
Portland State University Portland State University

PDXScholar PDXScholar

Physics Faculty Publications and Presentations Physics

5-2017

Essentials of Building Virtual Instruments with Essentials of Building Virtual Instruments with

LabVIEW and Arduino for Lab Automation LabVIEW and Arduino for Lab Automation

Applications Applications

Jianghua Bai
Portland State University

Andres H. La Rosa
Portland State University, andres@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/phy_fac

 Part of the Physics Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
Jianghua Bai, Andres La Rosa, "Essentials of Building Virtual Instruments with LabVIEW and Arduino for
Lab Automation Applications", International Journal of Science and Research (IJSR), https://www.ijsr.net/
archive/v6i5/ART20173325.pdf, Volume 6 Issue 5, May 2017, 640 - 644.

This Article is brought to you for free and open access. It has been accepted for inclusion in Physics Faculty
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make
this document more accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/phy_fac
https://pdxscholar.library.pdx.edu/phy
https://pdxscholar.library.pdx.edu/phy_fac?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fphy_fac%2F321&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/phy_fac/321
mailto:pdxscholar@pdx.edu

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Essentials of Building Virtual Instruments with

LabVIEW and Arduino for Lab Automation

Applications

Jianghua Bai, Andres La Rosa

Portland State University, the Physics Department, USA

Abstract: Four ways to improve the capabilities of a virtual instrument involving a microcontroller are covered in this paper. They are

structural modeling and programming, real-time control, asynchronous communication between the microcontroller and the host PC,

and system integration. This paper covers 4 common problems encountered by embedded developers and 5 solutions to the 4 problems.

The solutions and examples demonstrated in this article will help readers build robust and reliable virtual instruments for crucial

applications.

Keywords: Virtual instrumentation, LabVIEW, Arduino, lab automation, layered models

1. Introduction

Different from amateur electronics for hobbyists, lab

automation applications want the system to be stable,

reliable, and accurate enough and fast enough. Arduino is

an open source system with hundreds of libraries and

compatible hardware sets. Arduino makes the development

of microcontroller based systems much easier than with

traditional register programming methods. Since Arduino

lowers the barrier of embedded programming requirement,

more and more students, engineers and scientists are

employing Arduino in their applications.

By downloading online resources, a lot of simple projects

can be accomplished through the Arduino platform. There

are also tools, like LINX, MATLAB, or LabVIEW, helping

intermediate users develop complex applications [1-2]. But

beside of tools, developing complex and critical automated

systems with embedded processors involves some other

advanced issues and solutions. This paper will go through

these issues and solutions to help the readers developing

advanced control systems and automated systems.

By evaluating and developing hundreds of embedded and

virtual instrumentation projects, we saw many flaws and

failures. Compiling the discrepancies, we finished this paper.

The purpose of this article is to guide intermediate

embedded developers to become advanced embedded and

virtual instrument developers.

2. Structural modeling and developing

The first issue is that we have software, hardware, and tasks

needed to be done. How to organize the software and

hardware resources and fulfill the tasks effectively and

efficiently? For a simple project, one just downloads codes

from the web, hooks up hardware and then tweak and tune

the system. But for a complex project, there may be not

available onlinesolutions. This means that you need to

develop it from scratch! How to finish the project easily and

successfully?

The solution is structural modeling!

Other than, jumping to the programming and connecting

your hardware, soon after you get the project, you need to

build a model of your system. For detailed modeling and

reasoning, one can check Ref [3]. Here, we will cover a 4

layer model.

Figure 1: 4-layer model of a complex embedded system or

virtual instrument.

Why 4 layers, not 5 layers or a single layer?

A single layer model is usually bad for complex systems. If

all software, hardware resources and algorism are organized

in a flat model, it is hard to develop and maintain the system.

A 5 layer model is usually more than enough for an

embedded project. So usually a 3 or 4 layer model is better!

For a stand-alone system, a 3 layer model may be enough.

But in order to future expansion and the system integration,

a 4 layer model is the best. [4]

In Layer 1, one organizeshis hardware carefully, according

to hardware mechanical property, the electrical connectors,

voltage levels, etc.

In Layer 2, one programs the hardware according to their

capabilities and builds instruction set for each job your

hardware is capable of doing.

Paper ID: ART20173325 DOI: 10.21275/ART20173325 640

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

In Layer 3, according to some algorism, timing or procedure,

one builds the basic functional blocks with the Layer 2

instructions. In Layer 4, one builds the graphical user

interface, the signal processing and data visualization part of

the system. By programming the system with a structural

model, one can transfer and reuse many of the blocks to a

new project. This not only simplifies the developing process

but makes it easier to identify any design error. For a

complex project, designing a correct model is the first and

the most fundamental step. If there is an error in your model,

ones’ beautiful coding and hardware become useless.

3. LabVIEW + Arduino

The 2
nd

 issue is that there are hundreds of software and

hardware available, which combination should beused? One

of the solutions is combining LabVIEW with Arduino.

LabVIEW is the de faro standard software for lab

measurements and controls. It is easier to integrate or

expand the embedded system with some other LabVIEW

controlled system to build an even more complex system.

There is an entry-level Arduino and LabVIEW toolkit called

LIFA, for free download [2]. But, with this toolkit, one

cannot program the Arduino board, instead, one could only

program in LabVIEW. For a complex task, one definitely

should code his own Arduino applications. Combining the

solution 1 and 2 together, one has the system structure

shown below.

Figure 2: 4-layer model of an Arduino and LabVIEW

combined system.

4. Identify the real-time signals

The second solution brings another issue. How to plan the

whole project? How to split the functionality between

Arduino and LabVIEW. The solution is to plan the jobs by

timing! There are real time events and non-real time events.

There are real time controls and ordinary on-line controls.

The first step is to identify the real-time events and controls.

LabVIEW programs run on PCs are not capable of real-time

controls or reactions because the PC usually has a long time

delay and bus latency, which cannot meet the critical timing

requirements unless the controlled system is really really

slow! Some real time events need to be acknowledged

immediately when it triggers. The real time events driven

jobs should be coded in Arduino at Layer 2. See fig 2. The

non-real time events and jobs can be coded in LabVIEW in

Layer 3. For non-real time events, the Arduino side only

works as I/O ports for the LabVIEW programs.

The next step is to finish the real-time controls in Arduino.

A simple block diagram of a closed-loop control system is

shown in fig 3. We input r(t) to the Plant and want the Plant

to work as r(t). But the Plant has its’ own characteristics, in

most of thecases, the plant cannot follow the reference signal

r(t) directly. One way to make the Plant to follow the

requirement of r(t), is to control the Plant through a

controller and build the whole system into a feedback

system. See fig 3. [5] [6]

Figure 3: A simple block diagram of a closed-loop control

system [5]

Although the world is analog, the Arduino processors are

digital. In order to control an analog plant with a digital

processor, one builds the control system as the one shown in

fig 4. The digital processor samples the input r(t) and the

sensor output y(t) and finishes the control schemes with

difference equations in the digital domain, then the

processor outputs its control commands to the plant through

a DAC and actuator. The details about digital controls can

be found in Ref [7].

Figure 4: A simple block diagram of a numerical closed-loop control system [5]

Paper ID: ART20173325 DOI: 10.21275/ART20173325 641

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Remind, the real-time controls and real-time events must be

processed deterministically according to their timing.

Otherwise, the whole system just does not work.

5. Asynchronous communication between

Layer2 and Layer3

According to the model shown in fig 2, Layer 1 and Layer2

are implemented by Arduino, and Layer 3 and Layer 4 are

implemented by LabVIEW! The other issue is how to

communicate between Layer 3 and Layer 2! When

programming Layer 2 in Arduino, one wants to forget what

happens in Layer 3. Similarly, when programming Layer 3

in LabVIEW, one wants to forget what happens in Layer 2!

A layered model, allows the programmer to code each layer

independently and let adjacentlayers to communicate

through interfaces. A layered model greatly simplifies the

programming and maintenance of the codes. But, one also

wants different layers to work together seamlessly.

The solution is asynchronous communication between

Arduino and LabVIEW! In Arduino side, a loop is running

to meet the real-time controls. By the same time, Arduino

produces the data and save the data in a buffer for Layer 3

procedures to read. A simple illustration is shown in fig 5. In

this example, line 20 of the code does the real time data

logging and buffer writing. The whole timing is controlled

by the while loop. In some critical applications, one may use

interrupt to keep the timing and save the data inside an

array[8]. When the system is free, the chunk of data in the

array can be dumped to the serial buffer at once. This may

increase the speed of the control loop.

Figure 5: An example of how to build a data package in Arduino

In the LabVIEW side, a simple finite state machine can be

used to implement the communication between Layer 3 and

Arduino. Fig 6 shows a simple LabVIEW program used to

communicate with Arduino through COM port. Fig 5 and

fig 6 are used for illustration purpose. They are not working

in apair here.

Figure 6: An example of how to talk with Arduino with a LabVIEW coded FSM

Remind, one wants to simplify the math before

programming. One can have a complex programming of a

complex task, a simple programming of a complex task, or a

complex programming of a simple task! The math model

controls with which one will end up with. Simplifying the

math before programming is the only way leading to a

simple programming of a complex task!

6. Build data into a package

When the Layer 3 and Layer 2 programming are done. The

system may not work the designer planned. This issue is due

to the asynchronous communication between Layer 2 and

Layer 3! Asynchronous communication brings the freedom

to the programming. But how to guarantee the Layer 2

Paper ID: ART20173325 DOI: 10.21275/ART20173325 642

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

subroutines in Arduino get the correct commands from

LabVIEW and the Layer 3 LabVIEW routines get the

correct data from Arduino? The solution is to build the data

into a package!

The package always have the same length and the same

format! The data package in fig 5 is 5 bytes long. The first

byte is the header, ‘C’. The second and third bytes are

channel numbers. The fourth byte is the data from the

relevant channel. The fifth byte is the ending, ‘,’.

Figure 7: A data package example for serial communication

between Layer 2 and Layer 3.

When LabVIEW code reads this data package, it verifies the

header and checks the channel and reads the data! The

Arduino program in Layer 2 can dump the data at the serial

buffer with its own rate. While the LabVIEW program in

Layer 3 will read the data from the serial buffer at another

rate. Because the data are carefully formatted, LabVIEW

codes cannot mess up with the data. Suppose, there were no

header, no ending, Arduino would write the channel number

and data directly to the serial buffer. LabVIEW programs at

layer 3 may mess up with the data, due to asynchronous

communication.

Fig 8 and fig 9 show an interface between Layer 3 and Layer

2. In this example, thedata package is 3 bytes long. Each

command package starts with ‘L’ and ‘C’ and followed with

the command, which LabVIEW program wants the Arduino

to execute. Both the LabVIEW program and the Arduino

program are running at their own speed. When there is a

need to communicate, Layer 2 and Layer 3 routines will read

or write the serial buffer. Program in Layer 3 does not need

to wait for Arduino timing, while the Arduino program in

Layer 2 does not need to wait for the LabVIEW timing.

Through this example, readers can really enjoy the freedom

of asynchronous communications.

Figure 8: A LabVIEW coded FSM talking to Arduino through COM port

Figure 9: The paired Arduino code to talk with LabVIEW at

Layer 3.

Since the LabVIEW VISA only reads and writes ASCII

strings[9]. The programming methods shown in fig 8 and fig

9 is straightforward. If one wants to send and read binary

data between Arduino and LabVIEW, please read Ref [10].

Another issue is that the Arduino resource is quite limited. If

everything is stored in byte ASCII, it is a waste of Arduino

resources. An improvement can be made by storing Arduino

states with a single bit other than one byte. This way, each

byte can store 8 state information. That makes the storage

and data transferring more efficient and faster. Again the

Arduino will write the data as ASCII string to the serial

buffer. At Layer 3, the LabVIEW routines need to read the

string and decode the string properly to get the correct

information. Fig 10 and fig 11 show an integer is used to

transport 12 channel information at once. Again, Arduino

will write the integer as strings in the serial buffer [11]. A 16

bit unsigned integer can represent a number from 0 to 65535,

zeros may be inserted when the number is small to keep the

data have the same format after they are converted into

strings. See fig 10.

Paper ID: ART20173325 DOI: 10.21275/ART20173325 643

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 5, May 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 10: An example of building binary data packages in Arduino

Figure 11: The paired LabVIEW code to receive Arduino binary information

There is no standard to format the data package. In order to

make the whole system work, engineers just need to keep

the data format ideas in mind and match the interface

between Arduino and LabVIEW.

7. Conclusion

Achieving safe, stable, simple coding of complex tasks is the

ultimate dream of embedded developers. The 5 issues

mentioned in this paper are the most common points leading

to a failed or bad embedded system. After solving these 5

major issues with the solutions provided in this article, one

will be able to develop a sophisticated virtual instrument

system with Arduino boards and LabVIEW.

There are basic rules to building a professional embedded

virtual instrument with LabVIEW. In essence, try to simplify

your model, before you jump to design and implement your

systems. Build a clear structure of your system, is always

helpful. Build your system with a 4 layer model. Layer 4

only has necessary human inputs and monitors. In the

LabVIEW side, keep the routines in Layer 3. Build a human

interrupt and anemergency stop inside of the system,

throughout Layer2, Layer 3 and Layer 4.Try to keep each

LabVIEW program on one screen!

References

[1] Arduino, Linx,

http://playground.arduino.cc/Learning/Linux

[2] National instruments,

http://forums.ni.com/t5/LabVIEW-Interface-for-

Arduino/ct-p/7008

[3] Kenneth H. Rosen, Discrete Mathematicsand Its

Applications, McGraw-Hill companies 2012

[4] Jianghua Bai, Jingwei Chen, John Freeouf, Andres La

Rosa, A 4-layer method of developing integrated sensor

systems with LabVIEW, Journal of Measurement

Science & Instrumentation,2013

[5] Gene Franklin, Feedback Control of Dynamic systems,

Pearson Higher Education, Inc. 2010,

[6] Richard Dorf, Modern Control Systems, Pearson Higher

Education, Inc. 2015

[7] Katsuhiko Ogata, Discrete-Time Control systems,

Pearson Higher Education, Inc. 2015

[8] amandaghassaei,Arduino Timer

Interrupts,http://www.instructables.com/id/Arduino-

Timer-Interrupts/

[9] NI, Send or Receive Binary or Hexadecimal Data Using

NI-VISA in LabVIEW ，
http://digital.ni.com/public.nsf/allkb/6C24F2F07BC23B

B78625722800710865

[10] NI, Writing Bits to the Serial Port Instead of Writing

ASCII Strings,

http://digital.ni.com/public.nsf/websearch/575CDC2EE

A251F3086257062007645CA?OpenDocument

[11] Arduino programming references,

https://www.arduino.cc/en/Reference/HomePage

Paper ID: ART20173325 DOI: 10.21275/ART20173325 644 View publication statsView publication stats

https://www.researchgate.net/publication/317233916

	Essentials of Building Virtual Instruments with LabVIEW and Arduino for Lab Automation Applications
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1544545973.pdf.MuH6F

