The Role of Interdependencies in Blockchain Adoption: The Case of Maritime Trade

Melissa M. Appleyard
Portland State University, appleyard@pdx.edu

Kristi Yuthas
Portland State University, yuthask@pdx.edu

Citation Details

Let us know how access to this document benefits you.
The Role of Interdependencies in Blockchain Adoption: The Case of Maritime Trade
Melissa M. Appleyard, Kristi Yuthas
The School of Business, Portland State University, USA

Correspondence: yuthask@pdx.edu
Received: 18 July 2022 Accepted: 21 August 2022 Published: 12 September 2022

Abstract
Despite its many potential economic and organisational benefits, enterprise blockchain (distributed ledger) technology has still not been widely adopted. From the viewpoint of the participants, the deployment of a blockchain that links collaborating enterprises requires value creation that will exceed investment, including investment in operational and strategic change. The theory behind and practice of cross-enterprise open innovation can inform blockchain adoption. Blockchain implementation requires and creates interdependencies across collaborators, both among enterprise consortium partners and with stakeholders in the broader ecosystem. Distinguished from arm’s-length forms of collaboration, interdependencies occur when organisations intentionally collaborate to become reliant upon one another. In this paper, we develop a framework of blockchain interdependencies and explore key factors that promote or inhibit interdependence. We propose a blockchain collaboration continuum with three levels: cooperation, interdependence, and mutualism. We then explore factors that influence the level of interdependence: two types of consortium-level interdependencies – socio-technical and economic, and two types of ecosystem-level interdependencies – standards and legal/regulatory. We illustrate these interdependencies and their payoffs through the example of supply chains in maritime trade. This work can be used as a starting point for diagnosing critical factors influencing adoption and for illuminating points of leverage that may sway hesitant organisations to participate in blockchain consortia.

Keywords: blockchain adoption, collaborative innovation, consortia, ecosystems, enterprise blockchain, interdependencies, maritime trade, open innovation

JEL Classifications: M15, O33, O36

1. Introduction
Blockchain technology [or distributed ledger technology (DLT)] has been touted for its ability to create commercial value in numerous industrial sectors distinct from its role in enabling cryptocurrencies [1]. Firms recognise that technology-enabled transparency and digital mediation are here to stay and will shape collaborative dynamics well into the future [2]. This reality plays to blockchain’s strengths. Nevertheless, blockchain has still not been widely adopted by enterprises [3, 4], which remains a puzzle, and there is a lack of clear evidence of the benefits of its adoption [5].

Research has started to probe what contributes to blockchain adoption, moving beyond questions about compatibility of technology architectures and towards organisational and strategic considerations [6, 7, 8]. We extend this vein of the literature by examining blockchain adoption through the theoretical lens of open innovation [9, 10] coupled with transaction cost economics [11], in the context of organisations jointly pursuing innovation with positive net payoffs. From this perspective of cross-enterprise collaboration, we explore how blockchain adoption relies upon and creates interdependencies among the participants. Long-term value creation from blockchain collaboration relies on interorganisational relationships that escalate in obligation.

In this article, we develop a framework of blockchain interdependencies and explore key factors that promote or inhibit interdependence. We propose a collaboration continuum with three levels: cooperation, interdependence, and mutualism. We then explore factors that influence the level of interdependence: two consortium-level interdependencies – socio-technical and economic, and two ecosystem-level interdependencies – standards and legal/regulatory.

We illustrate blockchain interdependencies and their payoffs through the example of supply chains in maritime trade. Maritime trade includes freight forwarders, large oceangoing carriers, port operators, customs agents, inland carriers, and many other parties. Over 80% of global trade in goods is
transported by the maritime industry and transaction flows can link hundreds of organisations [12]. The maritime industry currently deploys a number of blockchain systems, and all of the largest carriers in this oligopolistic industry participate in blockchain consortia [13, 14]. Blockchain technology not only offers a way to track movement and digitise handoffs, but can automate and streamline surrounding processes, creating value as contracts between trading parties are fulfilled.

In the next section, we present the theoretical grounding of our analysis. This is followed by the development of our framework, and then an examination of the four blockchain interdependencies with examples from maritime trade. The subsequent sections discuss our findings, conclusions, and areas of future research.

2. Theoretical Grounding of Blockchain Technology Adoption

Much of the research on blockchain adoption takes the perspective of the individual firm [15, 16], as does relevant maritime trade literature (e.g., [17]). This work typically focuses on pain points or frictions and emphasises efficiencies and cost savings attributable to participation in a blockchain rather than costs once coordination is underway. Hence, blockchain technology helps overcome both ex ante cooperation costs and possible ex post costs once coordination is underway. Hence, blockchain technology offers a new way to establish trust in an economic exchange [1] and new areas of value creation.

As existing literature demonstrates, the collaboration required for enterprise blockchain deployment typically occurs in a consortium setting and deepens to the point of shared governance [6], allowing participating firms to benefit from interdependencies [21, 27]. In the case of blockchain, interdependencies create value through coordinated action that companies involved in traditional transactional relationships cannot achieve. The rules governing the execution of a blockchain support interfirm data and process integration, which constitute the basis of interdependence in the blockchain setting [27].

Going a level deeper to establish the theoretical grounding for the willingness creation of interdependencies, transaction cost economics (TCE) provides justification for boundary-spanning collaboration. TCE considers how people and organisations interact to, in effect, fulfill a contract [11], where interactions are characterised as transactions. In the case of blockchain, participating in a DLT project and recording transactions in a shared ledger reflect collaboration.

The foundational assumptions of TCE are that people operate with bounded rationality and are prone to opportunism [11]. Regarding the former assumption, because blockchain enables the execution of smart contracts, i.e., programmed-in decision rules, it can help reduce limitations to human information processing [2]. Opportunism can be mitigated through smart contracts as well as through automation of transactions and transparency of entries.

TCE distinguishes between the types of costs incurred to engage in a transaction where ex ante costs can include search costs to identify an exchange partner plus the costs of drawing up the agreement, which requires negotiations and the adoption of safeguards as needed [11]. Once the agreement is finalised and the exchange proceeds, if outcomes diverge from expected outcomes, the parties might face haggling and re-contracting costs [11].

Prior to the explosion of the internet in the 1990s, Malone [28] explored hierarchical and market structures and the trade-offs between production and coordination costs related to these structures. Malone and colleagues proposed the electronic market hypothesis (EMH) which argued that information technology would reduce the ex ante and ex post transaction costs, promoting a shift from hierarchies to markets as a means of coordinating economic activity [29, 30]. This hypothesis was later used to explain and propose decentralisation of project teams and transaction networks [31], as well as the decentralisation of decision-making, both within hierarchical organisations and among market participants [32].

Because of its features, blockchain technology helps overcome both ex ante cooperation costs and possible ex post costs once coordination is underway. Hence, blockchain technologies offer a new way to establish trust in an economic exchange [1] and new areas of value creation.
requiring a new approach to governance [2]. Blockchain has the potential to disrupt existing hierarchies and business models [1] and represents not only technological change but institutional change [33].

3. Progression of Value Creation through Intensity of Collaboration

Blockchain represents a paradigm shift in collaboration; it provides a new way to organise economic activity [33]. Lumineau et al. [2] explore blockchain technology as a new form of organisational governance; they argue that blockchain is among “the most disruptive technological innovations of recent times that may fundamentally change how collaborations are organized” (p.1). In a blockchain setting, increasing levels of interdependence enable engagement in blockchain-based collaborations that have the potential for increasing economic payoffs for participants. As intensity of collaboration and open innovation increases, so does the potential for value creation.

To contextualise how open innovation and the underlying TCE processes give rise to value creation in a blockchain consortium, we consider the payoffs to blockchain adoption in maritime trade. Specifically, organisations that have joined maritime trade consortia have benefited from the digitisation of trade documents, improved information sharing including more precise tracking of containers in the global supply chain, and increased speed of transactions through smart contracts [34]. These benefits have accrued to the participating organisations once they have committed to going beyond arm’s-length open innovation exchanges to interdependent ones as part of a consortium with their transactions captured in the digital ledger. It is the intensity of collaboration that forms the basis of our blockchain adoption framework as captured in Table 1.

<table>
<thead>
<tr>
<th>Table 1. The Blockchain Collaboration Continuum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
</tr>
<tr>
<td>3rd Party Provider</td>
</tr>
<tr>
<td>Performance outcomes</td>
</tr>
</tbody>
</table>

The continuum characterises three types of multi-firm relationships associated with various forms of blockchain collaboration: cooperation, in which firms collaborate to integrate processes and share data; interdependence, in which the success of firms is interconnected; and mutualism, in which participating companies innovate beyond typical blockchain affordances to develop and execute new strategic initiatives. For each of these relationship types, we explain representative blockchain solutions that support them and the associated performance outcomes. We illustrate the three categories using examples from maritime trade.

Cooperation

Cooperation relationships can be supported by third-party blockchain providers. Participating organisations opt into these systems but do not typically take ownership in ongoing development and governance. These systems are akin to centralised collaborative technologies, but they offer advantages including trust, security, and privacy, which can promote achievement of existing objectives for the collaboration among its participants. These systems are typically implemented to remove transaction inefficiencies, such as reconciliation problems, or to enable multi-party information sharing. The payoffs often take the form of speed and efficiency of transacting, resulting in cost savings for participants, as well as reliability and transparency, which reduce transaction risk among participants. Information stored in the ledger can provide expanded visibility to participants with access, as well as to outside parties such as auditors and regulators.

Prior to adoption of blockchain, the maritime industry had a history of collaboration via centralised service providers. Industry members moved beyond arms-length cooperation by agreeing to follow standards and share data through centrally managed portals such as INTTTRA and GT Nexus [35, 36]. Companies collaborated through these centralised portals by sharing location and booking-related data. These systems enhanced value primarily by automating and streamlining existing processes and enabling better planning through data sharing.

Currently in the maritime industry, there are many third-party blockchain solutions for a variety of issues. For example, shipping consortia have adopted technology developed by CargoX that enables participating firms to use the smart bill of lading systems based on the Smart B/L token, which can be used upon receipt of a shipment to demonstrate that it has been paid for [13]. Maritime Blockchain Labs and the Lloyd’s Register Foundation’s prototype for digital audit trails and due diligence for dangerous goods cargo is another example. This system is designed to reduce serious incidents aboard containerships caused by mis-declared cargo [12].

Interdependence

Interdependence relationships represent a high degree of collaboration and open innovation among participants. Collaborators agree to participate in mutually-beneficial relationships in which they share common goals and work together to achieve them often in a consortium structure. Their activities and outcomes are intertwined such that the success of
one party is dependent on the actions of other organisations in the multi-party relationship.

The consortium of participants functions much like an organisation. Participants jointly govern the consortium and commit to a shared set of goals. Governance features of blockchains such as jointly designed and enforced membership, usage, and voting rules lead to interfirm interdependence [37]. Participating organisations share in the design, development, and deployment of these systems along with the ongoing creation and maintenance of shared governance agreements. While small participants and those joining the consortium after its implementation may play a lesser role, participants involved in governance engage in extensive open innovation as they form agreements on the strategic and operational aspects of these systems.

At the interdependence stage, value creation can be considered additive in nature. Participants can create and capture value beyond what could have been achieved through cooperation. Through interdependence relationships, participants may utilise numerous blockchain artefacts that provide new sources of value. Interorganisational processes can be coordinated and streamlined; smart contracts can be developed for the automation of processes and agreements; data generated through traditional and IoT-generated transactions can be mined to identify further opportunities for performance enhancements; and resources and competencies such as advanced know your customer (KYC) capabilities can be shared among participants.

In maritime trade, blockchain-enabled interdependence has been prevalent, resulting in performance benefits for participating firms. In 2020, TradeLens reported processing over 14 million documents involving over 30 million containers linking over 200 organisations in the maritime supply chain, including the majority of container ships worldwide [38]. Other active implementations include initiatives in trade finance and trade insurance [39].

Ancillary value has been created including the establishment of provenance and the elimination of counterfeiting through the enforcement of intellectual property rights via the blockchain, as well as other services like the execution of insurance contracts or the tracking of contaminated food [40].

Mutualism

As literature on interfirm interdependence finds, increasing the intensity of cooperation and open innovation can lead to mutualism. In these relationships, shared strategic direction arises as the partners collaborate on shared intellectual property and create new products, services, and business models. The ability to collaborate in this way is greatly enhanced for firms that have previously interacted through well-established interdependencies. Mutualism is enabled and supported by these relationships and the multi-party blockchain technology backbone.

Mutualism enables multiplicative returns for participants. When firms reach this stage, they work together towards mutual objectives, which may be novel and unique to the group. Innovations build on the resources created and supported through the blockchain system in which they engage [41]. Through their collaboration with each other on the blockchain project, participants develop and hone strategic technology partnering (STP) capabilities that enable them to more effectively organise, innovate, learn, and create value through future technology-based collaborations [42].

The potential for value creation supported by blockchain platforms can be informed by the capabilities achieved through other platform ecosystems such as those provided by Apple, Facebook, Google, and Uber [43, 44]. Along with the data, the network of participants itself can be a source of innovation, and in many situations, the greater the number of participants the more value is created through network effects [14, 45]. For example, participants could create an app for service providers seeking to collaborate with these organisations. Vetting and performance ratings could be shared, providing benefits to participants seeking to collaborate with these vendors in the future. New products that rely on shared systems and historical data could be developed, such as end-to-end products for self- or external party-insurance or financing arrangements. Experience and expertise can be drawn upon as specific needs arise, expanding the capabilities available to participants.

In the maritime space, blockchain-based mutualistic collaborations have been foundational to the development of beneficial innovations and increasingly involve other “Industry 4.0” technologies like artificial intelligence, big data, IoT, and/or machine learning. Green et al. [13] summarise a number of examples, including TradeLens, Blocklab, and BunkerTrace. TradeLens is developing a smart bill of lading technology similar to that provided by CargoX. This technology will be used by consortium participants for automated processing and actionable document flows. Blocklab, a subsidiary of Port of Rotterdam built on its blockchain relationships and experience to launch a green energy innovation that uses smart contracts to enable high-frequency energy trades, balance supply and demand, and increase clean energy use. BunkerTrace, which uses blockchain technology for digitalisation of fuel trade documents, has built on this system to develop a blockchain innovation for fuel tracking. BunkerTrace uses DNA-based tags that can be added to fuel. The tags enable the fuel to be quickly tested en route to ensure provenance and quality.

4. **Identification of Adoption Factors**

As we have argued, increasing the intensity of collaboration and open innovation among blockchain consortium participants can result in significant economic and other performance returns. The factors that contribute to blockchain adoption and use not only influence an organisation’s
adoption but the level of interdependence they can achieve across the blockchain collaboration continuum.

To identify the contributors to blockchain adoption through the lens of interdependence, we began with a systematic analysis of the academic literature. Such an analysis provides transparent and auditable documentation of the researchers’ approach to gathering and evaluating evidence. Because academic research can lag behind practice, we supplemented academic findings with factors from grey literature, particularly in international maritime trade, which we use to illustrate and validate the factors.

Our research approach followed the PRISMA-S guidelines [46]. We began with database searches narrowed to relevant literature and then expanded to related academic and trade resources. We searched the Web of Science database of high-impact journals for blockchain AND (adoption OR diffusion) within subject categories of business, management, and operations research. This search resulted in a starting sample of 156 papers, which were reviewed for relevance. We identified 16 papers from this sample and added five additional highly relevant papers that addressed factors beyond individual organisation and technological concerns. Based on the factors in these papers, we identified four areas of interdependency that affect blockchain adoption.

Interdependencies Enabled by Blockchain

Building upon our analysis of the blockchain adoption literature, we grouped the primary interdependencies enabled by blockchain technology into four categories. The first two categories, socio-technical and economic, create value by integrating the actions and objectives of blockchain participants. We refer to these as internal interdependencies. The latter two categories, standards-setting and legal/regulatory, require engagement with additional players. We refer to these as ecosystem interdependencies (Table 2).

Table 2. Blockchain Interdependencies

<table>
<thead>
<tr>
<th>Internal Interdependencies – among blockchain participants</th>
<th>Socio-technical</th>
<th>Economic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-technical interdependencies include shared language, routines, practices, and mindsets.</td>
<td>Economic interdependencies include synergies and trade-offs associated with costs, productivity, and market access.</td>
<td></td>
</tr>
<tr>
<td>External Interdependencies – with organisations in the ecosystem</td>
<td>Standards</td>
<td>Legal/regulatory</td>
</tr>
<tr>
<td>Standards interdependencies include shared technical and procedural specifications relating to transactions, workflaws, and systems.</td>
<td>Legal/regulatory interdependencies include rules and regulatory requirements governing the use of data and information, materials, currencies, practices, and systems.</td>
<td></td>
</tr>
</tbody>
</table>

Internal Interdependencies

Internal interdependencies refer to dependencies among firms that participate or could participate in an enterprise blockchain project. Socio-technical interdependencies include shared language and collaborative technological integration. Economic interdependencies affect the distribution of value creation from the adoption of blockchain across the collaborating parties.

Socio-technical Interdependence

Blockchain can be understood as a social technology that both requires and enables social coordination. While these systems can help to build trust and support open innovation, the manner in which they interact with existing socio-technical systems will influence adoption and effectiveness. Teece et al. [47] suggest that for individual firms, existing routines and practices as well as current endowments of technologies and relationships will affect how a firm adapts to strategic opportunities. Industries, too, have histories, practices, mindsets, and relationships that affect their trajectories. Theories about the diffusion of innovations suggest that adoption of new technology is an iterative process through which ideas affect actions that over time influence social structures. These structures, in turn, affect beliefs and actions [48]. Achieving blockchain objectives requires a cultural willingness to integrate new practices into existing socio-technical systems. Use of an “industrial age methodology and mindset” when evaluating blockchain and other advanced technologies may inhibit adoption [49]. In industries considering blockchain adoption, for example, low levels of digitalisation can create further challenges, particularly when long-established process and practices have functioned smoothly.

By way of illustration, the adoption of blockchain along the maritime supply chain was impeded to some degree by “institutional grind,” where some of the supply chain players, particularly the small- and medium-sized firms, were reluctant to either replace these existing systems or integrate blockchain into them [50]. However, other organisations in the industry had already implemented precursors to blockchain-based systems through digital shipping portals like INTTRA and port community systems which enable information exchange between a port and its customers [51]. Adoption of these systems modernised industry practices and laid the foundation for future digitalisation. Participation in pre-blockchain projects also reflected potential participants’ willingness to coordinate with other industry players. Collaborating via pre-blockchain systems helped establish multi-party relationships. In addition, leading industry participants gained experience managing such relationships, which could be drawn on as blockchain consortia emerged.

Like other interorganisational systems, blockchain technology holds the potential for enhanced performance through “IT-enabled coordination of interfirm processes” requiring both IT integration and communication across firm boundaries [25]. This interdependence requires shared governance along
the supply chain necessitating high-level communication about business objectives and a consensus on how to manage the relationship [25]. Value creation occurs through relational rents derived from the streamlining and improved quality of interfirm linkages that rely on self-enforcement [24].

When Maersk and IBM introduced the TradeLens blockchain, Maersk’s direct competitors were hesitant to join [1]. A customer advisory board helped to improve transparency across member firms, facilitate communication and shared governance, and quell concerns of Maersk’s dominance [52]. Expansion of TradeLens membership followed [36].

Economic Interdependence

Technology-based innovations can create economic benefits in a variety of ways, including cost savings through efficiency and productivity, revenue increases through market expansion, and innovation of new products and services [53]. Participation in a blockchain consortium establishes or amplifies economic interdependencies among participants. Individual firms must anticipate a net positive payoff that exceeds switching and integration costs to ensure their willingness to adopt blockchain technology. Resources required for implementation include the appropriate infrastructure and the knowledge to operate and integrate the new technology [54].

By spanning organisational boundaries and facilitating data sharing and aggregation across supply chain partners, blockchain can further enhance the performance of other technologies already deployed, such as RFID and IoT devices, and enterprise systems such as ERP, EDI, and CRM systems [55]. Direct interorganisational transactions enabled by blockchain can reduce transaction costs in ways not possible for tacit transactions [2].

In maritime trade, adoption of blockchain technology has enabled three primary areas of value creation: digitised paperwork including bills of lading and ship registry information; information sharing, ranging from commercial data such as cargo movements to technical data such as engine data; and automated processes focused on the execution of smart contracts when shipping terms are fulfilled [56]. Blockchain facilitates the integration of “granular information” and “exceptions related to physical flows” to allow supply chain partners to more effectively manage their interdependencies [25, 57]. Additional payoffs include streamlined connections among supply chain partners.

Numerous intermediaries are involved in arranging shipments in maritime trade, including freight forwarders, carriers, and brokers who link the supplier, the “shipper,” with the buyer, the “consignee.” Some of these intermediaries may be eliminated in the future by smart contracts enabled by blockchain, which has contributed to the hesitation of some firms to participate in the emerging consortia. For the surviving supply chain players, this will improve their return by decreasing: search costs, fees charged by intermediaries, errors and time associated with paper document exchange, and fraud and settlement transaction times [58]. Digitalisation has allowed carriers to start directly offering capacity to shippers [59]. Taking these changes into consideration, disruption and reconfiguration of existing relationships along the supply chain could be considered a countervailing cost to blockchain implementation.

Across case studies of firms in maritime trade contemplating replacement of existing digital shipping portals with blockchain technology, participants viewed confidentiality of information to be paramount in choosing interorganisational information systems [35]. In the case of TradeLens, the blockchain architecture based on Hyperledger Fabric allows information to be walled off into “channels” so only specified participants can view the information [36]. Hyperledger Fabric is open source, which provides assurance that the software will continue to improve due to a committed community of developers and that the source code of current and future versions will be transparent.

Ecosystem Interdependencies

An ecosystem can be described as a network of economically connected organisations that may span the boundaries of multiple industries [60]. Ecosystems emerge for a variety of purposes. They enable interdependent organisations to coordinate without hierarchical decision-making authority. Ecosystems support multilateral dependencies based on the unique resources and capabilities of participants [43].

Adoption of blockchain technology affects and is affected by the broader ecosystem within which the consortium operates. Blockchain workflows require coordination in areas such as terminology, codes, transaction features, processes, and timing. While some industries and ecosystem have well-established standards and regulations in place, it is more common for them to be lacking or inconsistent. This is particularly problematic when consortium partners operate in multiple jurisdictions or across industry lines. Thus, the consortium and its ecosystem stakeholders have interdependent relationships regarding standards, laws, and regulations.

Standards Interdependence

Standards are technical specifications that enable consistency across processes, products, and systems. Open standards can be characterised as public goods that all of the players in the industry can use at the same time without diminishing their usefulness for any one player, whether or not they contributed to the development of the standards [61, 62].

Effective deployment of blockchain technology may require broad agreements on workflows and sequencing or small agreements about the timing, identification, or contents of specific transactions. Standards and standardisation thus play a key role in blockchain adoption to facilitate these agreements [63]. To help spur technology adoption, the creation of
standards has become prevalent in high tech sectors through
interfirm cooperation and the participation of international
standard-setting organisations [61, 62, 64, 65, 66, 67].

For standards interdependence in maritime trade, a fundamental
requirement is shared terminology. This is challenging due to the
cross-border nature of trade involving multiple governmental
jurisdictions [40]. The United Nations has created a library of core
components of the semantics of trade information from which
reference data models facilitate the exchange of business data [68].
The International Organization for Standardization (ISO) and the
International Chamber of Commerce (ICC) have also been active
digital trade standards [40].

The Digital Container Shipping Association (DCSA), which
counts nine of the ten largest ocean carriers among its
members [69] initiated implementation of Track & Trace
standards to provide a common data model and standards for
interfaces and API definitions to create a common
understanding of the process flow [70]. Additional standards
are emerging in a coordinated fashion. For example, DCSA
members are pursuing Just-In-Time port call standards
consistent with the work of the International Maritime
Organization (IMO), and cybersecurity standards in keeping
with an IMO resolution [71, 72].

Legal/Regulatory Interdependence

Similar to standards, collaboration with legal and regulatory
authorities in the broader ecosystem is critical for
blockchain adoption. Adoption of blockchain requires
clarification of the legal status of blockchain transactions
and the manner in which data can be gathered, stored, and
used. Variation in laws across jurisdictions can impede
blockchain adoption [3]. Governments and trade
organisations around the world are working on legislation
governing blockchain trade and finance, but rules can be
inconsistent and do not yet exist in many domains. Consortia
participants, regulators, agencies, and others have interdependent interests and responsibilities that will
affect whether and how blockchain is implemented.

Maritime trade provides a rich example of this type of
interdependence. Extensive rules and regulations governing
international trade have been developed over centuries, and
are difficult to change. Since 2010, the European Union has
sought to harmonise the electronic reporting of import and
export documents and customs clearance [73]. This intensive
process will inform the multilateral efforts to deploy
blockchain technology including “legal certainty and
establishment of interoperability standards” [58]. Blockchain
holds promise as the vehicle by which to implement single
windows across the 164 signatories of the 2017 Trade
Facilitation Agreement [74]. UNCITRAL’s MLETR
digital/physical document equivalency project will contribute
to global harmonisation [75].

Collaboration can also cause legal problems, however. If close
collaboration is viewed as constricting downstream
competition, antitrust regulations may come into play.
Blockchain consortia in the maritime industry that wish to
operate in the US must secure antitrust exemption by filing a
cooperative working agreement with the Federal Maritime
Commission [76]. This type of agreement forbids sharing
vessel capacity and customer-sensitive information including
terms and conditions and rates charged. However, it allows
collaboration on information/data exchange including
documents and events along the supply chain. Further, it can
support mutualism among participants by allowing derivation
of products and services from this information/data and the
marketing of these products and services [77].

5. Conclusion

Building on theory and research, we identify and explicate key
points of leverage affecting blockchain adoption as firms
move across the collaboration continuum towards mutualism.
These insights can be used by individual firms, consortia, and
other ecosystem stakeholders to better understand the forces
affecting adoption from within and outside of the consortium
and to identify issues that promote adoption and those that
inhibit it. These inhibiting factors can slow or halt adoption
even in the context of clear net positive value creation for the
consortium and its stakeholders. A better understanding of the
interdependencies required for and created by blockchain-
related relationships can influence both the short-term and
long-term viability of blockchain solutions.

Our exploration of integration strategies and actions in the
maritime trade industry demonstrates how interdependencies
have contributed to adoption and have resulted in net value
creation. From a socio-technical perspective, industry
participants have been collaborating on supply chain efficiency
projects for decades, and this history of collaboration provides
the foundation for the higher level of integration required for
interdependence and mutualism. Economically, these
organisations are highly interdependent, as reflected by the
container shortages during the COVID pandemic. Standards
organisations and initiatives in maritime trade have long been
active, and modernisation efforts for digitalisation are
progressing rapidly due to the players in the maritime industry
as well as in global trade organisations. Legal and regulatory
frameworks associated with electronic documents, electronic
payments, cybersecurity, and the storage of private
information are being developed, and global framework
templates are being shared [40].

Previous research focuses in large part on technological
barriers to the adoption of blockchain and takes the
perspective of the individual firm, particularly at the point of
decision-making around adoption. In this article, we shifted
focus to a multi-firm perspective and non-technical
barriers for two reasons. First, individual firms do not make
adoption decisions in a vacuum, and successful enterprise
blockchain solutions require buy-in and participation from
multiple firms. Second, technological barriers are well-covered in the business, computer science, and other literatures [78], and technological innovations are moving rapidly to solve critical problems such as integration, scalability, and interoperability [79]. It has been frequently stated that blockchain is a team sport. The literature on open innovation and interorganisational information systems provides a theoretical foundation from which to understand blockchain adoption from a value-creation perspective. Building on this theoretical foundation and the extant body of research on blockchain adoption and diffusion drivers, we have developed our framework of organisational interdependencies.

Lumineau et al. [2] argue, “Organization scholars may run the risk of underappreciating the vast social implications of this important empirical phenomenon [of blockchain adoption] …” (p.1). We contribute to this understanding in three primary ways. First, we combine existing theories and re- cast them from the lens of interdependent organisational relationships in a blockchain context. Prior research has identified how the resulting interdependence lends support to the electronic market hypothesis [22], whereby advances in information technology have been expected to revolutionise the structure of industrial activity [28, 29, 30]. It has taken the features of blockchain to create a new industrial structure, the so-called “V-form organisation,” whereby blockchain consortium governance enables independent firms to, in effect, behave like a vertically integrated firm through the coordination of their transactions along the value chain through a distributed ledgers [1, 80]. Second, we provide actionable insights that can help illuminate adoption costs and benefits, enabling ecosystem participants, as well as solution providers and consultants, to identify where change is needed and where pressure can be applied to increase adoption. Third, we demonstrate the application of a framework of interdependence in the context of the maritime trade ecosystem, drawing on existing studies that illustrate the interorganisational requirements to make blockchain deployment successful.

The need for future research on adoption and its potential benefits is great. Viewing adoption through the lens of interdependence provides new insights into adoption and its net benefits. Additional research on successful movement along the collaboration continuum and, in particular, on how mutualism can and has been achieved will provide important future contributions towards realising the full potential of enterprise blockchain.

Acknowledgements: The authors would like to thank all of the industry leaders in the maritime trade supply chain and associated blockchain consortia who kindly spent time with them to deepen their understanding of blockchain adoption in maritime trade. The authors also benefited greatly from three anonymous reviewers who pointed to the instrumental role of industrialised trust, which lies at the heart of a well-functioning blockchain consortium and allows blockchain to scale. The reviewers also helped the authors understand the pivotal role that blockchain plays in the realisation of Thomas Malone’s electronic market hypothesis.

References

