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Abstract: We give a short argument that yields a new lower bound on the number of
uniformly and independently subsampled rows from a bounded, orthonormal matrix neces-
sary to form a matrix with the restricted isometry property. We show that a matrix formed
by uniformly and independently subsampling rows of an N×N Walsh matrix contains a
K-sparse vector in the kernel, unless the number of subsampled rows is Ω(K logK log(N/K))
— our lower bound applies whenever min(K,N/K) > logC N. Containing a sparse vector
in the kernel precludes not only the restricted isometry property, but more generally the
application of those matrices for uniform sparse recovery.

Key words and phrases: compressed sensing, sparse recovery, restricted isometry property

1 Introduction

In their seminal work on sparse recovery [5], Candès and Tao were led to the notion of the restricted
isometry property (RIP). A q×N matrix M has the restricted isometry property of order K with constant
δ > 0 if for all K-sparse vectors x ∈ CN (i.e. vectors with at most K nonzero entries) we have

(1−δ )‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1+δ )‖x‖2
2.
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The significance of this property is that it guarantees that one can recover an approximately K-sparse
vector x∗ from Mx∗ via a convex program [5]. Specifically, they showed that if a matrix M satisfies
(2K,
√

2−1)-RIP, then the minimizer

x̃ := argminx:Mx=Mx∗ ‖x‖1,

satisfies

‖x̃− x∗‖2 ≤
1√
k
‖x∗− x∗K‖1,

where x∗K is the best K-sparse approximation of x∗ — in particular when x∗ is exactly K-sparse, it can be
efficiently recovered from Mx∗ without any error.

In applications, q is the number of measurements needed to recover a sparse signal. Therefore, it is of
interest to understand the minimal number of rows needed in a matrix with the RIP property.

It is known that for a properly normalized matrix with independent gaussian entries, q=O(K log(N/K))
suffices to generate a RIP matrix with high probability (e.g. [8]). Yet, it is often beneficial to have more
structure in the matrix M [13]. For example, if the matrix M is a submatrix of the discrete Fourier
transform matrix, then the fast Fourier transform algorithm allows fast matrix–vector multiplication,
speeding up the run time of the recovery algorithm [8, Chapter 12]. Additionally, generating a random
submatrix requires fewer random bits and less storage space.

The first bound on the number of uniformly and independently subsampled rows from a Fourier matrix
necessary for recovery appeared in the groundbreaking work [5]. They showed that if one randomly
subsamples rows so that the expected number of rows is O(K · log6 N), then concatenating these rows
forms a RIP matrix with high probability, after appropriate normalization. Rudelson and Verhsynin later
improved this bound to O(K · log2 K · log(K logN) · logN) via a gaussian process argument involving
chaining techniques [14]. Their proof was then streamlined and their probability bounds strengthened
[7, 13]. Cheraghchi, Guruswami, and Velingker then proved a bound of O(K · log3 K · logN) [6], and
Bourgain established the bound O(K · logK · log2 N) [4]. The sharpest result in this direction is due to
Haviv and Regev, who showed the upper bound O(K · log2 K · logN) through a delicate application of the
probabilistic method [10]. It is widely conjectured that for the discrete Fourier transform q = O(K logN)
suffices [14].

It turns out that all proofs in this line of work, including the strongest known upper bound [10],
apply in a more general setting where random matrix M is constructed by uniformly and independently
subsampling rows of any bounded orthonormal matrix — that is an orthonormal matrix with all entries
bounded in magnitude by B√

N
for some constant B. The matrix of the Discrete Fourier Transform satisfies

this property with B = 1.
This paper addresses the problem of determining a necessary number of samples for reconstruction.

Our contribution is that — surprisingly — for general bounded orthonormal matrices, and for a certain
range of K, Ω(K log2 N) samples are needed when sampling uniformly and independently. In particular,
only a gap of logK remains between our bound and the best known upper bound. We improve the
previous best lower bound Ω(K · logN) due to Bandeira, Lewis, and Mixon [3] which applied to the DFT
matrix. Those in turn improve upon more general lower bounds Ω(K · log(N/K)) on the number of rows
for any matrix that satisfies the RIP property [2, 9, 11, 12].
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In the proof we consider an example of a bounded orthonormal matrix, the Walsh matrix (i.e. the
matrix of the Fourier transform on the additive group Zn

2), and we show that for this specific matrix
at least Ω(K logK logN/K) samples is required. More concretely, by a second moment argument, we
demonstrate that for fewer than O(K logK logN/K) subsampled rows, with high probability there exists
a K-sparse vector in the kernel — ruling out both the RIP property, and in general any hope for sparse
recovery algorithm with those matrices. The same proof can be applied more generally to show that for
any prime r one needs to subsample at least Ω(K logK log(N/K)/ log(r)) rows of a matrix corresponding
to Fourier transform on the additive group Zn

r — for the sake of simplicity of the argument we do not
elaborate on this.

2 Preliminaries

Throughout this note, we use log to denote the base 2 logarithm. For an integer n≥ 1, we set N = 2n and
fix a bijection between [N] and Zn

2; this identification remains in force for the rest of the paper.
We say a function χ : Zn

2 → {±1} is a character if it is a group homomorphism. To an element
a ∈ Zn

2, we associate the character
χa(x) = (−1)〈a,x〉

for all x ∈ Zn
2. The Fourier transform of a function f : Zn

2→ C is defined to be

f̂ (a) =
1√
N ∑

x∈Zn
2

f (x)χa(x)

for all a ∈ Zn
2. Let H be the N×N matrix representing the Fourier transform on the group Zn

2. In other
words,

Hi j =
1√
N
(−1)∑

n
k=1 ik jk .

When normalized to have ±1 entries, the matrix H is also known as a Walsh matrix. We refer the reader
to [15] for a thorough discussion of Fourier analysis on finite groups.

The Grassmannian Gn,d =Gn,d(Z2) is defined as the collection of vector subspaces of Zn
2 of dimension

d. Our proof uses the following well-known result about the Fourier transform.

Lemma 2.1. For a subspace V ∈ Gn,d , we let 1V ∈ RN be the vector corresponding to the indicator
function for V with the normalization ‖1V‖2 = 1. Then

H1V = 1V⊥ .

where V⊥ is the orthogonal complement of V .

In this way, H implements a bijection between Gn,d and Gn,n−d . We also make use of the following
bounds on the size of Gn,d .

Lemma 2.2. The size of Gn,d is bounded by

2d(n−d) < |Gn,d |< 2d(n−d+1). (1)
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Proof. A standard counting argument gives the explicit formula

|Gn,d |=
d−1

∏
k=0

2n−2k

2d−2k . (2)

Using the inequalities

2n−d <
2n−2k

2d−2k < 2n−d+1 (3)

on each factor individually gives the result.

We also make use of the following trivial counting lemma.

Lemma 2.3. For U,V ∈Gn,k,

max(n−2k,0)≤ dim(U⊥∩V⊥)≤ n− k.

3 Main Result

For a subset Q ⊂ [N], we let HQ denote the matrix generated from the rows of H indexed by Q. Let
δ1, . . . ,δN be a set of independent Bernoulli random variables which take the value 1 with probability p̂.
Random variables δi will indicate which rows to include in our measurement matrix, HQ, meaning

Q = { j ∈ [N] : δ j = 1}.

Note that Q has average cardinality N p̂ and standard concentration arguments can be used to obtain sharp
bounds on its size. We say that a vector v ∈ RN is K-sparse if it has at most K nonzero entries. The
following theorem is our main technical result.

Theorem 3.1. For min(k,n− k) ≥ 12logn, where N = 2n and K = 2k, there exists a positive constant
c > 0 such that for p̂ ≤ cK

N logK log(N/K), there exists a K-sparse vector in the kernel of HQ with
probability 1−o(1).1

Proof. We will define p := − ln(1− p̂) for future convenience, and note that p̂ ≤ p ≤ 2 p̂, for small
enough p̂.

We restrict our attention to the K-sparse vectors that correspond to 1V for V ∈ Gn,k, the indicator
functions of subspaces of dimension k. For such V , set XV to be the indicator function for the event that
Q∩V⊥ = /0. Define

X = ∑
V∈Gn,k

XV . (4)

Observe that by Lemma 2.1, if X is non-zero then there exists a K-sparse vector in the kernel of HQ. We
proceed by the second moment method to show that X is nonzero with high probability. By the second
moment method (e.g. [1]),

P(X = 0)≤ VarX
(EX)2 . (5)

1o(1) indicates a quantity that tends to zero as N→ ∞. All asymptotic notation is applied under the assumption that N→ ∞.
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We can easily obtain an expression for the first moment:

EX = |Gn,k| ·EXV

= |Gn,k|(1− p̂)|V
⊥|

= |Gn,k|exp(−p
N
K
)

≥ exp((ln2−2c)k(n− k)).

The second moment requires a more delicate calculation. We partition the sum into pairs of orthogonal
complements with the same dimension of intersection. By Lemma 2.3, and letting d0 denote max(n−
2m,0), we have

VarX
(EX)2 =

∑U,V∈Gn,k
Cov(XU ,XV )

|Gn,k|2 (EXU)
2

=
∑

n−k
d=d0

∑U,V :dim(U⊥∩V⊥)=d Cov(XU XV )

|Gn,k|2 (EXU)
2 . (6)

We can explicitly compute each term in the sum above as follows.

Claim 3.2. For U,V ∈Gn,k such that dim(U⊥∩V⊥) = d, we have

Cov(XU ,XV )

(EXU)
2 = exp(p2d)−1.

Proof. Observe that

EXU XV = P(U⊥∩Q = /0∧V⊥∩Q = /0)

= exp(−p|U⊥∪V⊥|)
= exp(−2p|U⊥|+ p|U⊥∩V⊥|)
= (EXU)

2 exp(p2d).

We plug this expression back to the sum (6), in order to arrive at

VarX
(EX)2 =

n−k

∑
d=d0

∑
U,V :dim(U⊥∩V⊥)=d

1
|Gn,k|2

(
exp(p2d)−1

)
.

Let us use T (n,k,d) to denote number of pairs U,V ∈Gn,k such that dim(U⊥∩V⊥) = d. With this
notation, the entire sum simplifies to

n−k

∑
d=d0

T (n,k,d)
|Gn,k|2

(
exp(p2d)−1

)
.
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We will split this sum into two parts and bound them separately
n−k−3logn

∑
d=d0

T (n,k,d)
|Gn,k|2

(
exp(p2d)−1

)
+

n−k

∑
d=n−k−3logn

T (n,k,d)
|Gn,k|2

(
exp(p2d)−1

)
=: (I)+(II).

The first part of the summation is easy to control: for d < n− k−3logn we have p2d ≤ 2c
n , which

implies exp(p2d)−1≤ 4c
n , and

(I)≤
n−k−3logn

∑
d=d0

T (n,k,d)
|Gn,k|2

4c
n

≤ 4c
n ∑

d

T (n,k,d)
|Gn,k|2

=
4c
n

= o(1). (7)

We can now turn our attention to bounding (II).

Claim 3.3. For d ≥ n− k−3logn, we have

T (n,k,d)
|Gn,k|2

≤ exp
(
− ln(2)

2
k(n− k)

)
.

Proof. First, we have the bound T (n,k,d) ≤ |Gn,d ||Gn−d,n−k−d |2. Indeed, to choose two subspaces
U⊥,V⊥ of dimension k with dim(U⊥∩V⊥) = d, we can first choose T =U⊥∩V⊥ as a subspace of Fn

2
(there are |Gn,d | ways of doing this), and then we can consider the quotient space Fn

2/T and count the
number of disjoint subspaces U/T,V/T ⊂ Fn

2/T — the number of such choices is upper bounded by
|Gn−d,n−k−d |2 — the number of all pairs of subspaces U/T,V/T ∈ Fn

2/T .
Applying Lemma 2.2 to |Gn,d | and |Gn−d,n−k−d |, we obtain

T (n,k,d)≤ exp(ln(2) [d(n−d +1)+2(n− k−d +1)(k+1)]) .

The quadratic in the exponent is maximized for d = n−2k−1
2 , hence in the range d ≥ n− k−3logn,

the maximum is attained exactly at d = n− k−3logn. This yields

T (n,k,d)≤ exp(ln(2) [(n− k−3logn)(k+3logn+1)+2(3logn+1)(k+1)])

≤ exp
(

ln(2)
[
(n− k)(

5
4

k)+
1
4
(n− k)k

])
≤ exp

(
ln(2)

[
3
2
(n− k)k

])
,

where the second inequality follows from the fact that min(k,n− k)≥ 12logn.
On the other hand, using Lemma 2.2 again, we have 1

|Gn,k|2
≤ 2−2k(n−k) and the statement of the claim

follows by combining these two inequalities.
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Now we can introduce a simple upper bound of the sum (II)

n−k

∑
d=n−k−3logn

T (n,k,d)
|Gn,k|2

(
exp(p2d)−1

)
≤ 3(logn)2−

1
2 k(n−k) exp

(
p2n−k

)
≤ 3(logn)2(

2c
ln(2)−

1
2 )k(n−k)

≤ o(1), (8)

where the first inequality follows from Claim 3.3, the second one follows from p2n−k < 2ck(n− k),
and the third can one be applied as soon as 2c

ln(2) <
1
2 . The statement of the Theorem now follows by

combining (5), (7) and (8).

We can now state our main result in terms of sparse recovery.

Theorem 3.4. Let N and K be as in Theorem 3.1. For there to exist a method to recover every K-sparse
vector from HQ, for any K such that min(K,N/K)≥ log12 N, the expected cardinality of the number of
rows of HQ must be Ω(K logK log(N/K)). Further, for any constant δ > 0, the expected number of rows
of HQ must be Ω(K logK log(N/K)) for HQ to have the RIP property.

Proof. By Theorem 3.1, there exists a 2K-sparse vector x in the kernel of HQ with high probability if the
expected number of rows of HQ is o(K logK log(N/K)). Let us write x = y− z where y and z are both
K-sparse vectors. Then HQy = HQz, which proves that HQ is not injective when restricted to the set of all
K-sparse vectors. The statement about the RIP property follows directly from the definition.
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