
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

1-1-2012

A Fault-Tolerant Alternative to Lockstep Triple A Fault-Tolerant Alternative to Lockstep Triple

Modular Redundancy Modular Redundancy

Andrew Lockett Baldwin
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Baldwin, Andrew Lockett, "A Fault-Tolerant Alternative to Lockstep Triple Modular Redundancy" (2012).
Dissertations and Theses. Paper 331.
https://doi.org/10.15760/etd.331

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/331
https://doi.org/10.15760/etd.331
mailto:pdxscholar@pdx.edu

A Fault-Tolerant Alternative to Lockstep Triple Modular Redundancy

by

Andrew Lockett Baldwin

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Electrical and Computer Engineering

Thesis Committee:

W. Robert Daasch, Chair

Douglas V. Hall

Mark G. Faust

Portland State University

©2012

i

Abstract

Semiconductor manufacturing defects adversely affect yield and reliability.

Manufacturers expend vast resources to reduce defects within their processes. As the

minimum feature size get smaller, defects become increasingly difficult to prevent.

Defects can change the behavior of a logic circuit resulting in a fault. Manufacturers and

designers may improve yield, reliability, and profitability by using design techniques that

make products robust even in the presence of faults. Triple modular redundancy (TMR) is

a fault tolerant technique commonly used to mask faults using voting outcomes from

three processing elements (PE). TMR is effective at masking errors as long as no more

than a single processing element is faulty.

Time distributed voting (TDV) is proposed as an active fault tolerant technique.

TDV addresses the shortcomings of triple modular redundancy (TMR) in the presence of

multiple faulty processing elements. A faulty PE may not be incorrect 100% of the time.

When a faulty element generates correct results, a majority is formed with the healthy PE.

TDV observes voting outcomes over time to make a statistical decision whether a PE is

healthy or faulty. In simulation, fault coverage is extended to 98.6% of multiple faulty PE

cases. As an active fault tolerant technique, TDV identifies faulty PE’s so that actions

may be taken to replace or disable them in the system. TDV may provide a positive

impact to semiconductor manufacturers by improving yield and reliability even as fault

frequency increases.

ii

Table of Contents

Abstract .. i

List of Tables ... iii

List of Figures .. iv

Chapter 1 Introduction ... 1

Chapter 2 Background ... 7

2.1 Semiconductor Defects and Faults .. 7

2.2 Redundancy and Fault Tolerance .. 10

2.3 Lockstep TMR... 11

2.4 Fault Cones and Aliasing .. 14

2.5 Content Addressable Memory (CAM) .. 17

2.6 Processing Element: The ISCAS 85 C6288 Benchmark .. 21

Chapter 3 Design ... 24

3.1 Methods ... 24

3.2 Proposed TDV Design Overview .. 25

3.3 Prototype Implementation ... 27

3.4 Implementing the Multi-Ported CAM in Verilog ... 30

3.5 Evaluating faults in the C6288 Benchmark... 32

Chapter 4 Results ... 34

4.1 Operational Verification of the Design ... 34

4.2 Fault Coverage with 1,200 Pseudorandom Input Patterns 37

4.3 Fault Coverage with Multiple Faulty Elements .. 40

4.4 Fault Coverage using Time Distributed Voting .. 53

Chapter 5 Conclusion and Recommendations ... 59

References ... 61

iii

List of Tables

Table 1: Aliasing in TMR ... 16

Table 2: Method for updating PE weights based on majority voting results. 26

Table 3: Interpretation of final PE weights after TDV. .. 27

Table 4: Commonality detection using CAM cell FIFO buffers. 28

Table 5: Definitions for statistics obtained during simulation for each fault pair. 42

Table 6: Aliasing Summary .. 43

Table 7: Aliasing Fault Combinations. ... 44

Table 8: Aliasing fault pair TDV outcomes vary with input set size................................ 56

Table 9: TDV outcomes for 12 ATPG patterns .. 57

Table 10: Fault Pair Coverage Statistics by pattern set size (Integer count) 58

Table 11: Fault Pair Coverage Statistics by pattern set size (Percentage) 58

iv

List of Figures

Figure 1: Defect density and size with respect to the minimum feature size [2]. 3

Figure 2: Relative frequency of defects with respect to size [2]... 3

Figure 3: Example of Aliasing when multiple processing elements are faulty. 5

Figure 4: Conductor Defects [2]. .. 7

Figure 5: Illustration of defects that cause latent faults [2]. ... 8

Figure 6: Poisson statistics .. 9

Figure 7: A 16-bit multiplier TMR implementation. .. 12

Figure 8: Fault cone illustration .. 15

Figure 9: Data stream commonality detection .. 18

Figure 10: NOR-type CAM with timing diagram[10] .. 20

Figure 11: NAND-type CAM cell[10] .. 20

Figure 12: ISCAS-85 C6288 16x16 Multiplier [3] ... 22

Figure 13: Adder module used in C6288 benchmark [3] ... 22

Figure 14: Alternate depiction of C6288 Multiplier showing connectivity [3] 23

Figure 15: Block Diagram of Proposed Design .. 29

Figure 16: Multi-Port CAM modules in Verilog. ... 31

Figure 17: Code snippet for injecting stuck-at faults during simulation 33

Figure 18: A commonality is observed ... 35

Figure 19: Common patterns are stored in the common symbol array 36

Figure 20: Voting is initiated .. 37

Figure 21: Half and Full Adders containing un-observable faults [3] 39

Figure 22: Fault Coverage profile for C6288 Benchmark .. 40

Figure 23: Percentage of fault combinations that alias ... 45

Figure 24: Aliasing Fault Combinations ... 45

Figure 25: Frequency distribution of aliased fault pairs for all faults............................... 46

Figure 26: Cumulative Distribution Plot of aliasing fault combinations 47

Figure 27: Aliasing Fault Proximity example [3] ... 48

Figure 28: Gate level schematics of the adders used in the C6288 49

Figure 29: Fault Alias Spatial dependence ... 51

Figure 30: Expected Venn diagram of Time-Distributed Voting. 54

Figure 31: Venn diagram for aliasing fault pairs .. 55

Figure 32: Venn diagram when Golden element is evicted .. 55

1

Chapter 1 Introduction

The integrated circuit has become commonplace in nearly every facet of modern

civilization. Innovations to the integrated circuit, over several decades, have led to

advances in computing, communication, education, entertainment, health care, travel, and

weaponry. Semiconductor manufacturers relentlessly pursue smaller feature sizes and

lower power consumption to reduce costs and increase the capability of products they

produce. The feature size refers to the dimensions used when printing circuitry on a

semiconductor part using a photolithography process. Transistor gate length, metal-wire

width and the placement pitch are semiconductor features that can be minimized in order

to fit more circuitry into a given area. Smaller feature size allows for greater transistor

density and component integration. For example, CPU manufacturers like Intel and AMD

are now integrating essential computer components from chipsets and expansion cards

directly into the CPU. Products exist today in which the memory controller hub, PCI-

Express interface, graphics processor, caches, and multimedia encoder/decoder are

fabricated directly on the CPU die. Integration is possible and cost effective because a

smaller feature size allows for greater circuit density with a fixed manufacturing cost.

Semiconductor manufacturers must be mindful of random manufacturing defects

as they attempt to shrink the feature size. A random defect is an imperfection introduced

during the fabrication process. Defects can be attributed to impurities in the crystalline

structure, particles, equipment malfunction, variations in temperature or pressure, or

variations in the process. Random defects appear in different shapes and sizes. Some

defects are too small to adversely affect the circuit. Larger defects may cause shorts or

2

opens in the circuitry, resulting in failures or faults. Defects larger than one-tenth the

minimum feature size may cause rare faults. Typical manufacturing processes guard

against defects that are larger than one-third of the minimum feature size [2] as they are

most likely to cause faults. Defect density (λ) is specified in units of defects per unit area

and impacts the frequency of defects large enough to cause a fault.

Typically, each new process generation reduces the minimum feature size. As the

minimum feature size gets smaller, the impact of random defect size and density

increases. The manufacturing process must continually improve in order to keep defect

density at an acceptable level [2]. Figure 1 shows the decrease in allowable defect density

and size with respect to the minimum feature size [2]. Figure 1 shows that, as minimum

the feature size (x-axis) decreases, the allowable defect density (left axis) decreases. The

size of defect included in defect density (right axis) also decreases, but at a faster rate

than defect density. The implication of Figure 1 is that designs using a smaller feature

size are susceptible to failure due to smaller defects. The problem is compounded by the

reality that smaller defects occur at a higher relative frequency than large defects as

shown in Figure 2 [2]. Acceptable defect density will become increasingly difficult to

achieve with each successive process generation.

Manufacturers employ techniques to improve manufacturing yield and product

reliability in the presence of faults. Lockstep triple modular redundancy (TMR) is one

such technique. Lockstep TMR utilizes triplicated processing elements (PE) and majority

voting to mask faults. As long as a majority of PE’s are fault-free, majority voting will

mask erroneous results and only propagate correct results [5]. Lockstep TMR may

preserve manufacturing yield or provide fault tolerance against online faults [4]. When

3

one of the PEs contains a fault, whether from a manufacturing defect or an online failure,

the remaining two PE’s form a majority and evict or mask the erroneous result.

Figure 1: Defect density and size with respect to the minimum feature size [2].

As the minimum feature size (X-axis) gets smaller, defect density (left-axis)

decreases, and the size of defect included in defect density (right-axis) also

decreases.

Figure 2: Relative frequency of defects with respect to size [2].

Designers that utilize TMR assume that, at most, only a single PE ever contains a

fault [6]. If multiple faulty elements are present, aliasing may occur. Aliasing is when

4

two faulty results form a majority and evict the correct result. Figure 3 shows a simple

example of how aliasing occurs. Figure 3 shows three PE’s performing the function of a

two-input NAND gate. The Golden element contains no fault, while Faulty1 and Faulty2

elements each contain different faults. In this work, faults are modeled as stuck-at-0

(SA0) or stuck-at-1 (SA1). The node where the fault occurs is constrained to the stuck-at

value, independent of the logic around it. The truth table shows that for the input pattern

(A=0, B=1), Faulty1 and Faulty2 elements both generate faulty results that form a voting

majority. In this simple example, the correct result would be evicted and the faulty result

would be propagated because of its majority status.

Some fault pairs are expected to generate aliased results. Faults that modify

circuit behavior in the same way are called, equivalent, dominant, or collapsible faults.

For example, if one PE contained a SA1 on the input of an inverter and another PE

contained a SA0 on the output of the same inverter, both PE’s would exhibit the same

syndrome and the faults would be equivalent. When activated by an input pattern,

equivalent faults generate aliased results because they are, in effect, the same faulty

circuit. The faults displayed in Figure 3, are not equivalent, dominant, or collapsible, yet

they generate aliased results. Aliasing extends beyond equivalent fault pairs and presents

a challenge to hardware redundancy in the presence of multiple faults. Future

technologies may produce devices so small that achievable defect density cannot protect

against the likelihood of multiple faulty PE’s in a TMR system. Additionally, if TMR is

used to protect yield, any online fault may constitute the second faulty PE [4].

5

C

A

B
SA1

SA0
C

A

B

C

A

B

Golden

Faulty 1

Faulty 2

Truth Table

A B C [Golden] C [Faulty 1] C [Faulty 2]

0 0 1 0 1

0 1 1 0 0

1 0 1 0 1

1 1 0 0 0

Figure 3: Example of Aliasing when multiple processing elements are faulty.
The faults shown in Faulty 1 and Faulty 2 circuits are not equivalent or collapsible,

but they still generate identical faulty results.

In most cases, even a faulty PE is correct part of the time. When a faulty PE

generates correct results, it votes in favor of the non-faulty PE. If two PE’s are faulty, but

not generating aliased results, a statistical, time-distributed voting model may be able to a

correctly identify the non-faulty PE by observing which element(s) are in the majority

most of the time.

This thesis will explore the impact of multiple faulty PE’s in a TMR system and

propose a time-distributed voting model to extend the usefulness of TMR to systems with

multiple faulty PE’s. The proposed design is effective for multiple faulty PE’s as long as

6

they do not contain aliasing fault pairs. The design will also enable each PE instance to

operate on its own independent data stream. This thesis will summarize the potential for

improved throughput and efficiency, while remaining fault tolerant against single and

multiple faults using modified TMR methods.

7

Chapter 2 Background

2.1 Semiconductor Defects and Faults

In the semiconductor manufacturing process, an imperfection that occurs during

processing is called a defect. When a defect modifies the behavior of a given circuit to

the point of failure, it becomes a fault. There are a large variety of defects that can cause

faults. Figure 4 from [2] shows examples of two defects that commonly cause faults

during the manufacturing process. These include a defect shorting two metal lines

together (Figure 4a) and a void in a metal line resulting in an open (Figure 4b).

Figure 4: Conductor Defects [2].

(a) Short between parallel metal lines, material deposited where it should not be.

(b) Open metal line, material not deposited where it should be.

Defects do not always result in faults. There is a close relationship between defect

size and fault occurrence. This relationship is largely dependent on the minimum feature

size of the process. If a defect is much smaller than the minimum feature size defined

within a process, then the likelihood of it causing a fault is small. The small defect may

be permanently contained within the part and never cause any adverse effect. However, if

a defect is close to or larger than the minimum feature size, then the probability of it

causing a fault increases. As the manufacturing process continues to evolve, smaller

8

transistors, and denser designs will become more sensitive to smaller defects that are

increasingly difficult to prevent.

A defect may induce a fault that renders the part defective at the completion of the

manufacturing process. When the fault is observed during test, the part is rejectedas a

yield loss. Conversely, a part may pass initial testing and then fail during its useful

lifetime due to latent faults. Examples of common defects that cause latent faults are

shown in Figure 5 [2]. In Figure 5a, a metal line with a partial non-conductive void may

behave as expected during test, but the reduced cross-sectional area of the line results in

higher current density. Over time, the higher current density stresses the line causing it to

fail due to electro migration resulting in an open circuit. In Figure 5b, metal lines with a

conductive particle partially bridging the gap between them increases the electric field

through the insulator when differential voltages are present. Over time this increased

electric field breaks down the insulator separating the metal lines and the lines become

shorted together. In both of these cases as with a myriad of failure models, the part may

not actually fail until a significant amount of time has passed in normal operation.

Figure 5: Illustration of defects that cause latent faults [2].

(a) Defect causing a clear field in the metal line, resulting in current crowding.

(b) Defect leaving material between two metal lines causing high electric field.

9

Manufacturers must guard against defects that may cause manufacturing and

latent faults. Semiconductor defect density describes the average number of random

defects per unit area that are likely to cause faults. Defect density is a critical indicator of

process health and yield [2][4]. Poisson statistics are used to predict yield fallout from

defects. If circuit area and the defect density for a manufacturing process are known, the

probability of observing exactly n defects is calculated by the equation shown in Figure

6e. The Poisson equation in Figure 6e assumes random defects to be uniformly

distributed.

 � = 	���� (a)

 � = ��	
��	��	������ (b)

 =

������

����	����
= �����	������

(c)

 � = 	� = �������	������	���	���� (d)

���, �� =

����

�!
exp	�−��

(e)

Figure 6: Poisson statistics

P(n,λ) computes the probability that the part contains exactly n defects when

average number of defects per unit (λ) is known.

Slight increases in defect density may have a large impact on yield. Designs that

are salvageable in the presence of defects and faults help to mitigate the otherwise costly

yield fallout. Several strategies, including hardware redundancy, exist which allow a

circuit to continue to operate or gracefully degrade when faults occur. The next two

sections will review fault tolerance and hardware redundancy as viable design

methodologies to manage circuit operation in the presence of faults.

10

2.2 Redundancy and Fault Tolerance

Semiconductor manufacturers go to great lengths to reduce defects within their

process, but defects cannot be eliminated completely. Manufacturers can minimize the

effect defects have on yield and reliability by utilizing hardware redundancy in their

designs. Redundancy refers to the use of multiple processing elements (PE) to handle

failures. If one instance fails, a redundant element may be used to accomplish the task.

Redundancy is utilized in systems across many disciplines to improve reliability. A

suspension bridge utilizes redundant support cables to distribute the load evenly and

ensure the bridge does not collapse if a single cable fails. Hospitals use backup power

generators to supply power during a utility outage. Hard drives can be configured in a

RAID array such that no data is lost if a single drive fails. In all these cases the goal of

the designers is to avoid undesired behavior due to a single point of failure.

Semiconductor manufacturers use redundancy to make designs more robust.

When fabrication of a design is complete the part is tested. If individual components in

the part are faulty, the part may be repaired by activating a redundant component or

utilizing an alternate data path. When repair is not possible, faulty components may be

disabled and the part sold at a lower price or used for an alternate purpose. For example,

the part may have less cache available, or may have a graphics or audio module disabled;

however, it need not be wholly scrapped.

Hardware redundancy is used by semiconductor manufacturers to account for

latent and online faults. Latent faults are undetectable when the part is initially tested, but

fail during the part’s useful lifetime. Fault tolerance is a design methodology which

enables a part to continue to operate after a fault has occurred. Active and passive

11

techniques exist for achieving fault tolerance. The passive technique attempts to mask

faulty results as they occur. The active technique attempts to identify faulty hardware and

remove it from the system [6]. N-Modular Redundancy (NMR) is an example of a

passive technique. NMR uses multiple PE’s and majority voting to mask erroneous

results and prevent them from getting propagated. As long as a majority of PE’s is

healthy, majority voting can effectively mask errors [6].

2.3 Lockstep TMR

Lockstep Triple modular redundancy (TMR) is a passive NMR approach in which

only three PE’s are used with majority voting to select the correct result [6]. Figure 7

graphically shows data flow through a (TMR) fault tolerant system containing a single

faulty PE (dotted-line). Since two of the PE’s are healthy, the faulty result gets discarded

when the vote is executed. The voting algorithm is executed continuously. Each output is

verified by majority to ensure it is correct. Majority voting may be conducted at the bit

level or the word level depending on the application. Word level voting compares PE

results in their entirety. An indeterminate state may be reached if all three PE’s compute

different results. Bit level voting generates the system output using a majority

determination from each bitwise comparison of the PE results. Bit-level voting does not

allow for indeterminate states when multiple PE’s are faulty. When only a single PE is

faulty, Lockstep TMR will obtain the correct output value using bit level or word level

voting. Lockstep TMR becomes unreliable or indeterminate when multiple PE’s are

faulty. TMR may improve yield fallout by masking faults caused by manufacturing

defects. When one element in a TMR system is already faulty due to a manufacturing

12

defect and a second element incurs an online or latent fault during normal operation,

majority voting is no longer able to identify the correct result [6]. Majority voting in a

TMR system is only guaranteed to be correct when a single element is faulty. Multiple

faulty PE’s may produce identical yet incorrect results. Aliasing occurs when two

identical, yet incorrect results form a majority and evict or mask the correct result. When

aliasing occurs, the TMR system propagates erroneous data without detection.

Figure 7: A 16-bit multiplier TMR implementation.

Three 16-bit multiplier modules operate on the same input data. Module 0 is faulty.

Modules 1 & 2 are not faulty and form a majority. The faulty result from module 0

is masked at the output.

The yield and reliability benefits of TMR come at a cost. Additional area is

required for the redundant PE’s and voting algorithm. Additional power is required to

compute triplicated results and execute the voting algorithm for every input cycle. TMR

does not conduct a thorough check of all possible faults in the PE. The only faults that are

Input

8888ffff

16-bit

Mult

[0]

16-bit

Mult

[1]

16-bit

Mult

[2]

Result[0]

88777777

Result[1]

88877778

Result[2]

88877778

Majority Voting

Algorithm

Output

88877778

13

checked are those that are activated by the input patterns. Faults existing within one or

more PE’s may remain dormant and unobserved by the voting algorithm if no input is

presented to activate the fault.

Space compaction is a compression technique which attempts to propagate any

errors in a circuit from input to output [1]. Compaction generates a signature key to

uniquely identify a distinct fault state in the circuit. In a triple redundant system with

signature keys generated for each PE, faults are detectable if keys form a majority.

However, when multiple PE's are faulty, a different signature key will be generated for

each PE. Space compaction does not provide reliable detection of multiple faulty PE's

because a vote on three different signature keys would return an ambiguous outcome.

In safety critical devices, an emergency is the worst time to discover a previously

undetected fault. Some input patterns that would activate faults within critical circuitry

occur rarely online. For example, the defibrillation circuitry in an implantable

cardioverter defibrillator (ICD) is activated only when a dangerous rhythm is detected in

the heart. This circuitry delivers an electric shock to return the heart to a normal sinus

rhythm. Even though this defibrillation circuitry is rarely used, if it malfunctions at the

onset of a heart attack or other cardiac event, the results could be catastrophic. TMR

operates only on the input patterns received while online. A failure in the defibrillation

circuitry due to multiple faulty elements would be undetectable until a cardiac event

actually occurs. A preferable fault tolerant approach would be to continually test for

faults in the entire system and identify failures, while there is time and opportunity to

respond to them.

14

2.4 Fault Cones and Aliasing

Designers of TMR systems assume that, at most, only one processing element is

faulty. When this assumption fails, aliasing may occur. Aliasing at either the bit level or

the word level occurs when two faulty results agree forming a majority, and the correct

result is voted out by the voting algorithm. Aliasing risk is determined by the fault cone

associated with each potential fault in a system. A fault cone refers to the propagation of

a fault through a processing element to the output bits where the fault becomes

observable. Figure 8 illustrates graphically the effect of fault cones within a processing

element. The fault f1 affects output bits 1 and 2, f2 affects output bits 5 and 6, and f3

affects output bits 3, 4, and 5. The issue of primary concern is the activation of f2 and f3

faults simultaneously. Since f2 and f3 fault cones overlap across output bit 5, a scenario

exists in which PE2 and PE3 may agree and create a majority. The fault cone merely

provides a description of which output bits may be affected by a given fault. Some output

bits in the fault cone may be correct when the associated fault is activated. When f2 flips

only bit 5 and f3 flips only bit 5, then their outputs will mutually agree on the incorrect

result. Equal, yet erroneous results are the source of aliasing and underscore the

limitations of TMR.

15

Figure 8: Fault cone illustration

The fault f1 affects output bits 1 and 2; f2 affects output bits 5 and 6; f3 affects

output bits 3, 4 and 5. Overlap of f2 and f3 at output bit 5 indicates potential

aliasing.

Table 1 demonstrates how aliasing may adversely affect the outcome of the voting

algorithm by casting out the correct processing element result. The correct result is

denoted by X. The Y and Z values are different, incorrect results. In cases 1-5, TMR

works as expected by identifying X as the passing result. However, in cases 6-8, the

healthy PE is determined to be faulty due to aliasing.

f1

i0 i1 i2 i3 i4 i5 i6 i7

o0 o1 o2 o3 o4 o5 o6 o7

PE1

f2

i0 i1 i2 i3 i4 i5 i6 i7

o0 o1 o2 o3 o4 o5 o6 o7

PE2
f3

i0 i1 i2 i3 i4 i5 i6 i7

o0 o1 o2 o3 o4 o5 o6 o7

PE3

f1 activated f2 activated f3 activated Bit-level voter Word-level Voter Comment

0 0 0 no fault observed no fault observed

0 0 1 f3 observed f3 observed

0 1 0 f2 observed f2 observed

0 1 1 possible aliasing: on o5 possible word aliasing f2 and f3 cones overlap

1 0 0 f1 observed f1 observed

1 0 1 no bit level aliasing indeterminate f1 and f3 do not overlap

1 1 0 no bit level aliasing indeterminate fl and f2 do not overlap

1 1 1 possible aliasing on o5 indeterminate

16

Table 1: Aliasing in TMR

Identity A x B = X

Case Input

PE1

Result

PE2

Result

PE3

Result

PE1

Vote

PE2

Vote

PE3

Vote Voting Result Disposition

1 A x B X X X Pass Pass Pass No Fault Correct

2 A x B Y X X Fail Pass Pass PE1 Faulty Correct

3 A x B X Y X Pass Fail Pass PE2 Faulty Correct

4 A x B X X Y Pass Pass Fail PE3 Faulty Correct

5 A x B X Y Z Fail Fail Fail Indeterminate Correct

6 A x B X Y Y Fail Pass Pass PE1 Faulty Incorrect

7 A x B Y X Y Pass Fail Pass PE2 Faulty Incorrect

8 A x B Y Y X Pass Pass Fail PE3 Faulty Incorrect

Table 1 demonstrates outcomes using word-level voting. Bit-level and word-level

voting methodologies are not equivalent. Bit-level voting never reaches an indeterminate

outcome since there are only two possible values (logic 0 and logic 1) that may be

contained in each bit. Since there are an odd number of PE’s, a majority will always be

observed for each bit. Word-level voting may reach an indeterminate outcome when all

PE’s compute different results. An indeterminate voting result is a useful indicator that at

least two processing elements contain faults.

In this thesis, time-distributed voting (TDV) is proposed. TDV is an alternative

methodology to lockstep TMR that is developed to address cases when one or two PE’s

are faulty. The TDV method is to observe majority voting outcomes over time. Faulty

PE’s may not be wrong all the time. When a fault is not activated by the input pattern, the

result will be correct and the faulty PE will vote in agreement with the healthy PE. A

statistical opportunity exists for faulty PE(s) to help identify the healthy PE(s). Fault

cones provide insight to cases where TDV may be successful. If the fault cones for two

faulty PE’s do not overlap, then aliasing cannot occur, and all observed majority voting

17

outcomes will favor the healthy PE. Effectively, the PE’s are in competition with each

other and the highest scoring PE(s) is the winner.

TDV is an active fault tolerant method which attempts to identify faulty PE’s,

rather than mask erroneous results. Conceding that multiple PE’s may be faulty, removes

the benefit of voting in lockstep since doing so would propagate faulty results. The

proposed design removes the lockstep constraint and enables each PE to operate on its

own independent data stream. In order to create voting opportunities, pseudorandom

input patterns are interleaved into the independent data streams for each PE at a fixed

rate. The pseudorandom patterns are capable of providing high fault coverage of all

possible faults in the PE. Since the lockstep constraint is removed, a mechanism is

required that can identify patterns common to all data streams, capture the PE results

when they become available and execute the majority voting algorithm. In this thesis, the

content addressable memory (CAM) has been chosen to handle commonality detection

and capture the appropriate PE results. The next section provides an overview of the

CAM used in the proposed design.

2.5 Content Addressable Memory (CAM)

The methodology proposed in this thesis allows multiple processing elements

(PE) to operate on independent data streams. Each PE may operate on a different input

pattern in each computation cycle. Majority voting is no longer viable for every

computation cycle. Instead, voting occurs when patterns are observed to be common to

all input data streams. Due to the continuous nature of streaming data, the entire data

stream cannot be searched simultaneously. In order to observe commonalities, a window

18

must be drawn around the portion of each data stream closest to the processing element.

The window is implemented as a first-in-first-out (FIFO) buffer. The input pattern getting

processed during a computation cycle is referred to as the active input. Commonalities

are observed by searching each FIFO buffer for the active inputs from the mutually

exclusive data streams. Figure 9 illustrates how commonalities are detected. The arrows

indicate the active input for each data stream. In the FIFO, data remains stationary while

a pointer cycles through each location within the buffer. After the data is used, it is

replaced with the next input pattern from the data stream.

Figure 9: Data stream commonality detection

The active input (116) in Stream[1] is common to Stream[0] and Stream[2]. When

this commonality is detected and the results aligned, majority voting is executed.

The active input (116) from Stream[1] exists in both Stream[0] and Stream[2]. If

the results are captured and aligned, a majority voting opportunity exists. The voting

opportunity is realized by storing the PE_Output[1] value obtained in the current clock

cycle as well as PE_Output[0] and PE_Output[2] when they become available in future

clock cycles. When all PE_Output results become available, the majority voting

Stream[0] Stream[1] Stream[2]

9 108 13C 136

8 FF 119 109

7 137 136 116

6 11C 13A 101

5 → 132 → 116 → 12E

4 100 112 111

3 12C 11E 117

2 116 114 108

1 117 110 114

0 13D 117 119

PE_REG[0] 132 PE_REG[1] 116 PE_REG[2] 12E

PE_Output[0] B2 PE_Output[1] 96 PE_Output[2] AE

19

algorithm will be executed to determine if any faults are observed. In the proposed

design, content addressable memory (CAM) cells have been used to construct the FIFO

buffers for each processing element. CAM cells enable a fully associative search of the

FIFO buffers for the active input patterns from the other two data streams. The search is

completed in a single clock cycle.

The CAM cell design requires a memory element, search lines, match lines, and

comparison circuitry. Figure 10 from [7] shows cascaded NOR-type CAM cells with a

timing diagram. During SL precharge, slpre is asserted to precharge low all search lines

(SL, SL). During ML precharge, mlpre is de-asserted to precharge ML high. Once

ML is high, slpre and mlpre are de-asserted and ML evaluate begins. For each stored bit,

either SL or SL is asserted high to assert the search value. If the search value does not

match the stored value, a discharge path is established for ML to reflect the mismatch.

NOR-type CAM cells discharge the ML whenever any stored bit is mismatched to its

corresponding search value [7]. If the stored value matches the search value for all bits in

the word, the ML value remains high to indicate the match.

Figure 11 from [10] shows a cascaded NAND-type CAM. The NAND-type CAM

differs from the NOR-type in that the ML discharge path is established serially through

each bitcell’s pass transistor. NAND-type CAM cells use the same timing diagram shown

in Figure 10, except the ML is discharged only when the stored value and the search

value match.

20

Figure 10: NOR-type CAM with timing diagram[10]

Figure 11: NAND-type CAM cell[10]

When any bit-cell value Q matches its associated search line value SL, a current

path is created to discharge the match line ML_A through the matching bit. A

mismatch is indicated by the ML_A signal maintaining an active high value.

21

Circuit designers can optimize power consumption and performance by selecting

an appropriate CAM topology. Power is consumed each time the ML in a CAM cell is

pre-charged from low or discharged due to a search event. If ML is rarely discharged, the

CAM will consume less power. In the proposed design, data stream commonalities are

expected to be rare events compared to cycles where no commonality is detected. The

NAND-type CAM is ideal because ML will only be discharged in the rare cases that a

commonality is detected. If a NOR-type CAM were used for this design, the match line

would be discharged for every input cycle where a commonality is not observed,

consuming more power.

The CAM topology affects performance and requires additional area for storage

and match detection circuitry. Area is determined by the size of memory array needed

and the number of search fields implemented. Performance is determined by the delay

associated with pre-charging and discharging ML. A NOR-type CAM is typically faster

than a NAND-type CAM because the NOR-type CAM can discharge the match line

through any one or more mismatched bitcells. The NAND-type CAM discharges the ML

serially through all bitcells when a match is observed.

2.6 Processing Element: The ISCAS 85 C6288 Benchmark

The ISCAS ‘85 C6288 benchmark circuit was used to evaluate the proposed

design. The C6288 benchmark is a matrix implementation of a 16-bit multiplier utilizing

32 input bits, and 32 output bits. The Verilog implementation of the benchmark contains

2448 discrete nodes. Each node may be simulated as a stuck-at-0 (SA0) or a stuck-at-1

(SA1) fault. The benchmark provides 4,896 possible faults to evaluate the design.

22

Articles for the C6288 benchmark provide a minimum set of 12 engineered test patterns

for fault testing [3]. The C6288 multiplier consists of a 15x16 matrix of full and half

adders as shown in Figure 12. Each half or full adder is implemented as shown in Figure

13 with interconnectivity described in Figure 14.

Figure 12: ISCAS-85 C6288 16x16 Multiplier [3]

Figure 13: Adder module used in C6288 benchmark [3]

The 15 top-row half adders lack the C_i input; each has two inverters at locations

V. The single half adder in the bottom row lacks the B input, thereby acquiring two

23

inverters at locations W.

Figure 14: Alternate depiction of C6288 Multiplier showing connectivity [3]

The input combinations are AND’ed together to form input to the half and full

adders.

Each row in the C6288 matrix computes a partial product used in the

multiplication. The output bits are computed by summing the skewed partial products for

each column in the matrix and propagating carry bits to the left adjacent column. The

Half adders used in the C6288 are modified full adders with one input removed.

24

Chapter 3 Design

3.1 Methods

Verilog HDL is used to facilitate evaluation of the time distributed voting

algorithm. The C6288 benchmark is a structural Verilog implementation of a 16-bit

multiplier. In order to evaluate the faulty behavior of the C6288, faults need to be

injected. The faults that need to be injected are stuck-at-0 (SA0) and stuck-at-1 (SA1)

faults for every node in the C6288 circuit. Fault injection in accomplished using Verilog

force and release procedural statements. The force statement overrides a node’s logic

value with the specified force value. Once the force statement is executed, the affected

node holds the forced value until the release statement is executed. The release statement

returns the node to its nominal behavior.

Pseudorandom input patterns are used to activate the injected faults. The

pseudorandom patterns were obtained using a linear feedback shift register (LFSR). The

patterns generated in an LFSR have some uniformity as each pattern is identical to the

previous pattern with the exception of one bit. To overcome this uniformity, LFSR

patterns were only collected after completely shifting the previous pattern out of the

LFSR. This method was used to collect 1,200 pseudorandom patterns for fault excitation.

The faulty behavior of the C6288 is characterized, using single stuck at faults. A

simple Verilog test-bench was used to force a fault in the C6288 PE. All 1,200

pseudorandom patterns were then cycled through the faulty PE while collecting the

results. This process was repeated for all 4,896 single stuck-at faults in the PE to generate

a table with 4,896 fault rows by 1,200 input patterns. The data table is used as the basis

25

for simulation of fault combinations.

The analysis in this thesis includes a characterization of fault pairs. A fault pair or

fault combination is defined as two discrete single stuck-at faults injected into two

distinct processing elements. The characterization is completed by exhaustively

simulating all possible combinations of two single stuck-at faults in the C6288. A Verilog

HDL prototype has been developed to demonstrate an implementation of TDV. The

prototype, however, is not optimal for obtaining the volume data needed for fault pair

analysis. Fault pair analysis was done by hashing fault rows in the data table to observe

voting outcome’s when one PE is healthy, and two PE’s are afflicted by different faults.

A Microsoft VBA script was used to perform the data hashing. The next four sections

will provide a more detailed description of the processes uses to accomplish the analysis.

3.2 Proposed TDV Design Overview

Lockstep TMR is a passive fault tolerant technique which uses majority voting to

mask erroneous data from a single faulty processing element (PE). Lockstep TMR is not

effective when more than one PE is faulty. The primary objective of the proposed design

is to improve fault tolerance in the presence of multiple faulty PE’s. Time distributed

voting (TDV) is proposed in this thesis as an alternative to lockstep TMR. TDV is an

active fault tolerant technique designed to identify which PE(s) are faulty and which ones

are not. TDV achieves the same coverage as lockstep TMR for single faulty PE’s, while

extending coverage to non-aliasing cases of multiple faulty PE’s. Conveniently, the

proposed design may also lead to improvements in performance and efficiency by

allowing redundant PE’s to operate on separate and independent data streams.

26

When a PE contains a fault, it may not generate erroneous results 100% of the

time. A faulty PE only generates erroneous results for a subset of input patterns that

activate the fault. The input patterns that do not activate the fault will generate correct

results matching those from a healthy PE. This observation creates a statistical

opportunity to identify non-faulty elements using word-level majority voting. In order to

exploit this statistical opportunity, each processing element has an associated weight.

Weights are updated every time a majority vote is executed. The rules for updating these

weights are detailed in Table 2. In the case where all results match, no fault is observed

and the weights remain unchanged. When a single result is mismatched, the majority

weights are incremented and the minority weights are decremented by one. When all PE

results are mismatched, multiple PE’s are faulty, but the majority vote provides no insight

about which element is faulty or if all elements are faulty. In the case where all results are

mismatched, the weights remain unchanged.

Table 2: Method for updating PE weights based on majority voting results.

Input Pattern Result[0] Result[1] Result[2] Weight[0] Weight[1] Weight[2]

A X X X +0 +0 +0

A Y X X -1 +1 +1

A X Y X +1 -1 +1

A X X Y +1 +1 -1

A X Y Z +0 +0 +0

As majority voting occurs over time, the updated weights form a prediction about

which element(s) if any are faulty. The weights are interpreted as shown in Table 3. The

X, Y, and Z values shown in the table represent final PE weights after TDV and are

related as X>Y>Z. In all cases, the PE with the greatest positive value (+X) is identified

as healthy. When two PE’s tie for first place (+X), both are identified as healthy. When

27

two PE’s contain values of smaller magnitude that are equal and opposite, (+/-Y,-/+Y),

both are identified as faulty. When two PE’s contain values of smaller magnitude that are

not equal and opposite, (+/-Y,+/-Z), both are identified as faulty with aliasing observed

for some input patterns.

Table 3: Interpretation of final PE weights after TDV.

3.3 Prototype Implementation

 The proposed design has been implemented in Verilog HDL. Verilog provides an

efficient, logical environment for observing data flow and fault simulation. Figure 15

contains the block diagram of the proposed design. Dotted lines indicate contributions

from this thesis. The FIFO buffers deliver stream data to the processing elements. The

CAM cells used in the FIFO buffers contain two search fields and two match line outputs,

and are referred to as double-ported. Using double-ported CAM cells, the FIFO contents

may be searched for matches to the active input patterns from the other two data streams.

Each cycle, the active input for each stream is forwarded to a search field in the other two

buffers. Table 4 contains the search field inputs for each buffer and the conditions that

would identify a buffer’s active input as a commonality. When a commonality is

detected, the input pattern is stored in the common symbol array and the corresponding

Weight PE[0] Weight PE[1] Weight PE[2] Interpretation (X > Y > Z)

0 0 0 No Fault Observed in any element

-X +X +X PE[0] is faulty; PE[1] and PE[2] are not faulty

+X -X +X PE[1] is faulty; PE[0] and PE[2] are not faulty

+X +X -X PE[2] is faulty; PE[0] and PE[1] are not faulty

+X +Y -Y PE[0] is not faulty; PE[1] and PE[2] are faulty

-Y +X +Y PE[1] is not faulty; PE[2] and PE[0] are faulty

+Y -Y +X PE[2] is not faulty; PE[0] and PE[1] are faulty

+X +/-Y +/-Z PE[0] is not faulty; PE[1] and PE[2] are faulty (aliasing observed)

+/-Z +X +/-Y PE[1] is not faulty; PE[2] and PE[0] are faulty (aliasing observed)

+/-Y +/-Z +X PE[2] is not faulty; PE[0] and PE[1] are faulty (aliasing observed)

28

PE result is stored in the results array. The common symbol array holds the common

input patterns until results from other processing elements become available and majority

voting occurs.

Table 4: Commonality detection using CAM cell FIFO buffers.

Buffer Active Input Search Field 1 Search Field 2 Commonality Condition

FIFO[0] A B C MW1[2] && MW2[1]

FIFO[1] B C A MW1[0] && MW2[2]

FIFO[2] C A B MW1[1] && MW2[0]

The common symbol array is implemented using triple-ported CAM cells. Three

search fields correspond to the active inputs for the 3 FIFO buffers. When a commonality

is detected, the common symbol array is searched to determine if the pattern is already

present and add it to the array if needed. The common symbol array indexes into the

result arrays to store latent results when common patterns finally make their way to the

processing elements. Finite states in the PE are not considered when commonalities are

detected in the FIFO. It is assumed that the PE’s contain only combinational logic since

stated logic may change as input patterns progress to the PE.

29

Figure 15: Block Diagram of Proposed Design

Data flows through the FIFO buffer, into the processing element, and to the output

data stream. Surrounding circuitry (dotted lines) monitors for stream commonalities

and performs majority voting when commonality results become available.

30

3.4 Implementing the Multi-Ported CAM in Verilog

 The FIFO buffers and the common symbol array in the proposed design are

implemented using CAM cells in Verilog HDL. CAM cells enable a fully associative

search of the buffer contents. Each buffer needs to be searched for the active input

patterns from the other two data streams. The common symbol array needs to be searched

for the active input patterns from all three data streams. The conventional NAND-Type

CAM cell only contains one search field. Additional search fields, match lines, and

comparison logic have been added to the CAM cells used in this design so that multiple

searches may occur concurrently. The modified CAM cells are described as multi-ported.

 Two variations of multi-ported CAM cells are needed. A double-ported version is

used in the FIFO buffers, and a triple-ported version is used in the common symbol array.

The number of ports that a CAM cell has refers to the number of input search patterns a

CAM cell can operate on. Figure 16 contains the Verilog behavioral implementation of

the multi-ported CAM cells used in this design. The first snippet (lines 27-36) is the

double-ported CAM cell which has inputs for the stored memory value (q), and two

search lines (sl1 and sl2). The outputs (node1 and node2) are asserted high whenever the

value of their respective search line input matches the stored memory value. The second

snippet (lines 38-49) is the triple-ported CAM cell. It is identical to the double-ported

CAM cell except that it also has a third search line input (sl3) and a third output (node3).

31

Figure 16: Multi-Port CAM modules in Verilog.

The double-ported CAM contains a storage value (q), 2 search lines (sl1 and sl2)

and 2 match indicators (node1 and node2). The triple-ported CAM contains a

storage value (q), search lines (sl1, sl2 and sl3) and 3 match indicators (node1,

node2, and node3.

A multi-ported CAM cell is instantiated for each stored bit in the FIFO buffers

and common symbol array. All CAM bitcells for a word are connected serially using the

same match line. When a match occurs, all node outputs for a corresponding search field

will be asserted high. A match creates a discharge path to drop the precharged match line

value low. In the proposed design, registers are used as the memory element while the

CAM logic performs the search functions.

A de-asserted match line, for any word in the FIFO buffer, indicates that the

corresponding search pattern has been found. A commonality is observed when the active

input word for any single buffer is observed to exist anywhere in both of the other two

buffers. When commonalities are observed in the FIFO buffers, the common input pattern

32

is stored in the common symbol array.

The common symbol array uses the active input patterns from the data streams as

search fields. When a match is detected in the common symbol array, it indicates that a

common pattern has arrived at the processing element and the result needs to be stored in

the results array so it is available for majority voting. The common symbol array aligns

the result arrays to their associated input pattern. Match lines are used to index into the

correct position in the results array and capture the PE result when it becomes available.

Valid flags are set to indicate the results are available. When results are available from all

data streams for a given input pattern, the majority voting algorithm is initiated.

3.5 Evaluating faults in the C6288 Benchmark

Fault simulation is completed iteratively using Verilog force and release

statements. Each possible fault in the C6288 is indexed in a table and associated with an

integer value referred to as its fault node. There are 4,896 fault nodes in the C6288

Verilog benchmark used in this design. On the first fault node iteration, no fault is

injected, and input test patterns are cycled through the processing element to produce

correct results. In subsequent fault node iterations, a single fault is injected into the

processing element and the input test patterns are processed with the fault present. The

Verilog code snippet in Figure 17 shows the proper use of the Verilog force and release

statements to cycle through all the possible faults.

33

Figure 17: Code snippet for injecting stuck-at faults during simulation

The force statement turns on a specific fault, release statement turns off the

previous fault.

The simulation generates a table with 4,897 rows and 1,200 columns. The first

row (fault node 0) contains the fault-free or “Golden” results for all input patterns. Each

subsequent row contains results for the same input patterns simulated with a different

fault node. The resultant data table may then be hashed to observe the behavior of the

system for any singular fault or combination of faults.

34

Chapter 4 Results

4.1 Operational Verification of the Design

 A voting opportunity exists when an input pattern is common to all FIFO buffers.

CAMs search the buffers continuously to find commonalities. Figure 18 shows the

observation of a commonality during simulation. Each cam_reg column contains buffer

contents for one data stream with a depth of 32 words. Each row contains a 32-bit input

pattern en route to a processing element. A buffer’s asserted hit bit indicates that it’s

active input (pe_reg) has been found in all other buffers. In Figure 18 the active word

from the middle buffer is common to the first and third buffers. When a commonality is

detected, it gets stored in the common symbol array.

The asserted hit bit initiates a routine that stores the common input pattern to the

common symbol array (cam_comsym), captures the common pattern’s result in the results

array (result_reg), and sets flags to indicate that the result is valid. Figure 19 shows the

common pattern observed in Figure 18 added to the cam_comsym array and the PE result

stored in the results array. When PE results for the common pattern become available

from other buffers, they are stored and aligned in the results array with valid bits set.

When all valid bits are asserted, the voting algorithm is executed as shown in Figure 20.

35

Cycle Count 2148

hit 0 1 0

pe_reg 32'hb31d1556 32'hffffd555 32'hba098745

result 32'h0eed8cbe 32'hd5542aab 32'h624ce36d

Index cam_reg[0] cam_reg[1] cam_reg[2]

[0] 32'h4dd52192 32'hfaca8cd9 32'h23c17f7a

[1] 32'h26ea90c9 32'h7d65466c 32'h11e0bfbd

[2] 32'hb31d1556 32'hffffd555 32'hba098745

[3] 32'h598e8aab 32'h237f4ac5 32'h5d04c3a2

[4] 32'h2cc74555 32'h91bfa562 32'hae8261d1

[5] 32'h9663a2aa 32'hc8dfd2b1 32'hd74130e8

[6] 32'h4b31d155 32'h646fe958 32'heba09874

[7] 32'h2598e8aa 32'hb237f4ac 32'hf5d04c3a

[8] 32'h92cc7455 32'hd91bfa56 32'h7ae8261d

[9] 32'hc9663a2a 32'h6c8dfd2b 32'hbd74130e

[10] 32'hffffd555 32'h3646fe95 32'hdeba0987

[11] 32'h32598e8a 32'h9b237f4a 32'hef5d04c3

[12] 32'h192cc745 32'hcd91bfa5 32'hf7ae8261

[13] 32'h0c9663a2 32'h66c8dfd2 32'hfbd74130

[14] 32'h864b31d1 32'h33646fe9 32'hfdeba098

[15] 32'h432598e8 32'h19b237f4 32'hfef5d04c

[16] 32'h2192cc74 32'h8cd91bfa 32'h7f7ae826

[17] 32'h90c9663a 32'h466c8dfd 32'hffffd555

[18] 32'h4864b31d 32'ha33646fe 32'h5fdeba09

[19] 32'ha432598e 32'h519b237f 32'h2fef5d04

[20] 32'h52192cc7 32'ha8cd91bf 32'h17f7ae82

[21] 32'ha90c9663 32'h5466c8df 32'h0bfbd741

[22] 32'h54864b31 32'h2a33646f 32'h05fdeba0

[23] 32'haa432598 32'h9519b237 32'h82fef5d0

[24] 32'hd52192cc 32'hca8cd91b 32'hc17f7ae8

[25] 32'hea90c966 32'h65466c8d 32'he0bfbd74

[26] 32'h754864b3 32'hb2a33646 32'hf05fdeba

[27] 32'hbaa43259 32'h59519b23 32'h782fef5d

[28] 32'hdd52192c 32'haca8cd91 32'h3c17f7ae

[29] 32'h6ea90c96 32'hd65466c8 32'h1e0bfbd7

[30] 32'h3754864b 32'heb2a3364 32'h8f05fdeb

[31] 32'h9baa4325 32'hf59519b2 32'h4782fef5

Figure 18: A commonality is observed

A buffer’s hit signal is asserted to indicate the buffer’s active input (pe_reg) is found

in all other buffers.

36

cam_comsym Results[0] Results[1] Results[2] Valid Adj

[0] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[1] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[2] 32'hffffd555 32'h00000000 32'hd5542aab 32'h00000000 4'b1010 4'b1101

[3] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[4] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[5] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[6] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[7] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[8] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[9] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[10] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[11] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[12] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[13] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[14] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[15] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

tally -3 3 3

Figure 19: Common patterns are stored in the common symbol array

When hit is asserted, the common pattern is stored in the common symbol array

(cam_comsym) and the active input result is captured in the results array.

The tally values shown in Figure 19 and Figure 20 contain voting outcomes

summed over time. The adj bits determine how the tally value for each PE is adjusted

each time voting is executed. The adj[0] bit determines if the weights are to be adjusted.

The other three bits, adj[1], adj[2], and adj[3], indicate whether the tally for PE1, PE2,

and PE3, respectively is to be incremented or decremented. If a PE result belongs to the

majority, its tally value is incremented. If the result is in the minority, tally is

decremented. If all PE results are matched or all are mismatched, the tally values are not

adjusted. After voting has completed for all test patterns, the PE(s) with the highest tally

is interpreted as healthy. The PE(s) with the lowest tally is deemed faulty. The tally

values are then reset and the process begins again.

37

cam_comsym Results[0] Results[1] Results[2] Valid Adj

[0] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[1] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[2] 32'hffffd555 32'hd5542aad 32'hd5542aab 32'hd5542aab 4'b1111 4'b1011

[3] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[4] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[5] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[6] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[7] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[8] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[9] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[10] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[11] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[12] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[13] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[14] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

[15] 32'h00000000 32'h00000000 32'h00000000 32'h00000000 4'b0000 4'b0111

Tally -4 4 4

Figure 20: Voting is initiated

When all results for common pattern are available, voting is initiated. Tally is updated to

reflect voting outcome.

4.2 Fault Coverage with 1,200 Pseudorandom Input Patterns

Pseudorandom data may be used to test logic circuits. The number of

pseudorandom patterns required to provide 100% fault coverage is heavily dependent on

the circuit used as a processing element. The C6288 benchmark was selected as the PE. A

pseudorandom sample of 1,200 32-bit patterns was collected. A sample size of 1,200

patterns was chosen somewhat arbitrarily to be 100 times larger than the 12 patterns

provided in the C6288 documentation.

The 1,200 input test patterns were collected using a linear feedback shift register

(LFSR) and only saving every 32
nd

 output pattern. The appearance of randomization is

38

improved by completely shifting one pattern out of the LFSR before the next pattern is

taken. All 1,200 pseudorandom patterns were simulated with an ideal processing element

as well as all 4,896 possible faults. The result of this simulation is a data table with 4,897

rows and 1,200 columns. Each row represents a different fault state, and each column

contains output results for one of the input patterns. From this table, all analysis and

evaluations can be performed or derived to assess the design.

Fault coverage was evaluated iteratively by cycling through each fault node in the

data table to check for incorrect results. There were 17 SA0 fault nodes in which no

erroneous results were observed for any of the 1,200 pseudorandom input patterns. The

un-activated faults were mapped to their location in the C6288, which is shown in Figure

21. Sixteen un-activated faults belong to the half-adder modules and one belongs to a full

adder module. Upon examination, these 17 faults are not observable because there is no

input combination that would ever cause these nodes to compute to logic 1. The fault

nodes are therefore perpetually SA0 by virtue of the C6288 design. The remaining 4,879

fault nodes are all activated by some subset of the 1,200 pseudorandom input patterns.

39

Figure 21: Half and Full Adders containing un-observable faults [3]

Fault coverage for the C6288 benchmark has been calculated at several interval

set sizes between 1 and 1,200 pseudorandom input patterns. Figure 22 shows the escapes

(non-activated faults) and fault coverage with respect to the pseudorandom input set size.

Escapes drop to zero and 100% fault coverage of the observable 4,879 possible faults is

achieved with 150 pseudorandom input patterns.

40

Figure 22: Fault Coverage profile for C6288 Benchmark

The top plot shows the number of faults that are not activated by the input pattern

set. The bottom plot shows the fault coverage as percentage of observable faults

that are activated by the pseudorandom input patterns. Both plots are shown with

respect to the size of the pseudorandom input data set.

4.3 Fault Coverage with Multiple Faulty Elements

A lockstep TMR system effectively masks erroneous data if only a single

0

500

1,000

1,500

2,000

2,500

3,000

1 10 100 1,000

E
sc

a
p

e
d

 F
a

u
lt

s

Number of Pseudorandom Input Patterns

Escaped Faults

40%

50%

60%

70%

80%

90%

100%

1 10 100 1,000

Fa
u

lt
 C

o
v

e
ra

g
e

Number of Pseudorandom Input Patterns

Fault Coverage

41

redundant PE is faulty. This thesis considers the case in which multiple PE’s may be

faulty. The structural Verilog implementation of the C6288 benchmark contains 2,448

discrete nodes. Each node may be modeled as a SA0 or a SA1 fault. In total, there are

4,896 possible single stuck-at faults. A simulation was conducted in which

pseudorandom input patterns were used as inputs to three processing elements. The first

processing element contains no faults and its result is designated as G (Golden). The 2
nd

and 3
rd

 processing elements each contain a single stuck-at fault from the 4,896 possible

faults, and their outputs are designated F1 and F2 respectively. For this simulation, the

faulty elements are associative and each fault combination is only simulated once

(Fault1+Fault2 = Fault2+Fault1). The case in which Fault1 = Fault2 is discarded in the

simulation because aliased results would be generated anytime the fault is activated. A

total of 11,982,960 fault pairs have been simulated.

���"�	�����	��	��	�"��� =
�#��# − 1�

2
=
�4,896��4,896 − 1�

2
= 11,982,960

The simulation used the data table from section 4.2 to hash together all possible

fault combinations and capture the voting results for all 1,200 pseudorandom test

patterns. The simulation output was written to text files with outcome statistics tabulated

for several pseudorandom input pattern set sizes. Exhaustive fault-pair analysis was

completed for a single point estimate with set sizes of 2, 3, 6, 12, 25, 50, 100, 200, 400,

800, and 1,200 pseudorandom input patterns. Table 5 shows definitions for the tabulated

statistics obtained during the simulation for each fault-pair. In the explanation column, G,

F1, and F2 refer to the output results of the Golden, Faulty1, and Faulty2 elements

42

respectively.

Table 5: Definitions for statistics obtained during simulation for each fault pair.

Column Name Example Explanation

Fault Nodes G_N12_N13

1st element is Golden

2nd element has fault index 12

3rd element has fault index 13

G_Tally 606

Final tally vote count (unbiased) for 1st Element

after input set has been applied

F1_Tally 22

Final tally vote count (unbiased) for 2nd Element

after input set has been applied

F2_Tally -22

Final tally vote count (unbiased) for 3rd Element

after input set has been applied

ALIASES 282 Number of occurrences where F1=F2

G_0_Tally 594

Number of occurrences where there is no minority;

No change to G_Tally

G_1_Tally 606

Number of occurrences where G is in the majority;

Increment G_Tally

G_-1_Tally 0

Number of occurrences where G is in the minority;

Decrement G_Tally

F1_0_Tally 594

Number of occurrences where there is no minority;

No change to F1_Tally

F1_1_Tally 314

Number of occurrences where F1 is in the

majority; Increment F1_Tally

F1_-1_Tally 292

Number of occurrences where F1 is in the

minority; Decrement F1_Tally

F2_0_Tally 594

Number of occurrences where ther is no minority;

No change to F2_Tally

F2_1_Tally 292

Number of occurrences where F2 is in the

majority; Increment F2_Tally

F2_-1_Tally 314

Number of occurrences where F2 is in the

minority; Decrement F2_Tally

XYZ[derived] 312 Number of occurrences where G≠F1≠F2

XXX[derived] 282 Number of occurrences where G=F1=F2

 The statistic from Table 5 that is of most interest is G_-1_Tally. The G_-1_Tally

counts the number of input patterns that generate aliased results for a given fault

43

combination. This count is incremented for each pattern in which F1 and F2 agree, and

vote out G. Table 6 shows a summary of aliasing occurrences for different input pattern

set sizes. Aliasing occurs with over 99% of the activated observable faults in the C6288

benchmark. Only 28 activated observable faults never generate aliased results when

combined with any other fault during this simulation. In a lockstep TMR system with

multiple faulty C6288 elements, a substantial subset of possible fault combinations

(approximately 3.2%) exist that will produce aliased results and evict the correct result

for some input patterns.

Table 6: Aliasing Summary

Input Pattern

Set Size

Unactivated

Observable

Faults

Activated

Observable

Faults

Activated

Observable

Fault

Combinations

Number

of Faults

that Alias

Number

of Faults

that do

not Alias

Percentage

of Activated

Observable

Faults that

Alias

2 1577 3302 5449951 3288 14 99.58%

3 905 3974 7894351 3946 28 99.30%

6 398 4481 10037440 4447 34 99.24%

12 111 4768 11364528 4734 34 99.29%

25 58 4821 11618610 4793 28 99.42%

50 5 4874 11875501 4846 28 99.43%

100 2 4877 11890126 4849 28 99.43%

200 0 4879 11899881 4851 28 99.43%

400 0 4879 11899881 4851 28 99.43%

800 0 4879 11899881 4851 28 99.43%

1200 0 4879 11899881 4851 28 99.43%

Table 7 shows the number and percentage of fault combinations that alias with

respect to the pseudorandom input pattern set size. The fault combinations in the table are

comprised only of faults that are activated by the input pattern set. Figure 23 and Figure

24 graphically show the relationship between pseudorandom input pattern set size and the

frequency of aliasing fault combinations. With fewer input patterns, some faults may not

44

be activated and therefore cannot contribute to aliasing. As the input set size increases,

fault coverage improves and more aliasing fault combinations are observed. Figure 22

showed that in this single point estimate, 100% fault coverage is achieved with

approximately 150 pseudorandom input patterns. A larger set of 1,200 patterns increases

fault activation and the frequency of aliasing in fault pairs. Figure 23 shows that as the

input set size increases, the percentage of fault combinations that alias approaches an

upper bound of around 3.2%. Figure 24 indicates this upper bound is around 380,000

fault pairs.

Table 7: Aliasing Fault Combinations.

Pattern

set size

Total Activated

Observable Fault

Combinations

Aliasing Fault

Combinations

Percentage of fault

combinations that

alias

2 5449951 96361 1.77%

3 7894351 145437 1.84%

6 10037440 205827 2.05%

12 11364528 276495 2.43%

25 11618610 317298 2.73%

50 11875501 353489 2.98%

100 11890126 369431 3.11%

200 11899881 377027 3.17%

400 11899881 378817 3.18%

800 11899881 379375 3.19%

1200 11899881 379437 3.19%

The simulation results have been filtered to include only the 379,437 aliasing fault

combinations from the 1,200 pattern set. Over 99% of activated observable faults are

found to alias with at least one other fault. The frequency that aliasing occurs for all

faults is shown in Figure 25. The distribution shows the percentage of possible fault

combinations that alias for all singular aliasing faults. For example, there are 797 singular

faults that alias with 3% to 3.5% of other faults. On average each fault aliases with

45

approximately 3.2% of other possible faults.

Figure 23: Percentage of fault combinations that alias

Aliasing increases as coverage improves because more faults are activated. Only

activated and observable faults can contribute to aliasing. Therefore, the percentages in

this plot are given with respect to the total number of activated observable fault

combinations for each input set size.

Figure 24: Aliasing Fault Combinations

As input pattern set size increases, observation of aliasing fault combinations increases

to a finite upper bound.

1.50%

1.70%

1.90%

2.10%

2.30%

2.50%

2.70%

2.90%

3.10%

3.30%

2 20 200A
li

a
si

n
g

 F
a

u
lt

 C
o

m
b

in
a

ti
o

n
s

(%
)

Number of Pseudorandom Input Patterns

Percentage of fault combinations that alias

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

2 20 200

A
li

a
si

n
g

 F
a

u
lt

 C
o

m
b

in
a

ti
o

n
s

Number of Pseudorandom Input Patterns

Aliasing Fault Combinations

46

Aliasing Frequency Distribution

Quantiles

Moments

 100.00% maximum 9.5857

Mean 3.224832

99.50% 9.4001

Std Dev 1.637596

97.50% 6.947

Std Err Mean 0.023512

90.00% 5.6071

Upper 95% Mean 3.270927

75.00% quartile 3.9373

Lower 95% Mean 3.178738

50.00% median 3.1128

N 4851

25.00% quartile 2.1439

 10.00% 1.2781

 2.50% 0.5154

 0.50% 0.0466

 0.00% minimum 0.0206

 Figure 25: Frequency distribution of aliased fault pairs for all faults.

Shows the percentage of possible fault combinations that alias for all singular faults.

118

195

297

453

520

633

797

760

373

96
113 124

148

111

10
23 25 15

27
13

100

200

300

400

500

600

700

800

C
o

u
n

t

0 1 2 3 4 5 6 7 8 9 10

47

 The distribution in Figure 25 shows three distinct modes. The modes are

confirmed in the cumulative distribution plot shown in Figure 26. From Figure 26, 84.3%

of singular faults fall into Mode 1. 11.7% of singular faults fall into Mode 2, and 4% of

singular faults fall into Mode 3. Mode 1 indicates singular faults where aliasing was

observed for less than 211 fault combinations. Mode 2 indicates singular faults where

aliasing was observed for between 211 and 317 possible fault combinations. Mode 3

indicates singular faults where aliasing was observed for more than 318 possible fault

combinations.

Figure 26: Cumulative Distribution Plot of aliasing fault combinations

48

There are two factors that contribute to the multiple distribution modes shown in

Figure 26. These factors are proximity and propagation paths. Proximity refers to the

spatial columnar distance between aliasing fault locations in the C6288 PE. 100% of

observed aliasing fault pairs are either in the same column or in an immediately adjacent

column in the PE. Figure 27 shows an example of fault proximity. A processing element

that contains a fault in column P6, shown in blue, may generate aliased results with a

processing element containing a fault in column P5, P6, or P7. No aliasing was observed

for faults pairs that are more than one column apart.

Figure 27: Aliasing Fault Proximity example [3]

A fault in column P6 (blue) will have aliasing fault pairs located in all adder

modules from columns P5, P6, and P7.

49

The number of propagation paths for a fault also contributes to aliasing and

multiple distribution modes. Figure 28 shows the gate level schematics for the adders

used in the C6288. Faults that can propagate to both Sum and Carry outputs will have a

higher frequency of aliasing fault pairs than faults that only propagate to a single output.

In Figure 28, the outputs of g1 and g5 have propagation paths that include both the sum

and the carry output for the adder. Faults at g1 and g5, or faults equivalent to these, will

have more aliasing fault pairs because they have more propagation paths.

Figure 28: Gate level schematics of the adders used in the C6288

Gates g1 and g5 may be propagated to both the Sum and Carry outputs. Faults that

propagate to multiple adder outputs have a higher number of aliasing fault pairs. Input-

AND gates do not appear on each adder. They are shown here as options. All internal

stuck-at faults for the adders are shown here. Faults shown in red are equivalent,

collapsible equivalent faults that may be detected using patterns that would activate their

equivalent counterparts.

50

Figure 29 shows the spatial relationship of aliasing faults and three distribution

modes from Figure 25. The X-axis contains the fault node index and are ordered as

follows:

1. Range 1-64 contains SA0 and SA1 faults for the 32 input nodes.

2. Range 65-576 contains SA0 and SA1 faults for the “and” gates that

provide inputs to the adders.

3. Range 577-4,896 contains faults within the matrix of adders. The adder

fault nodes are ordered from right to left and top to bottom. Each “spike”

represents one of the 16 matrix rows (partial product) in the C6288.

The scatter plot in Figure 29 shows that the number of aliasing fault combinations

is heavily dependent on the placement of the singular fault within a C6288 matrix row.

Each matrix row in the C6288 is a partial product used to perform the multiplication

function. A heavier concentration of aliasing fault combinations exists in the horizontal

center of the C6288. The horizontal center of the C6288 is recognizable in the scatterplot

by the 16 local maxima points. The local maxima points correspond to faults located in

the centermost adder module of each partial product row in the C6288 adder matrix from

Figure 21.

51

Figure 29: Fault Alias Spatial dependence

The Node index (x-axis) provides information about the location of each fault in the

C6288. Range 1-64 contains SA0 and SA1 faults for the 32 input nodes. Range 65-576

contains SA0 and SA1 faults for the “and” gates that provide inputs to the adders.

Range 577-4,896 contains faults within the matrix of adders. The adder fault nodes are

ordered from right to left and top to bottom. Each “spike” represents one of the 16

matrix rows (partial product) in the C6288.

In Figure 28, the faults shown in red are collapsible equivalent faults. Equivalent

faults exhibit the same syndrome. In single stuck-at fault testing, equivalent faults are

collapsed such that only one fault is targeted for testing. Any equivalent faults are then

observable when testing the single targeted fault. To make testing more efficient, all

possible faults are collapsed to a minimal target set. A minimized set of input patterns is

computed to activate the target fault set. During test, the circuit operates on the minimal

set of test patterns to activate all possible faults. If no incorrect results are observed, the

circuit is deemed healthy. The documentation for the C6288 benchmark provides the

minimum set of 12 input test vectors. On average, with 4,851 observable faults in the

52

C6288, each input test vector activates approximately 404 faults. High fault coverage

with a small input set is a benefit of using the single stuck-at fault model. Exhaustive

research has been done to improve the efficiency of fault collapsing and test pattern

generation. The C6288 is frequently used as a benchmark for evaluating the efficiency

and effectiveness of algorithms to collapse faults and minimize test patterns [8][9].

Identifying equivalence in fault pairs is necessary to make testing of large logic

circuits manageable. Testing a minimal target fault set with a minimal input pattern set

requires that the tester already know the correct result for each input pattern beforehand.

A comparator is then used to identify any mismatched results and label an element as

faulty. Lockstep TMR methodology inherits the assumption that, at most, only a single

fault is present. This assumption is maintained even though the processing element

hardware must be triplicated and additional hardware added to instantiate the voting

logic. The correct result is not known beforehand, and reliability is wholly dependent on

the presence of two healthy processing elements.

If two PE’s contain equivalent faults, then aliased results should be expected. In

this thesis, aliasing has been observed in fault pairs that are not equivalent. Lockstep

TMR may be a riskier scenario than conventional testing because the occurrence of

aliased results extends beyond equivalent faults. The data collected in this work for the

C6288 multiplier suggests that of all observable fault combinations, approximately 3.2%

generate aliased results for a subset of input patterns. When a second processing element

contains a fault, Lockstep TMR becomes less robust. The likelihood of propagating

incorrect aliased results increases. Time distributed voting (TDV) is proposed in this

thesis to provide active fault tolerant coverage when multiple PE’s are faulty.

53

4.4 Fault Coverage using Time Distributed Voting

 The design proposed in this thesis uses time-distributed voting (TDV) to

determine if processing elements (PE) are healthy or faulty. The tabulated result files

contain G_Tally, F1_Tally, and F2_Tally. These tally values represent the final weights

after accumulating majority voting results for all input test patterns. All tallies are first

initialized to an integer value of zero. With each pseudorandom test pattern, a vote is

executed to determine if and how the tally values for each PE are to be adjusted. If the

three PE’s generate identical results, then the tally values will remain unchanged. If a

majority of PE’s generate identical results, while a minority of PE’s generate mismatched

results, the tally values for PE’s in the majority are incremented and the tally values for

PE’s in the minority are decremented. If all three PE’s generate mismatched results, no

majority is observed and no adjustment is made to the tally values. After all test patterns

have been processed, the PE(s) with the highest tally is deemed healthy. The TDV

decisions are non-biased and are in no way skewed to favor the golden processing

element.

 TDV is not immune to aliasing, but it relies on averaging to provide robustness

when multiple PE’s are faulty. When faulty elements generate correct results, they vote

with the Golden element(s) to increase its tally. Ideally, after all test patterns have been

processed, the Golden element(s) represents the dominant tally. Figure 30 contains the

Venn diagram of the expected behavior for non-aliasing fault pairs. The green

overlapping regions in the diagram indicate majority voting results that favor the Golden

PE and to its TDV tally value. Ideally, TDV would always favor the Golden element(s).

54

In simulation using the C6288 PE, TDV was able to correctly identify the Golden PE for

96.8% of fault pairs with no observed aliasing.

Figure 30: Expected Venn diagram of Time-Distributed Voting.

When Faulty1 or Faulty2 generate correct results (green), they vote with the

Golden element. After processing all test patterns the Golden element is correctly

identified.

 Over 99% of faults in the C6288 benchmark have aliasing fault pairs. The aliasing

fault pairs may be represented using the Venn diagram shown in Figure 31. Whenever

Faulty1 and Faulty2 results are identical, but different from the Golden result, the

G_Tally metric is decremented. If G_Tally is decremented too frequently, the outcome

after processing all test patterns may incorrectly identify the Golden element as faulty as

seen in Figure 32.

55

Figure 31: Venn diagram for aliasing fault pairs

Here, the overlapping regions between Faulty1 & Faulty2 (red) adversely affect

vote averaging for the Golden element. As long as the overlap of Faulty1 & Golden

+ Faulty2 & Golden (green) is greater than Faulty1 & Faulty2 (red), TDV is able to

correctly resolve the Golden element.

Figure 32: Venn diagram when Golden element is evicted

When Faulty1 & Faulty2 (red) alias too frequently, the Golden element may be

erroneously evicted.

56

Pseudorandom input patterns are used in the simulation to activate faults and

evaluate fault coverage. If the faulty PE’s contain aliasing fault pairs, the PE favored by

the TDV may change based on the input set size. Table 8 shows TDV outcomes for select

aliasing fault pairs using different pseudorandom input pattern set sizes. In Table 8, a 0

indicates the TDV outcome was correct for the indicated number of input patterns. A 1

indicates the TDV outcome was incorrect. The selected fault pairs show that TDV

outcomes may toggle between correct and incorrect as more patterns are presented to the

system. While aliasing coverage percentage remained essentially flat, the aliasing fault

pairs that are covered may shift with different input pattern sets. Coverage may not be

achievable for all aliasing fault pairs, but designers may be able to engineer input pattern

sets to optimize coverage of aliasing fault pairs.

Table 8: Aliasing fault pair TDV outcomes vary with input set size

PE1 PE2 PE3

200

Patterns

400

Patterns

800

Patterns

1200

Patterns

Golden N997 N2263 0 0 0 1

Golden N4297 N4796 0 0 1 0

Golden N752 N2514 0 0 1 1

Golden N411 N3247 0 1 0 0

Golden N1000 N2759 0 1 0 1

Golden N997 N2008 0 1 1 0

Golden N872 N1121 0 1 1 1

Golden N868 N1121 1 0 0 0

Golden N3162 N4676 1 0 0 1

Golden N1823 N2577 1 0 1 0

Golden N3508 N4513 1 0 1 1

Golden N843 N3362 1 1 0 0

Golden N3745 N4760 1 1 0 1

Golden N435 N2694 1 1 1 0

Mean(XYZ) voting results 60.83 121.61 243.29 364.88

Mean(XXX)voting results 11.62 23.01 45.75 68.91

57

The bottom two rows in Table 8 shows the number of patterns for each input set

size that generated identical results (XXX) and different results (XYZ). The occurrence

of XXX and XYZ results trends linearly with the input set size. In total, there are

approximately 11.9 million fault combinations that were tested during the TDV

simulation. The simulation used three C6288 PE’s. One element was ideal (Golden)

while 2 elements contained different faults (Faulty1 and Faulty2). The processing

elements are intended to operate on independent data streams with test patterns

interleaved into the data streams. Aliasing fault pairs were observed for over 99% of the

activated observable singular faults in the circuit. Observing common test patterns in the

three data streams created voting opportunities.

Table 9: TDV outcomes for 12 ATPG patterns

Test Patterns 12 ATPG Patterns

% Correct No-Aliasing Pairs 97.52%

% Aliasing pairs 2.48%

% Correct Aliasing Pairs 0.50%

% Total Correct Pairs 98.02%

% Incorrect Aliasing Pairs 1.98%

Table 9 shows TDV fault coverage for multiple faulty PE’s using the 12

engineered test patterns for the C6288. Table 10 shows fault coverage as a count of

passing and failing fault pairs with different pseudorandom input pattern set sizes. Table

11 shows fault coverage as a percentage of all possible fault pairs. TDV correctly

identified both healthy and faulty elements in approximately 96.8% of all fault

combinations because no aliasing was observed. An additional 1.8% coverage is obtained

by correctly identifying healthy and faulty elements in over half of the aliasing fault

pairs. The remaining 1.4% of fault pairs are escapes in which the healthy element is

58

evicted in favor of a faulty element. Test escapes in which both faulty PE’s are deemed

healthy and the golden element evicted account for 0.02% of fault pairs. An equivalent

Lockstep TMR system provides no coverage for multiple faulty PE’s. In this single point

sample using the C6288, the proposed TDV design provides the same fault coverage as

lockstep TMR for single faulty PE’s and extends coverage to 98.6% of fault pairs that

may occur when two PE’s are faulty.

Table 10: Fault Pair Coverage Statistics by pattern set size (Integer count)

Test

Patterns

Total Fault

Pairs

Correct

No-Aliasing

Pairs

Aliasing

Pairs

Correct

Aliasing

Pairs

Total Correct

Pairs

Incorrect

Aliasing

Pairs

Test

Escapes

200 11,899,881 11,522,854 377,027 212,446 11,735,300 164,581 2724

400 11,899,881 11,521,064 378,817 214,242 11,735,306 164,575 2276

800 11,899,881 11,520,506 379,375 216,910 11,737,416 162,465 1942

1,200 11,899,881 11,520,444 379,437 217,408 11,737,852 162,029 1902

Table 11: Fault Pair Coverage Statistics by pattern set size (Percentage)

Test

Patterns

Total Fault

Pairs

% Correct

No-Aliasing

Pairs

%

Aliasing

Pairs

% Correct

Aliasing

Pairs

% Total

Correct Pairs

%

Incorrect

Aliasing

Pairs

% Test

Escapes

200 11,899,881 96.83% 3.17% 1.79% 98.62% 1.38% 0.0229%

400 11,899,881 96.82% 3.18% 1.80% 98.62% 1.38% 0.0191%

800 11,899,881 96.81% 3.19% 1.82% 98.63% 1.37% 0.0163%

1,200 11,899,881 96.81% 3.19% 1.83% 98.64% 1.36% 0.0160%

59

Chapter 5 Conclusion and Recommendations

This thesis has explored challenges facing semiconductor manufacturers and

designers as defects become increasingly difficult to prevent. Fault tolerant methods,

such as TMR, have been discussed as options to protect yield and improve reliability. The

shortcomings of TMR are the motivation for research and the new fault tolerant

methodology proposed herein. TMR’s effectiveness is limited to cases where no more

than one processing element (PE) may be faulty. In practice, once a part is put into use,

the onset of multiple faults is neither predictable nor preventable. When multiple

processing elements are faulty in a TMR system, aliasing may cause the correct result, if

there is one, to be evicted and an incorrect result to be propagated.

The methodology proposed in this thesis is an active fault tolerant technique with

the ability to distinguish faulty elements from healthy elements in the presence of single

or multiple faults. Time distributed voting (TDV) is proposed as a technique that

accumulates voting results over time to recognize healthy PE’s. TDV has been

implemented in a Verilog HDL prototype design. The prototype design evaluates TDV

using the ISCAS ’85 C6288 benchmark as a PE. Simulations have been completed to

verify the design and evaluate fault coverage provided by TDV with faults injected into

multiple faulty processing elements.

The TDV technique was able to correctly identify the healthy processing element

for 98.6% of all fault pairs. TDV even provided coverage for some aliasing fault pairs

(1.84%). Based on results using the C6288 benchmark as the processing element, TDV

has successfully extended fault coverage to a system with single and/or multiple faulty

processing elements. TDV does not ensure detection of faulty elements in all cases.

60

When PE’s contain aliasing fault pairs TDV may evict the healthy element as was

demonstrated with 1.4% of the fault pairs in the C6288.

Designers who consider using TDV should analyze the target PE to determine the

frequency of aliasing fault pairs. This work has shown that aliasing extends beyond

equivalent faults. Conventional fault collapsing does not capture all aliasing fault pairs.

TDV may not be an appropriate design choice for PE’s with a large number of aliasing

fault pairs. TDV may provide an effective alternative to lockstep TMR and enable fault

tolerant design of systems in the presence of multiple faults. The following

recommendations may further enhance the capabilities discussed in this work:

• Adding more PE’s may further reduce the probability of aliasing faulty PE’s

to conspire against the healthy PE.

• Probability of aliasing may be reduced by using PE’s with the same function,

but different implementation.

• It may be possible to engineer a minimal test pattern set to further reduce

aliasing and better evaluate the PE.

61

References

[1] K. Chakrabarty and J.P. Hayes. Zero-aliasing space compaction of test responses

using multiple parity signatures. Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, 6(2):309 –313, June 1998.

[2] B. El-Kareh, A. Ghatalia, and A.V.S. Satya. Yield management in microelectronic

manufacturing. In Electronic Components and Technology Conference, 1995.

Proceedings., 45th, pages 58 –63, May 1995.

[3] J.P. Hayes. Iscas high-level models. 1999.

http://www.eecs.umich.edu/ jhayes/iscas/c6288.html.

[4] M. Hunger and S. Hellebrand. The impact of manufacturing defects on the fault

tolerance of tmr-systems. In Defect and Fault Tolerance in VLSI Systems (DFT), 2010

IEEE 25th International Symposium on, pages 101 –108, Oct. 2010.

[5] C. A. L. Lisboa, E. Schuler, and Luigi Carro. Going beyond tmr for protection

against multiple faults. In Integrated Circuits and Systems Design, 18th Symposium on,

pages 80 –85, Sept. 2005.

[6] K. Matsumoto, M. Uehara, and H. Mori. Evaluating the fault tolerance of stateful

tmr. In Network-Based Information Systems (NBiS), 2010 13th International Conference

on, pages 332 –336, Sept. 2010.

[7] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory (cam) circuits

and architectures: a tutorial and survey. Solid-State Circuits, IEEE Journal of, 41(3):712

– 727, March 2006.

[8] W. Qiu and D.M.H. Walker. Testing the path delay faults of iscas85 circuit

c6288. In Microprocessor Test and Verification: Common Challenges and Solutions,

2003. Proceedings. 4th International Workshop on, pages 19 – 24, May 2003.

[9] R.K.K.R. Sandireddy and V.D. Agrawal. Diagnostic and detection fault

collapsing for multiple output circuits. In Design, Automation and Test in Europe, 2005.

Proceedings, pages 1014 – 1019 Vol. 2, March 2005.

[10] Chua-Chin Wang, Chia-Hao Hsu, Chi-Chun Huang, and Jun-Han Wu. A self-

disabled sensing technique for content-addressable memories. Circuits and Systems II:

Express Briefs, IEEE Transactions on, 57(1):31 –35, Jan. 2010.

	A Fault-Tolerant Alternative to Lockstep Triple Modular Redundancy
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - Andrew Baldwin Thesis - FINAL

