2〉
a

. (9)

The existence of a worst-case bound is important for en-
gineering applications of RC.

Memory and task solving— The memory function
of the system is defined as [8]

m(τ) = (YXᵀ)(XXᵀ)−1(XYᵀ), (10)

where Y is the input with lag τ , ut−τ .
The exact evaluation of this function has previously

proved elusive for arbitrary Ω and ω. Here we provide
a solution using eigendecomposition of Ω and the power
spectral density of the input signal. The solution may
also be described directly in terms of the autocorrelation
of the input, as in Appendix B.

Let Ω = Udiag(d)U−1 and ω̄ = U−1ω so that(
I− eifΩ

)−1
= Udiag(

1

1− eifd
)U−1. (11)

The memory function is reduced to

m(τ) =
1

2T
ω̄>

(
A ◦ C−1

)
ω̄, (12)

where the matrix C is given by

C =

∫ T

−T
[

ω̄

1− eifd
]⊗ [

ω̄

1− e−ifd
]Suu(f)df, (13)

and the matrix A is given by

A = [

∫ T

−T

Suŷ(f)eifτ

1− eifd
df ]⊗ [

∫ T

−T

Suŷ(f)eifτ

1− eifd
df ]. (14)

The total memory is then given by

∞∑
τ=0

m(τ) =
1

2T
ω̄>

(
B ◦ C−1

)
ω̄ (15)

where

B =

∫ T

−T

∫ T

−T

dfdf ′

1− ei(f+f ′)
[
Suŷ(f)

1− eifd
]⊗ [

Suŷ(f ′)

1− eif ′d
].

(16)

(a)

(b)

FIG. 1. (a) Agreement of analytical and empirical memory
function for different λ. (b) Scaling of memory capacity with
increasing structure in the input.

We validate our formula by comparing analytical and
empirical evaluation of the memory curve. The input
is assumed to be a sequence of length T with autocor-
relation function R(τ) = e−ατ (Appendix C). FIG 1(a)
shows the result of the single-instance calculation of the
analytical and the empirical memory curves for different
λ (Appendix C). As expected, the analytical and empir-
ical results agree.

We also study the memory capacity for different lev-
els of structure in the input signal. Here, we use simple
ring topologies with λ = 0.9 and vary the decay exponent
α, FIG 1(b). For a fixed system size, decreasing α ex-
ponentially increases the correlation in the input, which
increases the memory capacity.

Next, we use our method to calculate the optimal out-
put layer, the expected average error, and bounds on
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(a)

(b)

FIG. 2. Target output and system output generated with
analytical weights and trained weights for the NARMA10 task
(a), the worst-case bounds using the Markov inequality, with
the same plot on a log-log scale in the inset (b).

worst-case error for a common NARMA10 benchmark
task:

yt = αyt−1 + βyt−1

n∑
i=1

yt−i + γut−nut−1 + δ, (17)

where n = 10, α = 0.3, β = 0.05, γ = 1.5, δ = 0.1. The
input ut is drawn from a uniform distribution over the
interval [0, 0.5]. Here the evaluation of XXᵀ follows the
same calculation as for the memory capacity for the uni-
form distribution. For XYᵀ we must estimate the cross-
correlation of yt and ut and substitute it into Equation 4.
FIG 2(a) shows the output of a network of N = 20 nodes
and λ = 0.9 with analytically calculated optimal output
layer. The output agrees with the correct output of the
NARMA10 system. The cross-correlation of the system
used for the calculation is shown in the inset. FIG 2(b)
shows the worst-case error bound for this system and
the empirical errors generated from the system output,
showing that the bound we derived is tight.

Finally, we show how the framework can be used in a
prediction scenario, namely the prediction of the Mackey-
Glass system. The Mackey-Glass system [22] was first
proposed as a model for feedback systems that may
show different dynamical regimes. The system is a one-
dimensional delayed feedback differential equation and
manifests a wide range of dynamics, from fixed points

(a)

(b)

FIG. 3. Target output and system output generated with
analytical weights and trained weights for the Mackey-Glass
10 step ahead prediction task (c), the worst-case bounds using
the Markov inequality, with the same plot on a log-log scale
in the inset (d).

to strange attractors with varying divergence rates (Lya-
punov exponent). This system has been used as a bench-
mark task for chaotic signal prediction and generation [4].
It is defined as:

dx(t)

dt
= β

x(t− τ)

1 + x(t− τ)n
− γx(t), (18)

where β = 2, γ = 1, n = 9.7451, τ = 2 ensure the chaotic-
ity of the dynamics [4].

FIG 2(c) shows the prediction result for 10 time steps
ahead and the inset shows the autocorrelation at different
lags. The autocorrelation is characterized by a long cor-
relation length evident from non-zero correlation values
for large τ . This long memory is a hallmark of chaotic
systems. We use this information to evaluate Equation 3
and Equation 4, where for predicting τ steps ahead we
have XYᵀ =

∑∞
i=τ ΩiωRuŷ(i).

The effect of network structure— The effect of
randomness and sparsity of reservoir connectivity has
been a subject of debate [5]. To study the effect of net-
work structure on memory and performance, we system-
atically explore the range between sparse deterministic
uniform networks and random graphs. We start from a
simple ring topology with identical weights and induce
noise to ` random links by sampling the normal distribu-
tion N (0, 1). We then re-evaluate the memory and task
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(a)

(b)

(c)

FIG. 4. Total memory capacity (a), NARMA10 error (b),
and Mackey-Glass prediction error (c) as a function of λ and
increasing network irregularity. The best results in all cases
are for completely regular networks.

solving performance keeping the weight matrix fixed. We
evaluate system performance on a memory task with ex-
ponentially correlated inputs, the nonlinear autoregres-
sive NARMA10 task, and the Mackey-Glass chaotic time
series prediction. We systematically explore the effects
of λ, N , and ` on the performance of the system.

FIG 4(a) shows the resulting total memory capacity
normalized by N as a function of increasing randomness
`
N2 for different spectral radii λ. The expected theoret-
ical total memory capacity for an uncorrelated signal is∑
τ m(τ)/N = 1. Here the system exploits the structure

of the input signal to store longer input sequences, i.e.,∑
τ m(τ)/N > 1. This effect has been studied previously

under annealed approximation and in a compressive sens-

ing setup [12]. However, here we see that even without
the sparse input assumption and L1 optimization in the
output (a computationally expensive optimization used
in compressive sensing) the network can achieve capacity
greater than its degrees of freedom N . FIG 4(b) and (c)
show the error in the NARMA10 and the Mackey-Glass
prediction tasks. Here, best performance is achieved for
a regular architecture. A slight randomness significantly
increases error at first, but additional irregularity will de-
crease it. This can be observed for the NARMA10 task
at λ = 0.6 and for the Mackey-Glass prediction task at
λ = 0.9.

Discussion— Although memory capacity of RNNs
has been studied before, it is learning and generaliza-
tion ability in a task solving setup is not discussed. Our
derivation allows us to relate the memory capacity to
task solving performance for arbitrary RNNs and reason
about their generalization. In empirical experiments with
systems presented here, the training and testing are done
with finite input sequences that are sampled indepen-
dently for each experiment, so the statistics of the train-
ing and testing inputs vary according to a Gaussian dis-
tribution around their true values and one expects these
estimates to approach their true values with increasing
sample size. Hence, the mean-squared-error 〈E2〉, which
is linear in the input and output statistics, is also dis-
tributed as a Gaussian for repeated experiments. By the
law of large numbers, the difference between testing and
training mean-squared-error tends to zero in the limit.
This explains the ability of the system to generalize its
computation from training to test samples.

Conclusion— The computational power of reservoir
computing networks has been attributed to their mem-
ory capacity. While their memory properties have been
studied under annealed approximation, thus far no direct
mathematical connection to their signal processing per-
formance had been made. We developed a mathematical
framework to exactly calculate the memory capacity of
RC systems and extended the framework to study their
expected and worst-case errors on a given task in a su-
pervised learning setup. Our result confirms previous
studies that the upper bound for memory capacity for
uncorrelated inputs is N . We further show that the mem-
ory capacity monotonically increases with correlation in
the input. Intuitively, the output exploits the redun-
dant structure of the inputs to retrieve longer sequences.
Moreover, we generalize our derivation to task solving
performance. Our derivation help us reason about the
memory and performance of arbitrary systems directly
in terms of their structure. We showed that networks
with regular structure have a higher memory capacity
but are very sensitive to slight changes in the structure,
while irregular networks are robust to variation in their
structure.
Acknowledgments. This work was partly supported

by NSF grants #1028238 and #1028120, #1518861, and
#1525553.
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Appendix A: Computing the optimal readout
weights using autocorrelation

The recurrent neural network (RNN) model that we
study in this paper is an echo state network (ESN) with
linear activation function. This system consist of an in-
put driven recurrent network of size N , and a linear read-
out layer trained to calculate a desired function of the
input. Let u(t) and ω indicate a one-dimensional in-
put at time t and an input weight vector respectively.
Let Ω be a N × N recurrent weight matrix, x(t) be an
N -dimensional network state at time t, and Ψ be the

readout weight vector. The dynamics of the network and
output is described by:

x(t+ 1) = Ωx(t) + ωu(t) (A1)

y(t+ 1) = Ψx(t+ 1), (A2)

where the readout weights are given by [8]:

Ψ = (XX>)−1XY>. (A3)

The value of the optimal readout weights depend on
the covariance and cross-covariance components (XX>)
and XY>. Here we show that these can be computed
exactly for any arbitrary system given by Ω and ω and
autocorrelation of the input Ruu(τ) and cross-correlation
of input and output Ruŷ.

We begin by noting that the explicit expression for the
system state is given by:

x(t+ 1) =

t∑
k=0

Ωt−kωuk. (A4)

Calculating Ψ for a given problem requires the following
input-output-dependent evaluations:

XXᵀ =

〈 ∞∑
i,j=0

Ωiωut−iu
ᵀ
t−jω

ᵀΩᵀj

〉

=

∞∑
i,j=0

ΩiωRuu(i− j)ωᵀ(Ωᵀ)j , and (A5)

XYᵀ =

〈 ∞∑
i=0

Ωiωut−iŷ
ᵀ
t

〉

=

∞∑
i=0

ΩiωRuŷ(i). (A6)

Appendix B: Computing the total memory using
autocorrelation

Here we compute the memory function and the to-
tal memory of the recurrent neural network described
in Appendix A for exponentially correlated input where
Ruu(τ) = e−ατ . The total memory of the system is given
by the following summation over the memory function [8]:

∑
τ

m(τ) = Tr((XXᵀ)−1
∞∑
τ=0

(XYᵀ)τ (YXᵀ)τ ). (B1)

where Y is the input with lag τ , ut−τ .
Computing XXᵀ requires the evaluation of:

XXᵀ =

∞∑
i,j=0

ΩiωRuu(i− j)ωᵀ(Ωᵀ)j . (B2)
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This assumes an even correlation function, i.e., Ruu(i −
j) = Ruu(j − i). For numerical computation it is more
convenient to perform the calculation as follows:

XXᵀ = XXᵀ
i≥j + XXᵀ

i≤j −XXᵀ
i=j

= XXᵀ
i≥j +

(
XXᵀ

i≥j

)ᵀ
−XXᵀ

i=j , (B3)

where XXᵀ
i≥j is a partial sum of XXᵀ satisfying i ≥ j,

XXᵀ
i≤j =

(
XXᵀ

i≥j

)ᵀ
is a partial sum of XXᵀ satisfying

i ≤ j, and XXᵀ
i=j is a partial sum of XXᵀ satisfying

i = j, which is double counted and must be subtracted.
We can substitute τ = |i − j| and evaluate XXᵀ

i≥j and

XXᵀ
i=j as follows:

XXᵀ
i≥j =

∞∑
i,τ=0

ΩiωRuu(τ)ωᵀ(Ωᵀ)i+τ , and (B4)

XXᵀ
i=j =

∞∑
i=0

ΩiωRuu(0)ωᵀ(Ωᵀ)i. (B5)

XXᵀ
i≥j =

∞∑
i,τ=0

ΩiωRuu(τ)ωᵀ(Ωᵀ)i+τ (B6)

=

∞∑
i,τ=0

Ωiωe−ατωᵀ(Ωᵀ)i+τ (B7)

=

∞∑
i=0

Ωiωωᵀ(Ωᵀ)i
∞∑
τ=0

(e−αΩᵀ)τ (B8)

= UΛ ◦ (I◦ − ddᵀ)−1
◦
Uᵀ(I− e−αΩᵀ)−1, (B9)

XXᵀ
i=j =

∞∑
i=0

ΩiωRuu(0)ωᵀ(Ωᵀ)i (B10)

=

∞∑
i=0

Ωiωωᵀ(Ωᵀ)i (B11)

= UΛ ◦ (I◦ − ddᵀ)−1
◦
Uᵀ. (B12)

Here I◦ is the identity of the Hadamard product de-
noted by ◦, and −1

◦
is a matrix inverse with respect to

the Hadamard product. Here the trick is that ω̄ = U−1ω
takes the input to the basis of the connection matrix Ω
allowing the dynamics to be described by the powers of
the eigenvalues of Ω, i.e., D. Since D is symmetric we
can use the matrix identity DΛD = Λ ◦ddᵀ, where d is
the main diagonal of D. Summing over the powers of D
gives us

∑∞
i=0 Ωiωωᵀ(Ωᵀ)i = UΛ ◦ (I◦ − ddᵀ)−1

◦
Uᵀ.

The covariance of the network states and the expected
output is given by:

XYᵀ
τ =

∑
i

ΩiωR(|i− τ |) =
∑
i

Ωiωe−α|i−τ |. (B13)

For α→∞, the signal becomes i.i.d. and the calculations
simplify as follows [16]:

XXᵀ = 〈u2〉UΛ ◦ (I◦ − ddᵀ)−1
◦
Uᵀ, (B14)

XYᵀ = Ωτω〈u2〉. (B15)

The total memory capacity can be calculated by sum-
ming over m(k):

∑
τ

m(τ) = Tr((XXᵀ)−1
∞∑
τ=0

(XYᵀ)τ (YXᵀ)τ ). (B16)

Appendix C: Experimental Setup for Memory Task

For our experiment with memory capacity of network
under exponentially correlated input we used the follow-
ing setup. We generated T = 2, 000, 000 long sample
inputs with autocorrelation function Ruu(τ) = e−ατ . To
generate exponentially correlated input we draw T sam-
ples ui from a uniform distribution over the interval [0, 1].
The samples are passed through a low-pass filter with a
smoothing factor α. We normalize and center ut so that
〈u(t)〉t = 0 and 〈u(t)2〉t = 1. The resulting normalized
samples u(t) have exponential autocorrelation with de-
cay exponent α, i.e., Ruu(τ) = e−ατ . To validate our
calculations, we use a network of N = 20 nodes in a
ring topology and identical weights. The spectral radius
λ = 0.9. The input weights ω are created by sampling
the binomial distribution and multiplying with 0.1. The
scale of the input weights does not affect the memory
and the performance in linear systems and therefore we
adopt this convention for generating ω throughout the
paper. We also assumed α = 0.05, the number of sam-
ples T = 30, 000, washout period of 5, 000 steps, and
regularization factor γ2 = 10−9.

Appendix D: Experimental Setup for Topological
Study

A long standing question in recurrent neural network
is how its structure effect its memory and task solving
performance. Our derivation lets us compute optimal
readout layer for arbitrary network. Here we describe
the calculations we performed to examine the effect of
structure of the network on its memory and task solv-
ing performance. To this end, we use networks of size
N = 100, α = 0.01, and γ = 10−13 and we systemati-
cally study the randomness and spectral radius. We start
from a uniform weight ring topology and incrementally

add randomness from ` = 0 to ` = N2

2 . The results
for each value of ` and λ are averaged over 50 instances.
This averaging is necessary even for ` = 0 because the
input weights are randomly generated and although their
scaling does not affect the result their exact values do [1].
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Appendix E: Computing the optimal readout
weights using power spectrum

The calculations in Appendix A for optimal layer of a
recurrent network may be described in a more generally
in terms of power spectrum of the input signal. Here
we assume the setup in Appendix A and derive an ex-
pressions for optimal readout layer using its the power
spectrum of the input and output.

We start by the standard calculation of XXᵀ and
XYᵀ:

XXᵀ =

〈 ∞∑
i,j=0

Ωiωut−iu
ᵀ
t−jω

ᵀΩᵀj

〉

=

∞∑
i,j=0

ΩiωRuu(i− j)ωᵀ(Ωᵀ)j , and (E1)

XYᵀ =

〈 ∞∑
i=0

Ωiωut−iŷ
ᵀ
t

〉

=

∞∑
i=0

ΩiωRuŷ(i). (E2)

We replace

Ruu(t) =
1

2T

∫ T

−T
Suu(f)eiftdf (E3)

and

Ruŷ(t) =
1

2T

∫ T

−T
Suŷ(f)eiftdf (E4)

which gives

XXᵀ =
1

2T

∫ T

−T

∞∑
t,t′=0

ΩtωSuu(f)eif(t−t
′)ωᵀ(Ωᵀ)t

′
(E5)

=
1

2T

∫ T

−T

( ∞∑
t=0

(eifΩ)t

)
ωSuu(f)ωᵀ

( ∞∑
t′=0

(e−ifΩᵀ)t
′

)
df (E6)

=
1

2T

∫ T

−T

(
I − eifΩ

)−1
ωSuu(f)ωᵀ

(
I − e−ifΩᵀ)−1 df (E7)

and

(XYᵀ)τ =
1

2T

∫ T

−T

∞∑
t=0

ΩtωSuŷ(f)eif(t+τ)df (E8)

=
1

2T

∫ T

−T

( ∞∑
t=0

(eifΩ)t

)
ωSuŷ(ω)eifτdf (E9)

=
1

2T

∫ T

−T

(
I − eifΩ

)−1
ωSuŷ(f)eifτdf. (E10)

Appendix F: Memory capacity expressed in terms of
power spectrum

Here we use the derivation in Appendix E and compute
the memory function and the total memory of the system.

Let Ω = Udiag(d)U−1 and ω̄ = U−1ω so that(
I − eifΩ

)−1
= Udiag(

1

1− eifd
)U−1. (F1)

We find that

m(τ) =
1

2T
ω̄>

(
A ◦ C−1

)
.ω̄ (F2)

The matrix C is given by

C =

∫ T

−T
[

ω̄

1− eifd
]⊗ [

ω̄

1− e−ifd
]Suu(f)df, (F3)

and the matrix A is given by:

A = [

∫ T

−T

Suŷ(f)eifτ

1− eifd
df ]⊗ [

∫ T

−T

Suŷ(f)eifτ

1− eifd
df ]. (F4)

The total memory is then given by:

1

N

∞∑
τ=0

m(τ) =
1

2TN
ω̄>

(
B ◦ C−1

)
ω̄ (F5)
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where

B =

∫ T

−T

∫ T

−T

dfdf ′

1− ei(f+f ′)
[
Suŷ(f)

1− eifd
]⊗ [

Suŷ(f ′)

1− eif ′d
].

(F6)
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