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Abstract 1 

 2 

Bus bunching takes place when headways between buses are irregular. Bus bunching is 3 

associated with longer waiting times for riders, overcrowding in some buses, and an overall 4 

decrease on the level of service and capacity. Understanding the temporal and spatial 5 

characteristics and the causes and effects of bus bunching incidents from archived bus data can 6 

greatly aid transit agencies to develop efficient mitigation strategies. This paper presents 7 

methods to identify and visualize specific time periods and segments where bus bunching 8 

incidents occur based on automatic vehicle location (AVL) and automatic passenger count (APC) 9 

data. The paper also proposes methods that help analyze the causes and effects of bus bunching 10 

based on AVL/APC data.  Temporal and spatial distributions of bus bunching events indicate 11 

high concentration during high frequency service hours and segments, and increasing 12 

concentration toward downstream. Time point bus stops can help reduce bus headway variability 13 

but with limited capability. Results indicate that irregular departure headway at the initial stop is 14 

the key cause of bus bunching rather than downstream traffic conditions and passenger demand 15 

uncertainty. A bus departure headway control at the initial stop of high frequency service zone is 16 

highly recommended, and a switch from schedule-based control to headway-based control 17 

strategy at time point stops in high frequency service zone is suggested. 18 

 19 

Keywords: bus bunching, performance measure, headway, causes and effects  20 
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1 INTRODUCTION 1 

 2 

A healthy and efficient public transit system is indispensable to reduce congestion, emissions, 3 

energy consumption, and car dependency in urban areas. However, low service quality makes 4 

transit unattractive for users of private transportation. This is true in areas served by bus routes 5 

that chronically underperform. 6 

In a stochastic environment, deviations from schedules are unavoidable. Uncertain travel 7 

times and passenger demand preclude schedule adherence and headway uniformity. A late bus 8 

usually encounters more passengers and the extra passengers may create further delays. 9 

Meanwhile, if the following bus encounters fewer passengers it tends to run faster. If two buses 10 

become too close, “bus bunching” takes place. Bus bunching is associated with longer waiting 11 

times for some riders, overcrowding in late buses, and an overall decrease on level of service and 12 

capacity.  13 

It is important for transit agencies to identify and understand the mechanics of bus 14 

bunching, especially recurrent bus bunching events during certain time periods or route segments, 15 

as it may be due to a scheduling issue rather than an operational problem. If transit agencies can 16 

identify and understand the spatial and temporal characteristics of bus bunching problems, detect 17 

the causes and measure the effects of recurrent bus bunching problems, transit agencies can 18 

propose useful and efficient strategies to improve bus service reliability. 19 

Since the introduction of automatic vehicle location (AVL) and automatic passenger 20 

count (APC) data collection systems, studies have been using performance measures and 21 

visualization tools to help identify and evaluate transit operations performance. Bertini and EI-22 

Geneidy (1) presented initial work on the utilization of ALV/APC data to measure bus 23 

performance.  Based on the archived AVL/APC data from the Tri-County Metropolitan 24 

Transportation District of Oregon (TriMet), they proposed system level, route level, segment 25 

level and stop level performance measures. Also based on the “drill-down” method, Berkow et al. 26 

(2) further claimed the power of using visualization as a tool to present performance measures to 27 

help analysts easily understand large amounts of information.  28 

Kimpel et al. (3) and Strathman et al. (4) utilized regression models and found 29 

statistically significant relationships between headway deviation and number of on board 30 

passengers, as well as between running time variation and operator years of experience. Albright 31 

and Figliozzi (5) found that transit signal priority (TSP) has significant impacts on bus headways. 32 

However, both positive and negative effects were observed; for example, when two bunched 33 

buses are late, TSP may further reduce the headway between the two buses  because the TSP 34 

control strategy is designed primarily for bus departure delay (single bus) instead of headway 35 

control (multiple buses). Hammerle et al.(6)  analyzed two causes of bus bunching: on-street 36 

effects and beginning of the terminal. Time-space trajectory graphs of several bus trips were 37 

plotted to help identify bus bunching problems and causes. Results showed that most of the bus 38 

bunching problems originate as a result of irregular headways at the terminals. Although time-39 

space trajectory graphs provide much detailed information about when, where, and which buses 40 

are bunched, they can only be used to show a limited time period. For identification of recurrent 41 

bus bunching problems over a long time period the time-space trajectory graph is not powerful. 42 

Mandelzys and Hellinga (7) developed an automatic method to identify causes of poor on time 43 

performance.  Using archived ALV/APC data they measured the frequency of each cause that is 44 

related to poor on time performance over all records.  45 
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Other research proposed operational control strategies to mitigate bus bunching incidents 1 

(8–10), but this study focuses on identifying and analyzing bus bunching characteristics. 2 

The goal of this research is to develop methods that help transit agencies identify specific 3 

time periods and segments where bus bunching happen frequently, understand the causes and 4 

effects of bus bunching based on archived AVL/APC data.  5 

 6 

2 ROUTE CONFIGURATION AND DATA DESCRIPTIONS 7 

 8 

Route configuration 9 

 10 

This study focuses on TriMet’s Route 15, which experiences difficulties in terms of schedule 11 

adherence and headway regularity. Route 15 is characterized by long travel distances across 12 

congested areas and high buffer times to absorb delays and variability. Route 15 runs east-west, 13 

crossing downtown Portland, with the east terminal located at the Gateway Transit Center and 14 

two terminals located at the west end of the route: 1) Montgomery Park, and 2) NW Thurman & 15 

27
th

. Figure 1 and Table 1 show the route schematic as well as the time point bus stop names for 16 

both westbound and eastbound services. 17 

 18 

 19 
Figure 1. Route 15 Schematic (source: TriMet) 20 

 21 

Time point stops (bus stops with scheduled departure times) are depicted by the 22 

numbered circles in the route schematic of Figure 1. White circles with black numbers indicate 23 

stops for the westbound route; and black circles with white numbers indicate stops along the 24 

eastbound route. Table 1 lists names of all time point stops along the route.  For the majority of 25 

the day, Route 15 is in low frequency service where headways between buses are approximately 26 

15 minutes. However, in the a.m. peak hours, westbound passenger demand is much higher than 27 

other times of day due to morning commute to work in downtown Portland. Therefore, additional 28 

short trips are added to the route in the a.m. peak hours for westbound travel. These additional 29 

short trips run from the stop at SE Stark & 93
rd

 to the stop at SW Morrison & 17
th

, and therefore 30 

reduce the departure headways of stops within this zone to 5-8 minutes, which is so-called high 31 

frequency service. Similar additional short trips are added to the eastbound travel direction 32 

High Frequency Service 
6:00 am – 10:00 am 

 

High Frequency Service 
4:00 pm – 7:00 pm 
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during the p.m. peak hours due to evening commute to home from downtown Portland. In 1 

eastbound high frequency service, additional short trips start from SW Salmon & 5
th

, but may 2 

end at any of the three downstream time points, SE Belmont & 39
th

, SE Belmont & 60
th

, or SE 3 

Washington & 82
nd

. The approximate time periods for high frequency service are shown in 4 

Figure 1: 6-10 a.m. for westbound and 4-7 p.m. for eastbound. The time point stops that are 5 

within the high frequency zone of the route are indicated in bold typeface in Table 1. 6 

 7 

Table 1. Route 15 Time point stops 8 

Eastbound Westbound 

1. NW Thurman & 27th 1. Gateway TC 

2. Montgomery Park 2. SE 102
nd

 & Washington 

3. NW 23rd & Marshall 3. SE Stark & 82
nd

 
4. SW 18th & Morrison 4. SE Belmont & 60

th
 

5. SW Salmon & 5th 5. SE Belmont & 39
th

 

6. SE Belmont & 11th 6. SE Morrison & 12
th

 

7. SE Belmont & 39th 7. SW Washington & 5
th

 

8. SE Belmont & 60th 8. SW Morrison & 17
th

 
9. SE Washington & 82nd 9. NW 23

rd
 & Lovejoy 

10. SE Washington & 103rd 10. Montgomery Park 

11. Gateway TC 11. NW Thurman & 27
th

 

 9 

 10 

The studied data period ranges from 14 September 2009 to 26 February 2010 and 11 

includes all weekdays (totaling 115 days).  TriMet has implemented a bus dispatching system 12 

(BDS) that records and archives AVL/APC data for later analysis.  A sample of the archived 13 

stop-event data for Route 15 is shown in Table 2.   14 

 15 

Table 2. Stop Event Data Sample of Route 15 16 

Date 
Leave 

_time 
Train 

Stop 

_time 

Arrive 

_time 
Dwell Stop_id Door Lift ons offs Load Mileage 

9/14/2009 21150 1501 21120 21136 0 8989 0 0 0 0 2 8.1 

9/14/2009 21216 1501 21194 21182 10 7162 1 0 2 0 4 8.3 

9/14/2009 21262 1501 21248 21238 7 8963 1 0 2 1 5 8.5 

9/14/2009 21294 1501 21286 21278 0 7174 0 0 0 0 5 8.6 

9/14/2009 21344 1501 21327 21320 6 718 2 0 1 0 6 8.7 

9/14/2009 21384 1501 21373 21360 0 749 0 0 0 0 6 8.8 

9/14/2009 21430 1501 21407 21394 5 8511 1 0 1 0 8 8.9 

9/14/2009 21496 1501 21480 21472 8 6911 2 0 0 1 7 9.1 

9/14/2009 21590 1501 21575 21582 0 5016 0 0 0 0 7 9.3 

9/14/2009 21636 1501 21611 21602 0 5014 0 0 0 0 7 9.4 

 17 

Whenever a bus arrives at or departs from a stop, a new record is entered.  The column 18 

“Leave_time” is the actual departure time of that bus at the stop; “Stop_time” is the scheduled 19 

departure time of that bus at that stop; and “Arrive_time” is the actual arrival time for that bus at 20 

that stop, all of which is expressed in seconds after midnight.  There is no scheduled “Arrive 21 
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time” for any stop.  The “Stop_time” for time point stops is the actual scheduled departure time; 1 

for other bus stops, the “Stop_time” is interpolated. The “Dwell” time here is recorded as the 2 

time (in seconds) that the door is open; therefore, dwell time is usually not equal to the difference 3 

between actual departure time and actual arrival time.  All the other information shown in Table 4 

2 is self-explanatory.  Note that there is additional information in the stop event data that is not 5 

shown in this sample, such as route number, direction, and x-y coordinates.  6 

 7 

3 BUS BUNCHING IDENTIFICATION 8 

 9 

3.1 Bus bunching events spatial-temporal distribution 10 

 11 

Headway between two consecutive buses at each stop is used to identify bus bunching incidents 12 

instead of distance between two consecutive buses. In the literature or transit industry, there is no 13 

standard minimum headway threshold to define bus bunching. Therefore, an arbitrary value of 14 

two minutes is used to determine bus bunching, which means if a departure headway between 15 

two buses at a stop is smaller than two minutes, this headway is identified as a bus bunching 16 

event. Depending on service frequency in different bus routes or at transit agencies, this 17 

threshold may be different. 18 

Based on half-year’s wealth of AVL/APC data, bus departure headways at each bus stop 19 

along Route 15 are calculated and grouped into 24 hours in a day. Those headways that are 20 

smaller than the two-minute threshold are shown in Figure 2. 21 

 22 

 23 
Figure 2. Bus bunching events for route 15 westbound (headway threshold: < 2 minutes) 24 

 25 

With the exception of the two-branches of stops at the western-most end of the route, the x-axis 26 

shows all bus stops along westbound Route 15.  The y-axis shows the hours of a day.  Colors 27 

from white to black represent bus bunching counts of 0 to 250 for the six-month’s worth of data.  28 

Recall that the studied data set consists of 115 days; therefore, a value of 230 counts indicates 29 

that for a particular stop during a particular hour there are, on average, two bus bunching events 30 
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(230/115) occurring every day.  Figure 2 shows that most of the bus bunching problems were 1 

found within the high frequency service (between 6:00 a.m. and 10:00 a.m., and between the 2 

stops at SE Stark & 93
rd

 and SW Morrison & 17
th

) where average headway is about seven 3 

minutes. Also, there appears to be excessive bus bunching events taking place even during the 4 

low frequency service period after SW Washington & 5
th

, emphasizing poor headway regularity.  5 

Furthermore, during the high frequency service period, the sequence of gradual color changes 6 

between each two bus stops suggests that the frequency of bus bunching increases after each bus 7 

stop and then decreases significantly at the subsequent time point stop. This indicates some 8 

control strategies, such as schedule-based holding, might be taking place during these time 9 

periods and at these stops.  Figure 2 shows the results using two minutes (120 seconds) as the 10 

bus bunching threshold.  It is also worthwhile to show how bus bunching frequency responds to 11 

different thresholds. 12 

 13 

 14 
(a)                                                                              (b) 15 

 16 
                                           (c)                                                                               (d) 17 

Figure 3. Bus bunching events for route 15 westbound in different levels: (a) 0-1 minute; (b) 18 

1-2 minutes; (c) 2-3 minutes; (d) 3-4 minutes. 19 
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Figure 3 shows the bus bunching frequency distribution for four different short headway 1 

threshold levels, again over time and space.  The color bar and relative values are the same as in 2 

Figure 2.  The general behavior to note is that as the short headway threshold increases, the bus 3 

bunching frequency also increases. Further, most of the identified short headways are occurring 4 

during the high frequency service period.   5 

The above mentioned method can generate all of the identified bus bunching events, 6 

while when two buses are bunched together at some stops along a route, they will probably 7 

continue to bunch together downstream. Therefore, it is also worth to identify when and where 8 

buses started to bunch together. Figure 4 shows the number of bus bunching initials. 9 

 10 

 11 
Figure 4. Bus bunching initial formations for route 15 westbound (headway threshold: < 3 12 

minutes) 13 

 14 

As shown in Figure 4, most of the bunching patterns start from the same stop “SE Stark 15 

& 93
rd

  Ave” in the morning peak hours. The numbers 148 and 158 are the total counts during 16 

the 115 weekdays; therefore, on average, there is more than one bus bunching events start at this 17 

stop every weekday every hour between 6 am to 8 am. This stop is the first stop for the high 18 

frequency service segment along westbound, which means additional buses join in the 19 

westbound trip at this stop during the morning peak hour. There are basically two potential 20 

reasons for this. First, according to the current TriMet schedule-based operating strategy, even if 21 

a bus upstream of stop SE Stark & 93
rd

 is late, buses that are scheduled to start service from this 22 

stop will still be on time. Second, bus operators may not start the trip on time if they arrived back 23 

late to the garage from an opposite trip because there are labor laws dictating rest time for bus 24 

operators. 25 

 26 

 27 

 28 

 29 
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3.2 Headway Delay and Actual Headway Spatial Distributions 1 

 2 

The above section identifies the bus bunching event counts defined by departure headway at any 3 

stop using predefined thresholds. Large headway gap distributions and unusual headways are 4 

also necessary to analyze because they have significantly negative impacts on passenger waiting 5 

times. Therefore, we also provide another two outputs that show headway delay and actual 6 

headway distributions as shown in Figure 5 and Figure 6. 7 

 8 

 9 
Figure 5. Headway delay spatial distribution for route 15 westbound a.m. peak hours 10 

 11 

Figure 5 shows the headway delay (actual headway – schedule headway) distribution for 12 

all westbound stops in the high frequency service zone in a.m. peak hours; 50% of headway 13 

delays (blue box for each stop) are within 2 minutes for all westbound stops. The boundaries of 14 

headway delay records (dashed line outside the blue box at each stop) grow gradually towards 15 

east end from   5 minutes to   8 minutes, and decrease after each time point. This graph 16 

indicates that headway variability increases with travel distance while a time point stop helps 17 

maintain regular headways. 18 

Figure 6 shows the proportions of actual headways in different bins for all westbound 19 

stops in the high frequency time and zone. Around 25% - 35% of the actual headways are within 20 

the scheduled headway boundary (5-7 minutes) for all stops except the stop at SE Stark & 82
nd

 21 

(40%). The proportion has a decreasing trend towards the east end with mild increase at each 22 

time point. This figure also shows the proportion change for all other levels of irregular 23 

headways, which have a general increasing trend towards the east end and a mild decrease at 24 

each time point. 25 

 26 
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 1 
Figure 6. Actual headway proportions spatial distribution for route 15 westbound a.m. 2 

peak hours 3 

 4 

3.3 Bus Bunching Formation and Dissipation 5 

 6 

The above section shows the spatial and temporal distribution of bus bunching event defined by 7 

the departure headway at each stop; however, these bus bunching events are identified 8 

independently without knowing which trips they belong to. It is important to know where buses 9 

get bunched or separated along the bus route for each pair of bus trips. Therefore, we developed 10 

another method to identify bus bunching trips and where buses get bunched and separated for 11 

each pair of trips.  12 

Figure 7 shows bus bunching trips formation and dissipation for route 15 westbound in 13 

the a.m. peak hours. In this figure, each horizontal line represents an identified bus bunching trip 14 

in which at least one stop has a departure headway that is smaller than bunching threshold (e.g. 15 

two minutes). In each horizontal line, blue dots represent bunching records at corresponding bus 16 

stops. If two consecutive bus stops in one pair of trips are identified bunching, blue lines connect 17 

them.  18 

From Figure 7, we can visualize where bus bunching trips form and dissipate. It is 19 

obvious that most of the bus bunching trips start at the stop SE Stark & 93
rd

, because this stop is 20 

the start of the high frequency service segment. If any trip starting from the west terminal arrives 21 

at this stop late, while an additional short trip starts from this stop on time, there might be a bus 22 

bunching event. Similarly, most of the dissipation of bus bunching trips occur at the SW 23 

Morrison & 17
th

 stop. The figure also shows how the bus bunching density increases to the west 24 

until the stop at SW Morrison & 17
th

. 25 

 26 
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 1 
Figure 7. Bus bunching trips spatial formation and dissipation for route 15 westbound a.m. 2 

peak hours (headway threshold: < 2 minutes) 3 

 4 

While Figure 7 shows the formation and dissipation of all bus bunching trips, it is also 5 

worth knowing where they first formed and finally dissipated. Figure 8 further shows the 6 

percentage of first formation and last dissipation of all bus bunching trips at each stop along the 7 

route, particular control strategies can be implemented at those stops. The blue bars represent the 8 

percentages of first formation, and red bars represent the percentages of last dissipation. Figure 8 9 

shows that almost 15% of all the westbound a.m. peak bus bunching trips first formed at the stop 10 

SE Stark & 93
rd

, with all the other stops are less than 5%. On the other hand, almost 20% and 25% 11 

of all the bus bunching trips dissipated at SW Morrison & 17
th

 and its downstream stop, totaling 12 

45%. This observation also indicates that once a pair of buses get bunched, they are more likely 13 

to continue until the end of high frequency service zone. Therefore, a better headway-based 14 

control at this stop in the morning peak hours is highly recommended.  15 

Figure 9 further shows the probabilities of downstream bus bunching trips at different 16 

departure headway bins at the stop SE Stark & 93
rd

 for westbound a.m. peak hours, with three 17 

different headway threshold levels. For example, if bus bunching is defined as headway 18 

threshold < 1 minute, and departure headway at the trip beginning is in the 0-1 minute bin, the 19 

probability of a downstream bus bunching trip is 70% (blue line); if the departure headway at the 20 

beginning trip is in the 4-5 minutes bin, the probability of a downstream bus bunching trip is less 21 

than 10%. Similar interpretations apply for the green line (headway threshold < 2 minutes) and 22 

red line (headway threshold < 3 minutes). The general trends for all three lines are decreasing as 23 

the departure headway bins at the beginning trip increases, which indicates that the shorter 24 

headway at the starting trip, the higher probability of downstream bus bunching trips. Based on 25 

regression model results on the same route, Albright and Figliozzi (5) also found that initial stop 26 

headway significantly affect downstream stop headways. 27 

 28 
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 1 
Figure 8. Bus bunching trips first formation and last dissipation spatial distribution for 2 

route 15 westbound a.m. peak hours (headway threshold: < 2 minutes) 3 

 4 

 5 
Figure 9. Probability of downstream bunching with varying trip beginning departure 6 

headways and headway thresholds for route 15 westbound am peak hours 7 

 8 

3.4 Bus Bunching Effects 9 

 10 

Bus bunching has several negative impacts from the aspect of passengers such as longer waiting 11 

times and overcrowding. In a pair of bunched buses, the leading bus is usually late and the 12 
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following bus is usually earlier than its scheduled departure times. Therefore, passengers who 1 

wait for the leading bus may have to wait longer than a scheduled headway at any stop, while 2 

passengers who arrive at a stop after the leading bus departure and before the following bus 3 

arrival may have relatively short waiting times. However, the number of passengers who wait for 4 

the leading bus is usually more than those passengers wait for the following bus, and therefore 5 

may result in a weighted average waiting time for passengers that are involved in a pair of 6 

bunching trips longer than normal average waiting time. To evaluate if this is true, Figure 10 7 

shows the average times for normal buses, leading buses, following buses, and weighted average 8 

waiting time for both leading and following buses in a pair of bunching trips. It shows that 9 

waiting time for leading bus is almost 1.5 minutes more than normal bus, and almost 4 minutes 10 

more than following bus in an environment where scheduled headway is between 5 and 7 11 

minutes. Also, the weighted average waiting time for both leading and following buses in a 12 

bunching trip is about half minutes longer than the normal buses over all stops. If we assume the 13 

average penalty of passenger waiting time is $20/hr, 10% bus bunching trips at a stop, and 14 

passenger demand is 600 people per hour, the annual cost will be over $328,500 (0.5 minute * 15 

$20/hour * 600 people/hour * 10% * 3 hours * 30 stops * 365 days) only for stops in the 16 

westbound a.m. peak hours, not to mention the p.m. peak hours, the opposite direction and other 17 

bus routes. 18 

 19 

 20 
Figure 10. Average passenger waiting time spatial distribution for route 15 westbound am 21 

peak hours (headway threshold: < 2 minutes) 22 

 23 
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Figure 11 shows that, between the stops at SE Start & 82
nd

 Ave. and SW Washington & 1 

5
th

 Ave., the average passenger load on a leading bus is almost 10 people more than the load on a 2 

normal bus and 20 people more than the load on a following bus. However, the weighted average 3 

load for a pair of bunching buses is the same as the passenger load for a normal bus. For all other 4 

bus stops, the difference is not significant due to low passenger demand. Although the average 5 

load on a normal bus is almost the same as the weighted average load on a pair of bunching 6 

buses, it still indicates overcrowding in the leading bus and low occupancy in the following bus, 7 

which results in a loss of attractiveness to passengers and reduction in bus utilization efficiency. 8 

 9 

 10 
Figure 11. Average passenger load spatial distribution for route 15 westbound am peak 11 

hours (headway threshold: < 2 minutes) 12 

 13 

4 CONCLUSION   14 

 15 

This study developed algorithms to help transit agencies identify recurrent bus bunching 16 

incidents distribution and understand the causes and effects of bus bunching trips based on 17 

archived AVL/APC data. The results have demonstrated how bus bunching incidents can be 18 

summarized for different temporal and spatial aggregation levels. The thresholds (defined in our 19 

study as the headway between two consecutive bus departures at a bus stop) for identifying bus 20 

bunching are flexible and can be modified as needed by transit agencies. Results indicate that bus 21 

bunching usually takes place in the high frequency service time and segments, mainly because 22 

the schedule headway is too short.  Bus bunching trips usually start at the first stop of high 23 

frequency service zone, where additional short trips are added to trips that pass along the stop. 24 

Once buses get bunched at the beginning of high frequency zone, they are likely to remain 25 

bunched the rest of the trip until the end of high frequency service zone.  26 

Schedule-based control at downstream time point stops can help regulate headways. The 27 

weighted average passenger waiting time due to bus bunching is 0.5 minutes longer than the 28 

average passenger waiting time for unbunched bus trips. Therefore, headway control at 29 

beginning stops of high frequency service zone is highly recommended. The algorithms utilized 30 
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in this study are easily transferable to other bus routes and transit agencies.   1 
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