Portland State University

PDXScholar

Civil and Environmental Engineering Faculty Publications and Presentations

Civil and Environmental Engineering

5-15-2015

Development of a Pedestrian Demand Estimation Tool: a Destination Choice Model

Christopher D. Muhs

Portland State University, cdmuhs@gmail.com

Kelly Clifton

Portland State University, kclifton@pdx.edu

Patrick Allen Singleton

Portland State University, singletonpa@gmail.com

Robert J. Schneider University of Wisconsin - Milwaukee

Follow this and additional works at: https://pdxscholar.library.pdx.edu/cengin_fac

Part of the Civil Engineering Commons, Environmental Engineering Commons, Transportation Commons, and the Urban Studies Commons

Let us know how access to this document benefits you.

Citation Details

Muhs, Christopher D.; Clifton, Kelly; Singleton, Patrick Allen; and Schneider, Robert J., "Development of a Pedestrian Demand Estimation Tool: a Destination Choice Model" (2015). *Civil and Environmental Engineering Faculty Publications and Presentations*. 307.

https://pdxscholar.library.pdx.edu/cengin_fac/307

This Presentation is brought to you for free and open access. It has been accepted for inclusion in Civil and Environmental Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

CC Glenn Dettwiler, Flickr

Development of a Pedestrian Demand Estimation Tool: a Destination Choice Model

Kelly J. Clifton, PhD*
Patrick A. Singleton*

* Portland State Univ.

Christopher D. Muhs*
Robert J. Schneider, PhD*

[†] Univ. Wisconsin–Milwaukee

PSU Friday Transportation Seminar, 15 May 2015

Background

Why model pedestrian travel?

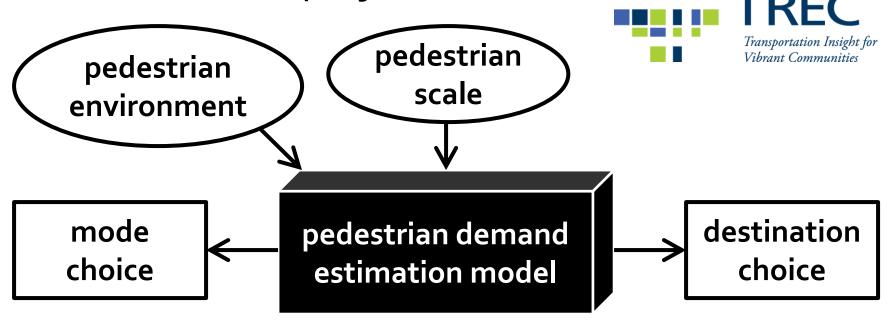
plan for pedestrian investments & non-motorized facilities

mode shifts

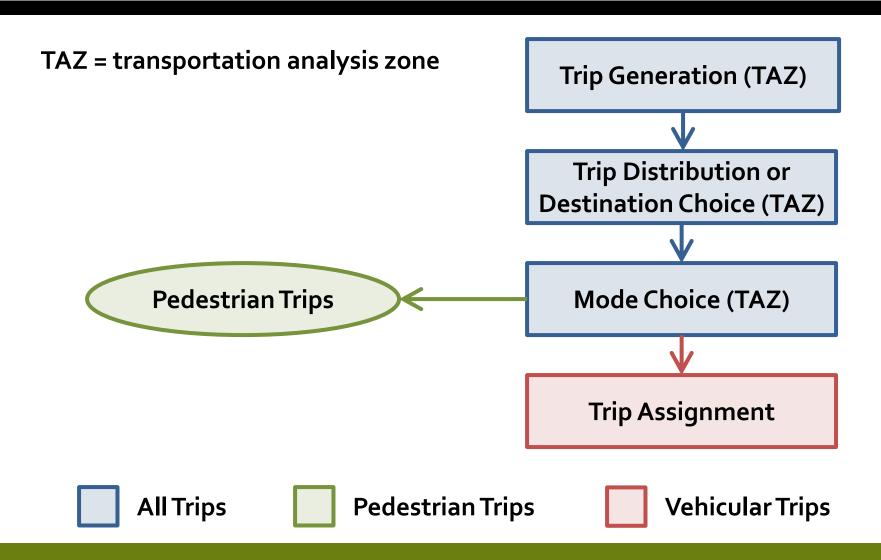
health & safety

greenhouse gas emissions

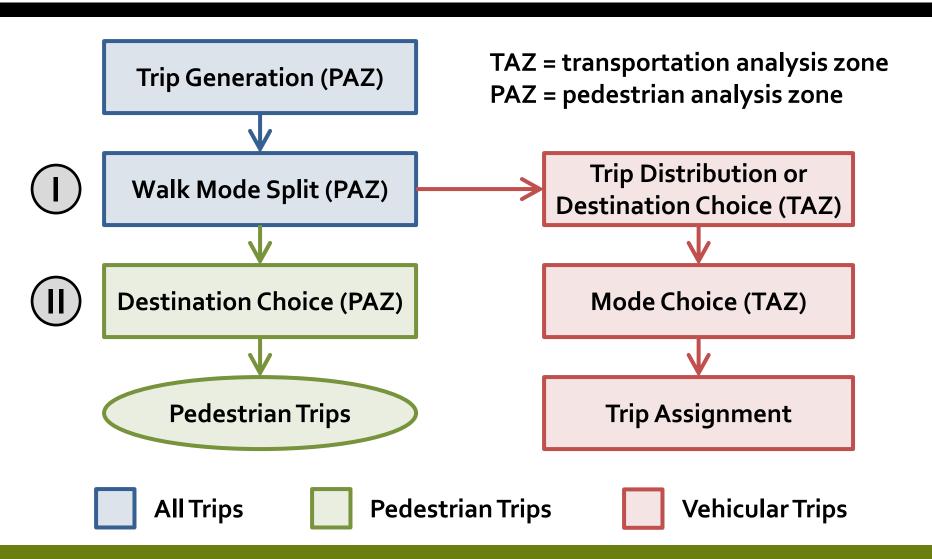
new data

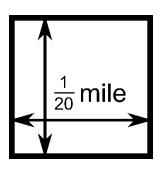

Project overview

 Metro: metropolitan planning organization for Portland, OR



Two research projects


Current method


New method

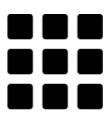
Pedestrian analysis zones

 $^{1}/_{20}$ mile = 264 feet \approx 1 minute walk

Metro: $\sim 2,000 \, \text{TAZs} \rightarrow \sim 1.5 \, \text{million PAZs}$

Home-based work trip productions

Pedestrian environment



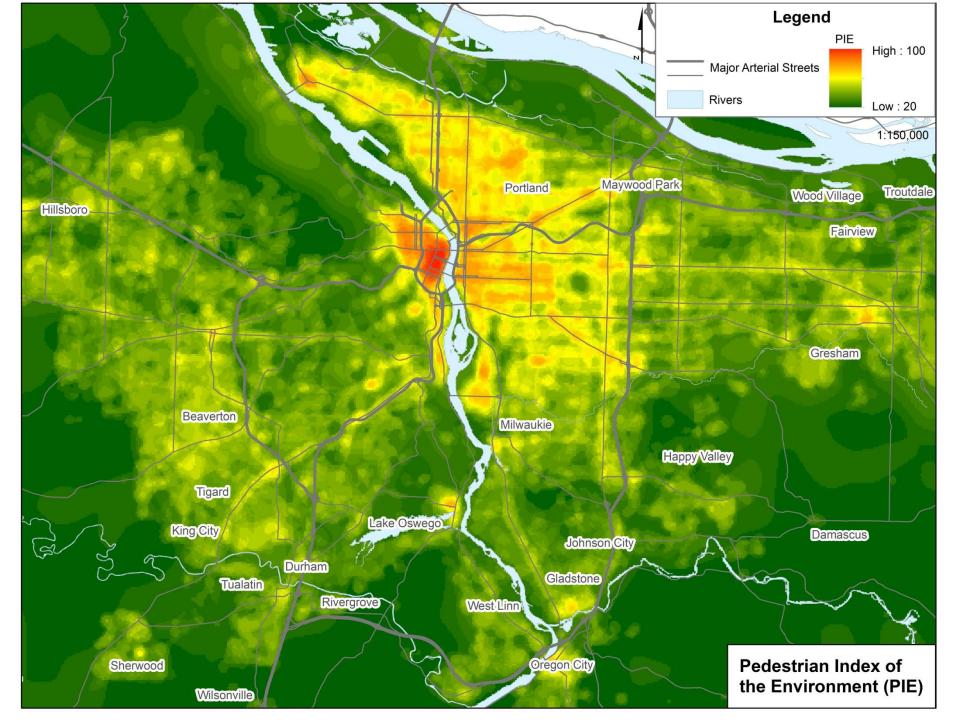
<u>Pedestrian Index of the Environment (PIE)</u>

PIE is a 20–100 score total of 6 dimensions, calibrated to observed walking activity:

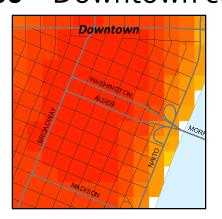
People and job density

Block size

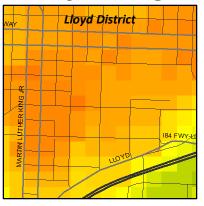
Transit access


Sidewalk extent

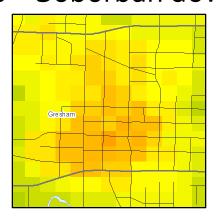
Urban living infrastructure

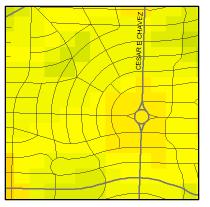


Comfortable facilities

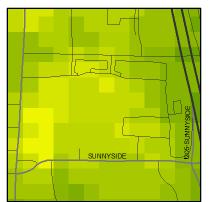


100 – Downtown core

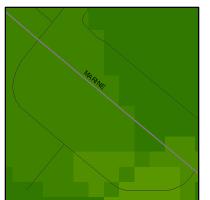

80 – Major neighborhood centers



70 – Suburban downtowns


60 – Residential inner-city neighborhoods

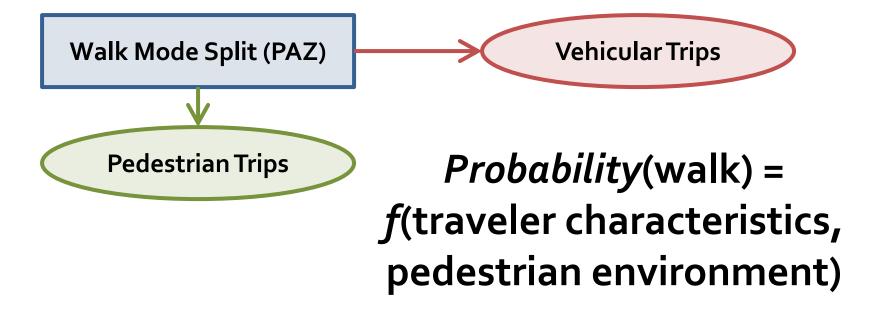
50 – Suburban shopping malls


40 – Suburban neighborhoods/subdivisions



30 – Isolated business and light industry

20 - Rural, undeveloped, forested



Walk mode split

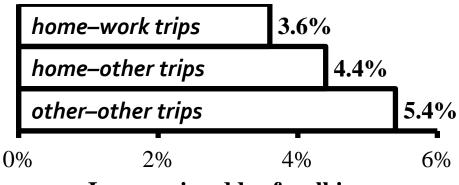
- Data: 2011 OR Household Activity Survey: $(4,000 \text{ walk trips}) \div (50,000 \text{ trips}) = 8\% \text{ walk}$
- Model: binary logistic regression

Walk Mode Split Results

Household characteristics

+ positively related to walking — negatively related to walking

number of children

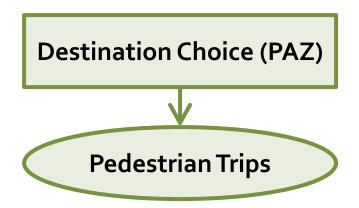

age of household

vehicle ownership

Pedestrian environment

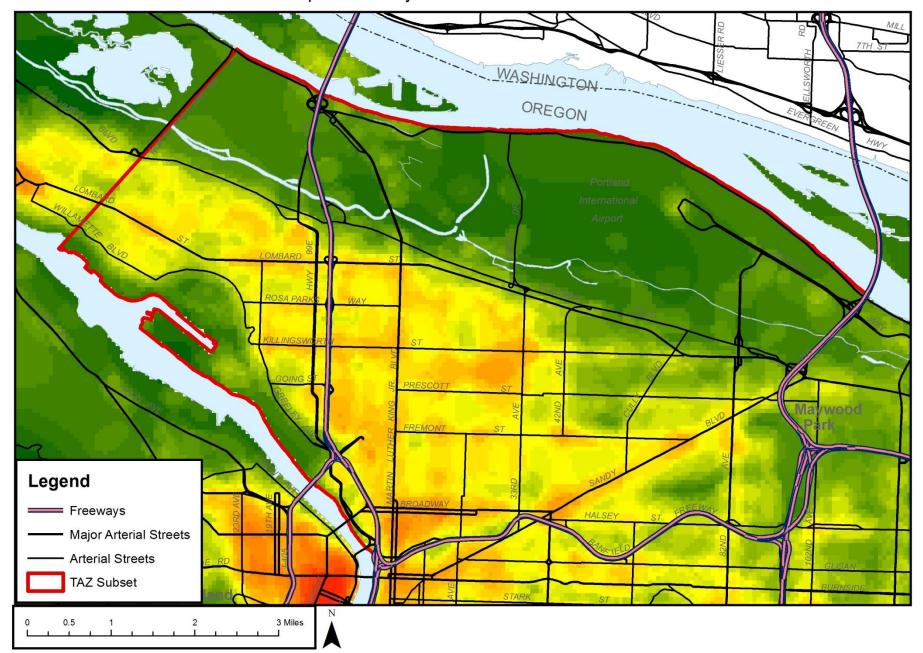
+ positively related to walking

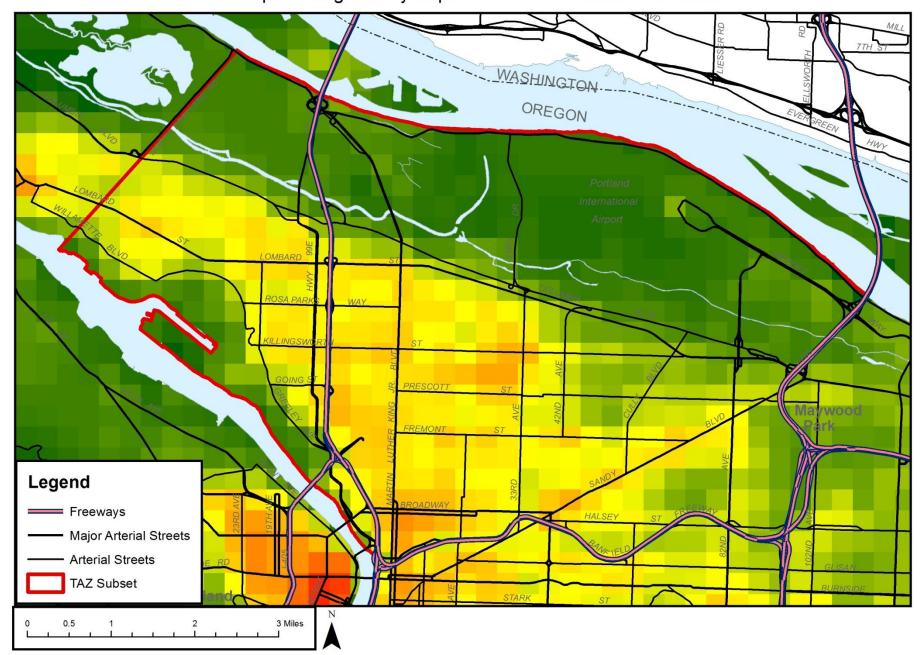
+ 1 point PIE associated with:



Increase in odds of walking

Destination choice




Prob(dest.) = *function of...*

- network distance
- size (# of destinations)
- pedestrian environment
- traveler characteristics
- 2011 OHAS (4,000 walk trips) Data:
- Method: multinomial logit model
 - random sampling
- Spatial unit: super-pedestrian analysis zone
- Models estimated for 6 trip purposes

Example of PIE by PAZs in NE Portland Sub-area

Example of Avg. PIE by SuperPAZs in NE Portland Sub-area

DC Model Specification

Key variables

Network distance btw. zones

Employment by category (within In)

Add'l variables

PIE

Ped barriers

Slope, x-ings, fwy

Traveler attributes

Destination choice results

	HB Work	HB Shop	HB Rec		NHB Work	NHB NW
Sample size	305	405	643	1,108	732	705
Pseudo R ²	0.45	0.68	0.42	0.53	0.59	0.54

Results: key variables

	HB Work	HB Shop	HB Rec	HB Other	NHB Work	NHB NW
Distance (mi)				-1.94**	-1.43**	-1.45**
Distance * Auto (y)	-1.35**					
Distance * Auto (n)	-0.96**					
Distance * Child (y)		-2.29**	-1.76**			
Distance * Child (n)		-1.54**	-1.52**			
Size terms (In)	0.50**	0.88**	0.05*	0.41**	0.36**	0.39**
	(' = p < 0.2	10, * = p < 0.0	5, ** = p < 0.01	1)		

Results: key variables

	HB Work	HB Shop	HB Rec	HB Other	NHB Work	NHB NW
Distance (mi)				-1.94**	-1.43**	-1.45**
Distance * Auto (y)	-1.35**					
Distance * Auto (n)	-0.96**					
Distance * Child (y)		-2.29**	-1.76**			
Distance * Child (n)		-1.54**	-1.52**			
Size terms (In)	0.50**	0.88**	0.05*	0.41**	0.36**	0.39**
	(' = p < 0.2	10, * = p < 0.0!	5, ** = p < 0.01	L)		

- Distance has the most influence on destination choices
- Auto ownership and children in HH moderate effects

Results: key variables

	HB Work	HB Shop	HB Rec	HB Other	NHB Work	NHB NW
Distance (mi)				-1.94**	-1.43**	-1.45**
Distance * Auto (y)	-1.35**					
Distance * Auto (n)	-0.96**					
Distance * Child (y)		-2.29**	-1.76**			
Distance * Child (n)		1 [/**	1 52**			
Size terms (In)	0.50**	0.88**	0.05*	0.41**	0.36**	0.39**
	(' p : 0.1		5, ** p < 0.02			

- No. of destinations inc. odds of choosing particular zone
- # Retail destinations dominates shopping purpose

Results : ped variables

	HB Work	HB Shop	HB Rec	HB Other	NHB Work	NHB NW		
PIE (avg)	0.03**	n.s.	n.s.	0.03**	0.02*	0.02**		
Avg. slope (°)	n.s.	-0.20*	n.s.	-0.42**	-0.16**	n.s.		
Major-major xing (y)	n.s.	0.60**	0.42'	n.s.	n.s.	n.s.		
Freeway (y)	n.s.	-0.95**	n.s.	n.s.	n.s.	0.27'		
% Industrial jobs	-1.00*	-1.82**	n.s.	-0.40′	-1.66**	n.s.		
(' = p < 0.10, * = p < 0.05, ** = p < 0.01) n.s. = not significant								

Background — Method — <u>Results</u> — Future Work

Results: ped variables

	HB Work	HB Shop	HB Rec	HB Other	NHB Work	NHB NW			
PIE (avg)	0.03**	n.s.	n.s.	0.03**	0.02*	0.02**			
Avg. slope (°)	n.s.	-0.20*	n.s.	-0.42**	-0.16**	n.s.			
Major-major xing (y)	n.s.	0.60**	0.42'	n.s.	n.s.	n.s.			
Freeway (y)	n.s.	-0.95**	n.s.	n.s.	n.s.	0.27'			
% Industrial jobs	-1.00*	-1.82**	n.s.	-0.40′	-1.66**	n.s.			
('	(' = p < 0.10, * = p < 0.05, ** = p < 0.01) n.s. = not significant								

Ped supports: PIE increases odds of dest choice for many trip purposes

Results: ped variables

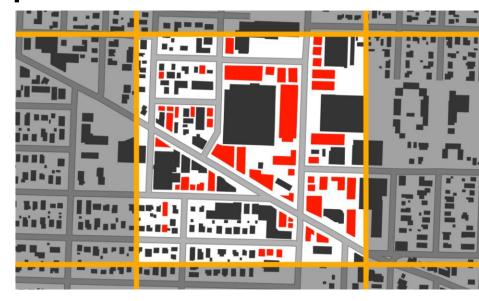
	HB Work	HB Shop	HB Rec	HB Other	NHB Work	NHB NW
PIE (avg)	0.03**	n.s.	n.s.	0.03**	0.02*	0.02**
Avg. slope (°)	n.s.	-0.20*	n.s.	-0.42**	-0.16**	n.s.
Major-major xing (y)	n.s.	0.60**	0.42'	n.s.	n.s.	n.s.
Freeway (y)	n.s.	-0.95**	n.s.	n.s.	n.s.	0.27′
% Industrial jobs	-1.00*	-1.82**	n.s.	-0.40′	-1.66**	n.s.
(' = p < 0.10, * = p ·	< 0.05, ** = p < 0	0.01) n.s. = not si	ignificant		

Ped barriers:

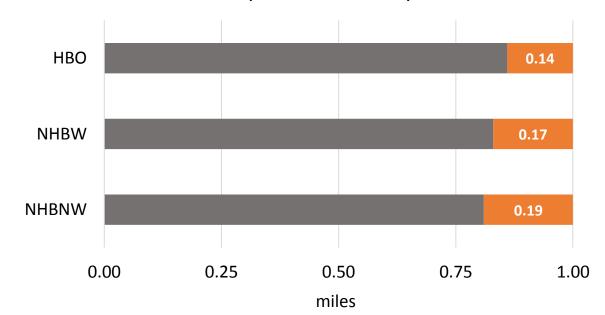
Slope, major crossings, and presence of freeways have mixed impacts

Results: ped variables

	HB Work	HB Shop	HB Rec	HB Other	NHB Work	NHB NW
PIE (avg)	0.03**	n.s.	n.s.	0.03**	0.02*	0.02**
Avg. slope (°)	n.s.	-0.20*	n.s.	-0.42**	-0.16**	n.s.
Major-major xing (y)	n.s.	0.60**	0.42'	n.s.	n.s.	n.s.
Freeway (y)	n.s.	-0.95**	n.s.	n.s.	n.s.	0.27'
% Industrial jobs	-1.00*	-1.82**	n.s.	-0.40′	-1.66**	n.s.

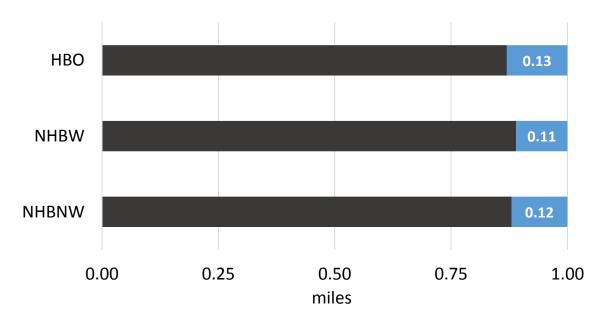

(' = p < 0.10, * = p < 0.05, ** = p < 0.01) n.s. = not significant

Ped barriers:


Ratio of industrial jobs to total jobs suggests industrial uses deter ped destination choices

Some Interpretation

Equivalent distance reductions from 2 * (# destinations)



Some Interpretation

Equivalent distance reductions from PIE + 10

Conclusions

- One of the first studies to examine destination choice of pedestrian trips
- Pedestrian scale analysis w/ pedestrian-relevant variables
- Distance and size have the most influence on ped. dest. choice
- Supports and barriers to walking also influence choice
- Traveler characteristics moderate distance effect

Future work

- Model improvements
 - Choice set generation method & sample sizes
 - Explore non-linear effects & other interactions
- Model validation & application
- Predict potential pedestrian paths
- Test method in other region(s)
- Incorporation into Metro trip-based model

Questions?

Project report/info:

http://otrec.us/project/510

http://otrec.us/project/677

Kelly J. Clifton, PhD Christopher D. Muhs Patrick A. Singleton

Robert J. Schneider, PhD

kclifton@pdx.edu
muhs@pdx.edu
patrick.singleton@pdx.edu
rjschnei@uwm.edu

	HB Work	HB Shop	HB Rec	HB Oth	NHB Work	NHB NW	
Distance (mi)				-1.94**	-1.43**	-1.45**	
Distance * Auto (y)	-1.35**						
Distance * Auto (n)	-0.96**						
Distance * Child (y)		-2.29**	-1.76**				
Distance * Child (n)		-1.54**	-1.52**				
Size terms (In)	0.50**	0.88**	0.05*	0.41**	0.36**	0.39**	
Retail Jobs (#)		+	+		+	+	
Finance Jobs (#)					+		
Gov't jobs (#)			+			+	
Retail + gov't jobs (#)				+			
Ret + fin + gov't jobs (#)	+						
Other jobs (#)	+	+	+	+	+	+	
Households (#)			_	_		+	
Park in zone (y)			0.48**	n.s.			
PIE (avg)	0.03**	n.s.	n.s.	0.03**	0.02*	0.02**	
Avg. slope (°)	n.s.	-0.20*	n.s.	-0.42**	-0.16**	n.s.	
Major-major xing (y)	n.s.	0.60**	0.42'	n.s.	n.s.	n.s.	
Freeway (y)	n.s.	-0.95**	n.s.	n.s.	n.s.	0.27'	
% Industrial jobs	-1.00*	-1.82**	n.s.	-0.40′	-1.66**	n.s.	
Sample size	305	405	643	1,108	732	705	
Pseudo R ²	0.45	0.68	0.42	0.53	0.59	0.54	
Coefficients with #s are significant (' = p	< 0.10, * = p < 0.0	05, ** = p < 0.01), others are not	significant (p > 0	.10).		