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Abstract
Tree cover is generally associated with cooler air temperatures in urban environments but the roles
of canopy configuration, spatial context, and time of day are not well understood. The ability to
examine spatiotemporal relationships between trees and urban climate has been hindered by lack
of appropriate air temperature data and, perhaps, by overreliance on a single ‘tree canopy’ class,
obscuring the mechanisms by which canopy cools. Here, we use >70 000 air temperature
measurements collected by car throughout Washington, DC, USA in predawn (pd), afternoon
(aft), and evening (eve) campaigns on a hot summer day. We subdivided tree canopy into ‘soft’
(over unpaved surfaces) and ‘hard’ (over paved surfaces) canopy classes and further partitioned
soft canopy into distributed (narrow edges) and clumped patches (edges with interior cores). At
each level of subdivision, we predicted air temperature anomalies using generalized additive
models for each time of day. We found that the all-inclusive ‘tree canopy’ class cooled linearly at
every time (pd= 0.5 ◦C± 0.3 ◦C, aft= 1.8 ◦C± 0.6 ◦C, eve= 1.7 ◦C± 0.4 ◦C), but could be
explained in the afternoon by aggregate effects of predominant hard and soft canopy cooling at low
and high canopy cover, respectively. Soft canopy cooled nonlinearly in the afternoon with minimal
effect until∼40% cover but strongly (and linearly) across all cover fractions in the evening
(pd= 0.7 ◦C± 1.1 ◦C, aft= 2.0 ◦C± 0.7 ◦C, eve= 2.9 ◦C± 0.6 ◦C). Patches cooled at all times of
day despite uneven allocation throughout the city, whereas more distributed canopy cooled in
predawn and evening due to increased shading. This later finding is important for urban heat
island mitigation planning since it is easier to find planting spaces for distributed trees rather than
forest patches.

1. Introduction

Replacement of natural landscapes with impervi-
ous surfaces results in the urban heat island (UHI)
where temperatures are higher compared to adja-
cent rural areas (Oke 1982). Urban heat has been
implicated in a range of human health concerns
(Heaviside et al 2017), increased stress on green and
gray infrastructure, and higher greenhouse gas emis-
sions related to climate control (Roxon et al 2020).
There is substantial research demonstrating that areas
with higher impervious surface cover and/or lower
vegetation cover are hotter as assessed either by

air (Wang et al 2017) or land surface temperat-
ure (LST; Roberts et al 2012). Moreover, citywide
and neighborhood-scale relationships between urban
three-dimensional structure and temperature (e.g.
‘local climate zones’; Stewart and Oke 2012) are
well established. However, understanding of fine-
scale connections between urban temperature and its
biophysical drivers remains limited.

Trees in urban environments cool through a com-
bination of shading and transpiration, but the mag-
nitude of the effect depends on the amount of can-
opy cover surrounding observation points (Shiflett
et al 2017, Ziter et al 2019, Cao et al 2021). Although
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some studies have shown linear relationships between
canopy cover and cooling (Logan et al 2020), there
is mounting evidence that this relationship is more
often nonlinear, showing limited cooling until 25%–
50% cover and becoming more substantial at higher
values (Alavipanah et al 2015, Logan et al 2020, Jung
et al 2021). However, more information is needed to
understand the reasons for this nonlinearity as well
as its applicability across climate zones. Furthermore,
the strength of the measured relationship between
canopy and cooling appears to be scale dependent
(Ziter et al 2019) but the extent of the zone of influ-
ence is not well characterized and will likely vary with
time of day.

The strength of relationship between canopy
cover and temperature is partly a function of urban
green typology and context. Most existing research
uses broad categories to describe the distribution
of urban green including remote sensing vegetation
indices such as the normalized difference vegetation
index (Tucker 1979) or binary urban tree canopy
maps (O’Neil-Dunne et al 2014). Although, the lat-
ter offers more specific information regarding plant
functional type and associated structural character-
istics, it does not account for the spatial context of
each canopy pixel. We argue in this work that both
canopy position with respect to impervious surface
and the extent to which canopy is clustered or dis-
tributed are important modifiers of its cooling poten-
tial. Moreover, subdividing the broad canopy class
can yield a more mechanistic understanding of how
canopy cools and, ultimately, canmore clearly inform
policy regarding effective UHI mitigation.

Closed canopy patches (i.e. large parks, wood-
lands), may exert strong cooling effects compared to
more distributed canopy but this ecosystem service
is not evenly allocated throughout most cities. The
mechanisms driving cooling within and around lar-
ger patches in cities are complex and perhaps inter-
acting. Clustered vegetation may have greater abil-
ity to cool because of higher albedo compared to
distributed vegetation, thus reducing the amount of
shortwave radiation absorbed at the surface (Shiflett
et al 2017). Moreover, clustered vegetation—often
found in parks, undeveloped areas, and open space—
is more likely to be situated atop unpaved surfaces
(hereafter, ‘soft canopy’) which, itself, cools due to
latent heat flux of soil moisture (Gao et al 2020) and
may also enhance vegetation function in terms of
lower stress and higher and more sustained rates of
transpiration (Shashua-Bar et al 2009, Armson et al
2012, Rahman et al 2020). This so-called park cool
island effect (Feyisa et al 2014, Zipper et al 2016)
strongly cools within the patch itself and also can
cool neighboring areas some distance away (Zhou
et al 2019) but the magnitude, distance, and direction
of this effect are highly variable and dependent, for
example, on wind direction and speed (Quanz et al
2018, Santamouris et al 2018).

Distributed canopy includes street and other tree
plantings overhanging impervious surface (hereafter
‘hard canopy’) as well as soft canopy that is not part of
a large patch (e.g. backyards or along linear features).
Hard canopy distributed through the urban core,
primarily along streets or over rooftops is thought
to be beneficial for local land surface cooling from
shade (Gillner et al 2015) as well as improvement of
human thermal comfort (Armson et al 2012). How-
ever, the effect of hard canopy can be difficult to
robustly attribute to configuration since overall can-
opy fractional cover is generally lower in sites propor-
tionally dominated by hard canopy, and because tree
cooling effects may be swamped by building-driven
warming or cooling depending on time of day (Quanz
et al 2018). Distributed canopy may also come in
the form of scattered soft canopy such as backyard
or park plantings, though minimal research has been
dedicated to differentiating the cooling potential of
clumped versus distributed soft canopy (Santamouris
et al 2018). An understanding of the cooling potential
of distributed canopy is important because the avail-
ability of planting spaces in cities is more likely to be
scattered than either contiguous or extensive.

The relationship between urban land cover and
temperature is further complicated by variability
attributable to time of day. Vegetation neither shades
nor transpires at night and it is still an open ques-
tion whether trees or other green infrastructure offer
cooling benefits after dark (Zhou et al 2019). On
one hand, trees may trap longwave radiation (Gillner
et al 2015) and the presence of soil moisture may
increase unpaved surface thermal inertia, both con-
tributing to a relative warming effect (Yao et al 2017).
On the other, areas with high tree cover will have
received less solar radiation at the surface through-
out the day and unpaved surface may exhibit a net
cooling effect, particularly under conditions of high
evaporative demand (Shiflett et al 2017, Voelkel and
Shandas 2017, Logan et al 2020, Ibsen et al 2021).
During the hottest hours of the day, cooling from
vegetation is critical for human thermal comfort and
may be strong in locations with high cover (Ziter
et al 2019, Cao et al 2021, Jung et al 2021). However,
limitations on this ecosystem service due to midday
stomatal downregulation (Gillner et al 2015) as well
as low solar zenith angles leading to limited struc-
tural shading (Yu et al 2020a) merit further explor-
ation. By contrast, evening hours could be associ-
ated with enhanced cooling due to higher solar zenith
angles and reduced stomatal regulation but there
has been minimal data collected in support of these
hypotheses.

Research over the past decade has produced sub-
stantial insight into zonal and fine-scale processes
underlying the UHI. Still, most studies are logistic-
ally hampered by the ability to sample air temper-
ature both densely and across a meaningful extent
such as a large city. In situ sensor networks offer
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unparalleled description of city temperature tem-
poral dynamics but aremore sparsely distributed (but
see Zipper et al 2016, Cao et al 2021). Satellite-based
LST measurements yield a dataset that is spatially
complete but suffers from issues of coarse spatial res-
olution (e.g. MODIS; Alavipanah et al 2015), infre-
quent revisit (e.g. Landsat; Melaas et al 2013), and
fundamental mismatch with ecological processes and
human thermal comfort (Shandas et al 2019). Mobile
air temperature sampling offers a means to charac-
terize large areas within a city either repeatedly (Ziter
et al 2019) or intensively for a single day (Shandas
et al 2019). This sampling method increases spatial
data coverage by an order of magnitude or more
over fixed sensors which is important for assessing
the subtle interactions among urban vegetation, abi-
otic structures, and air temperature. To address gaps
in our understanding of how vegetation modifies air
temperature, we sought to disentangle the effects of
tree canopy cover, configuration, and spatial context.
This study addresses these questions atmultiple times
of day (predawn, afternoon, evening) within a large,
humid subtropical city. Specifically, we ask:

(a) How does urban tree canopy modify summer-
time air temperature and how do those effects
vary by configuration, scale of analysis, and time
of day?

(b) What are the relative contributions to temper-
ature modification by hard canopy, soft canopy,
and impervious surface?

(c) Is it more effective to cool a city using large
forest patches (e.g. parks) or evenly distributed
canopy?

2. Materials andmethods

2.1. Study site
The District of Columbia (Washington DC) has a
population of 705 749 livingwithin an area of 158 km2

(U.S. Census 2019). DC’s climate is considered humid
subtropical (Beck et al 2018) with an August ten year
average high temperature of 31 ◦C and low aver-
age of 22 ◦C. Precipitation totals 98 cm yr−1, evenly
spread across months with August averaging 8.7 cm
(NOAA 2021). Citywide average tree canopy cover is
approximately 38% but unevenly distributed, in part
because 19% of DC is parkland (figure 1(b); TPL
2011). The urban forest is almost entirely broadleaf
deciduous with common species including American
Beech and Red Maple in natural and managed land-
scapes, respectively (Casey Trees 2015). Impervious
surface covers 39% of the city, unevenly as much of
the area outside of downtown is populated by single
family row or separated homes. Building heights in
the downtown core are less variable than many cities
due to a height restriction requiring that buildings be
roughly as tall as their fronting street is wide (∼40m).

2.2. Data description
Mobile and station air temperature data as well as
additional station meteorological data were collected
on 28 August, 2018. August 28 was selected as a use-
ful case study because it was hotter (min = 25 ◦C,
max = 35 ◦C) than DC’s August average temper-
atures thus highlighting the distribution of urban
heat under warming conditions. Additionally, con-
ditions were fair: clear to partly cloudy skies with
low wind and no precipitation during the sampling
period or anytime in the previous week. These con-
ditions are typical of a DC summer day and also
minimize concerns that spatial variability in tem-
perature data was driven by advection or standing
water. The mobile air temperature data and collec-
tion methods are presented fully in Shandas et al
(2019). Briefly, nine cars were outfitted with temper-
ature sensors (type ‘T’ thermocouple with radiation
shieldmounted 25 cmabove car roofs, as illustrated in
Voelkel and Shandas (2017), to minimize heat inter-
ference from car exhaust) coupled with Global Pos-
itioning System (GPS) to record position and velo-
city. Data were collected at 1 s intervals three times
during the day: from 5:00 to 6:00 (‘predawn’), 14:00
to 15:00 (‘afternoon’) and 18:00 to 19:00 (‘evening’).
Collection periods, selected to sample minimum and
maximum heat (‘predawn’, ‘afternoon’) as well as a
transition period with high structural shading (‘even-
ing’), were kept to 1 h to minimize impacts of chan-
ging weather throughout the day. Sunrise and sunset
were at 6:33 and 19:45 respectively. To further min-
imize the effect of mesoscale meteorological variabil-
ity, we subtracted weather station air temperature—
recorded at 5 min intervals—from the mobile tem-
perature readings. The station temperature was com-
puted as the average of four downtown DC weather
stations with high site similarity in terms of low can-
opy cover and high imperviousness (figure 1; Ziter
et al 2019) resulting in mobile anomaly temperature
distributions with a mean below zero. Wind speed,
wind direction, and downwelling shortwave radi-
ation data were recorded at only one downtown sta-
tion. Wind speed and direction are highly localized
at street level and thus we prioritized acquisition of
sensible, citywide data (i.e. no averaging of wind dir-
ection measurements) over minor improvements in
representativeness. Finally, to reduce potential effects
from anthropogenic sources (e.g. vehicle and build-
ing exhaust) the raw temperature data were further
processed to remove measurements occurring when
vehicle speeds were below 15 km h−1.

Geospatial predictor variables were produced
using freely available planimetric and lidar data from
the City of Washington, DC data repository (table 1).
We produced a high-resolution urban tree canopy
map of the city using lidar collected in April 2019
(partial leaf off). The canopy map, evaluated at 327
validation points, yielded a citywide canopy cover
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Figure 1.Washington, DC study area: (a) elevation with car routes overlaid. Temperatures are from afternoon collection ranging
between 31 ◦C and 39 ◦C. Missing data (white patches) are in restricted zones (e.g. US Capitol). (b) Tree canopy cover percent in
100 m pixels. (c) Impervious surface cover percent in 100 m pixels This panel also shows the location of our four reference
weather stations.

Table 1. Data descriptions.

Variable name Short name Description

Vegetation
Tree canopy TCF 1 m tree canopy map derived from 2018 City of DC lidar data
Soft canopy SCF Tree canopy that does not overhang impervious surface
Hard canopy HCF Tree canopy that overhangs impervious surface
Canopy patches PATCH Soft canopy patches large enough to have cores (MSPA)
Distributed canopy DISTRB Soft canopy, connected or unconnected, no core (MSPA)
Pervious-open PV-O Area that is neither soft canopy nor impervious surface

Built environment
Impervious surface IMP Impervious surface from City of DC planimetric data
Building height (sum) BH Building heights summed in area (DC building footprints and lidar data)
Building height (IMP norm) BH-norm Building heights as above but normalized by IMP to decorrelate
Skyview factor SVF Skyview factor calculated using DC lidar data in SAGA GIS

Physiographic
Elevation ELEV City of DC lidar Digital Terrain Model (2018)
Quantile elevation Q-ELEV Quantile (local) elevation within 300 m radius
Distance from water DIST-W Euclidean distance from Potomac and Anacostia rivers

Car data
Spatial coordinates LON, LAT Temperature measurement locations geographic coordinates
Mobile temperature MBL-T Temperature measurements (celsius)
Miles per hour MPH Car travel speed

Station data
Station temperature ST-T Temperature (celsius) averaged across four downtown DC stations
Station wind speed ST-WS Wind speed at one representative station
Station wind direction ST-WD Wind direction at one representative station
Station solar radiation ST-SR Solar radiation at one representative station

estimate of 38.2% compared to 38.2% estimated
directly from aerial images (0% quantity disagree-
ment indicating lack of model bias). When account-
ing for the specific location of canopy at 1 m resol-
ution, the overall accuracy of the canopy map was
91%. Impervious surface cover was taken directly
from the city planimetric layer as were building foot-
prints. Skyview factor was calculated as the fraction

of visible sky from each temperature measurement
point based on the city’s digital surface model. Hard
canopy was determined by its overlap with imper-
vious surfaces including rooftops, roads, and other
paved surfaces. Patches of soft canopy were distin-
guished from distributed canopy using morpholo-
gical spatial pattern analysis (MSPA; Vogt et al 2007)
using an edge parameter of 15 m based on observed
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changes in vegetation composition and structure
(Baker, unpublished data). MSPA applies the edge
parameter to distinguish interiors (i.e. ‘cores’) from
surrounding edges, as well as five other morphomet-
ric primitives (i.e. branches, bridges, loops, and islets)
that reflect how canopy is or is not connected to cores.
‘Patches’ always included core areas, their surround-
ing edges, as well as any perforations, whereas ‘dis-
tributed’ canopy included all remaining non-patch
MSPA classes too small to contain core. To under-
stand the scales of interaction between biophysical
variables and anomaly temperature, all variables were
summarized at each temperature point within buffers
ranging from 10 to 800 m (Ziter et al 2019).

2.3. Analysis using generalized additive models
(GAMs)
The relationship between some biophysical
variables—most notably tree canopy cover—and air
or LST can be nonlinear in nature (Ziter et al 2019,
Logan et al 2020). GAMs are a nonparametric tech-
nique that can fit smooth curves between predictor
and response variables using penalized regression
splines (Pedersen et al 2019). In this study, we used
the gam function in the R package ‘mgcv’ (version
1.8.31) and fit the models using fast restricted max-
imum likelihood.

We employed three models to address our
research questions regarding the importance of the
quantity and spatial configuration of tree canopy and
other unpaved surfaces. Model #1 (M1) establishes
continuity with previous work and compares the
relative effects of all tree canopy cover and impervi-
ous surface on temperature (Ziter et al 2019). Model
#2 (M2) is formulated with the purpose of disen-
tangling the cooling effects of soft canopy, hard can-
opy, and impervious surface. Model #3 (M3) further
subdivides soft canopy in order to establish the relat-
ive cooling effects of large canopy patches (e.g. parks)
versus distributed canopy (e.g. backyard planting).
The three models are formulated as:

(M1) Tanom ∼ s(TCF)+ s(IMP)+ ti(TCF, IMP)

+ s(ELEV)+ s(ST−WS, by= ST−WD)

+ s(LON, LAT)

(M2) Tanom ∼ s(SCF)+ s(HCF)+ s(IMP)

+ ti(SCF, IMP)+ s(ELEV)

+ s(ST−WS, by= ST−WD)

+ s(LON, LAT)

(M3) Tanom ∼ s(PATCH)+ s(DISTRB)+ s(HCF)

+ s(IMP)+ ti(PATCH, IMP)+ s(ELEV)

+ s(ST−WS,by= ST−WD)

+ s(LON, LAT).

Variable descriptions are available in table 1. The s()
notation indicates that the response is assumed to
be a smoothed function of the predictor, facilitating
the method’s accommodation of nonlinearity. The
ti() houses an interaction term that additionally has
main effects included in the model. Canopy variables
were included in themodel based on the core research
questions and were thus not subject to scrutiny in
terms of their model utility as assessed using Akaike’s
information criterion (AIC). Interaction terms and
non-canopy variables, however, were included on the
basis of lowering AIC compared to alternative mod-
els. Thus, each model accounts for any significant
interactions between impervious surface and a can-
opy variable as well as elevation, wind speed, and
wind direction. Other variables that have been sig-
nificant in previous studies including distance from
water (Ziter et al 2019) and those related to build-
ing heights or urban canyon configurations (Voelkel
and Shandas 2017) did not merit inclusion in our
models. Spatial coordinates were included to account
for residual model spatial structure in the Tanom that
was not explained by our biophysical predictor vari-
ables. Spatial autocorrelation was reduced through
systematic subsampling of the data, which consisted
of fitting a model using 5% iteratively 20 times res-
ulting in an approximate spacing of 100 m between
nearest measurement points. Nevertheless, given that
spatial autocorrelation is likely not entirely eliminated
and GAMs can overestimate the nonlinearity of func-
tional relationships in its presence, we restricted the
maximumdegrees of freedom to three basis functions
per smooth term and nine for interactions (Wood
2017). The spatial termwas allowed 27 basis functions
to flexibly fit to location-specific temperature anom-
alies not accounted for through functional relation-
ships.We reportmean and variability across 20model
fits as well as average estimated degrees of freedom
(edf).

3. Results

3.1. Spatial scale of analysis
Prior to producing parameter estimates for the GAM
smooth and interaction terms by model, we estab-
lished a reasonable spatial unit for these analyses
using M2 only (under the assumption that the spa-
tial scale of cooling by canopy would be consistent
across models). We iterated through the model at
buffer radii of 10, 30, 90, 200, 300, 500, and 800 m
at each time of day (predawn, afternoon, evening).
Using fraction of variance explained (R2) as our met-
ric for model fit, we generally found that the mod-
els explained the highest proportion of variance in
the predawn, followed by evening, and then after-
noon (figure 2(a)). Maximum R-squared values were
found at 500, 90, and 200 m for predawn, afternoon,
and evening periods respectively highlighting local
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Figure 2. (a) The relationship between buffer size and model fit for predawn (5:00–6:00), afternoon (14:00–15:00), and evening
(18:00–19:00) time periods. Error bars here and in all other figures are the 95% CI of the mean based on 20 iterations of
systematically subsampled locations. (b) Example 300 and 800 m buffers centered on a relatively warm set of temperature
measurements and overlaid on a lidar canopy height model.

Figure 3.Model 1 results at 200 m scale by time of day where blue is predawn, black is afternoon, and green is evening. Data
distributions accompany below. Estimated degrees of freedom (edf) average of 20 iterations. (a) Tree canopy fraction (TCF)
cooling; (b) warming from impervious surface fraction (IMP); (c) temperature change driven by elevation.

scale effects such as shading during the afternoon
and greater, near-zonal scale stability in the predawn
hour. By 800 m distant from the measured temperat-
ure, it is likely that the biophysical variable summar-
ies are combining information frommultiple, distinct
land uses in a manner that does not strongly relate to
the measured temperature at that point (e.g. natural
forested area included in 800 m buffer but not likely
influencing this area of relatively warm temperatures;
figure 2(b)). For consistency in presenting this work,
all further analyses were conducted at the 200 m spa-
tial scale as the differences in R2 values between 90
and 200m (afternoon) and 200 and 500m (predawn)
were quite small.

3.2. Tree canopy and impervious surface (M1)
In the hottest part of the day (afternoon), tree canopy
exerted a linear cooling effect of 1.8 ◦C (figure 3(a);
between 5% and 90% cover). At the same time, the

warming effect from impervious surface was 1.3 ◦C
(across the same range of cover) but convex nonlinear
in shape (figure 3(b)). More rapid warming was evid-
enced at low cover fractions withminimal warming at
high fractions, perhaps highlighting the cooling effect
from building shade in the downtown area. The inter-
action between tree canopy and impervious surface
was an important driver of cooling of up to 1.6 ◦C but
only at high tree canopy fraction (TCF) (>0.6) and
low impervious surface fraction (IMP) (<0.2) (figure
S1 (available online at stacks.iop.org/ERL/16/084028/
mmedia)). Evening cooling from TCF changed little
from afternoon (1.7 ◦C) but heating from impervi-
ous surface (1.4 ◦C) became more linear as building
shading and longwave trapping began to counter-
balance. In predawn, TCF exhibited small cooling
effect (0.5 ◦C) and impervious surface warming
(1.6 ◦C) once again became nonlinear but concave in
shape highlighting the nighttime effect of longwave
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Figure 4.Model 2 results at 200 m scale by time of day where blue is predawn, black is afternoon, and green is evening. Data
distributions accompany below. Effects from: (a) soft canopy fraction (SCF); (b) hard canopy fraction (HCF); (c) impervious
surface fraction (IMP).

trapping in the most built-up areas. Elevation had
minimal effect on temperature in the afternoon, but
lower elevation areas were approximately 1 ◦C cooler
than their surroundings in the evening and predawn
due to cold air pooling in local depressions and val-
leys (figure 3(c)). The elevation effect was consistent
across models and thus will not be reported further.

3.3. Green space partitioning: soft canopy, hard
canopy, and impervious surface (M2)
Soft canopy fraction (SCF) cools at all times of day
but the magnitude of the effect as well as the shape
of best fit changes. In the afternoon, SCF exerts min-
imal cooling until ∼40% cover after which the effect
strengthens with total cooling of 2.0 ◦C (figure 4(a)).
In the evening, SCF cools very effectively (2.9 ◦C) and
linearly across the full range of values. Contrary to
some previous reports, SCF also cooled modestly in
the predawn hours (0.7 ◦C) albeit with high uncer-
tainty at higher cover fractions likely due to unac-
counted for spatial structure and sparse data. Hard
canopy fraction (HCF) had a smaller overall influence
on temperature, though cover never exceeded 20%
given that much HCF occurred in tree wells along
streets. Nevertheless, in the afternoon, HCF cooled
0.2 ◦Cbetween 0%and 25%cover compared to 0.0 ◦C
SCF cooling across the same cover range (figure 4(b)).
HCF in the evening and predawn hours was associ-
ated with a small amount of warming. The interac-
tion between SCF and IMP was similar though less
prominent in the afternoon in M2 compared to M1,
at maximum accounting for 1.0 ◦C of cooling at the
highest SCF cover and lowest impervious fraction
(figure S1). Impervious surface cover (main effect)
and elevation played very similar roles at each time
of day in this model as in M1.

3.4. Soft canopy partitioning: patches versus
distributed
We found that large patches with core (PATCH)
and distributed soft canopy (DISTRB) each produced

significant cooling effects, but their relative effica-
cies depended on time of day. In the predawn hours,
incremental additions of DISTRB offered the most
cooling per unit canopy cover at low cover: ∼0.8 ◦C
from 0% to 25% cover compared to only ∼0.3 ◦C
for PATCH, but patches continued cooling linearly
from 25% to 50% cover (figure 5(b)). Areas with the
lowest DISTRB cover have even less canopy cover
than the downtown reference stations (19.5% cover
within 200 m) potentially explaining the ∼0.7 ◦C
positive anomaly at the predawn intercept. In the
afternoon, DISTRB did not contribute to cooling
(figure 5(c)). Instead, PATCH provided the bulk of
the cooling effect to 50% cover (1.0 ◦C) with the
PATCH-IMP interactionmoderately important at the
highest cover fractions and lowest impervious cover
(0.5 ◦C; figure S1). In the evening, both configur-
ations cooled strongly and roughly linearly to 50%
cover (PATCH = 1.8 ◦C, DISTRB = 1.4 ◦C). To
address the spatial distribution of the cooling by can-
opy configuration we mapped PATCH and DISTRB
showing that there are many more measurement loc-
ations with >10% DISTRB cover than there are for
PATCH cover (figures 5(a) and 6). This suggests that
DISTRB may be offering cooling services across a
broader area to a much greater percentage of the city
population.

4. Discussion

We found that, on our single measurement day,
between 5% and 95% cover, overall tree canopy
(TCF) related to approximately 1.8 ◦C of afternoon
cooling, which is more than the ∼1 ◦C effect repor-
ted by Ziter et al (2019) under somewhat cooler cli-
matic conditions and in a smaller city. Our TCF cool-
ing effect was apparently linear at all times of day, in
contrast to other studies showing a threshold effect
whereby 25%–50% canopy cover was required for
substantial cooling (Ziter et al 2019, Yu et al 2020b,
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Figure 5. Disentangling the effect of soft canopy fraction on anomaly temperature into large patches (PATCH) with core and
distributed soft canopy (DISTRB) with no core. Note that x-axis only goes to 0.5 fractional cover to account for common
conditions in Washington, DC.

Figure 6. Distribution of (a) PATCH and (b) DISTRB throughout Washington, DC based on 200 m buffers from∼25 000
measurement locations (5% of measurement locations displayed for clarity). Maps show where cover of each soft canopy type is
>10%. Base layers are tree canopy (green), impervious surface (gray), and water (light blue). All other cover types (e.g. grass, bare
soil) shown in white.
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Jung et al 2021). The linearity observed in our study
appeared to arise from combinations of HCF cooling
at low cover fractions and SCF at higher cover. We
suggest that findings using aggregate TCF alone may
be somewhat confounded by including trees with dif-
ferent (HCF, SCF) growth contexts.

Partitioning overall TCF into hard and soft can-
opy components highlighted this importance of
planting context. Soft canopy from 5% to 95% con-
tributed slightly more to afternoon cooling compared
to TCF (2.0 ◦C compared to 1.8 ◦C). Experimental
work has shown that cooling is maximized in the
case where tree canopy shaded grass compared to tree
shade alone or grass alone (Shashua-Bar et al 2009)
highlighting a synergistic, or at least additive, effect
of multilayered vegetation. Similarly, Rahman et al
(2020), in a review of tree traits for cooling urban
areas, noted generally higher transpiration rates for
trees planted over grass compared to those in ‘paved
cut-out pits’. While hard canopy has been shown
to cool surfaces and improve urban thermal com-
fort, its effect on air temperature has been more lim-
ited (Armson et al 2012, Gillner et al 2015). In our
study area given the lack of a buildings term in our
model, it is also possible that some afternoon cooling
associated with HCF is actually from building shade
(Voelkel and Shandas 2017, Quanz et al 2018).

We found that the apparent nonlinear cooling of
SCF may result from the combination of different
soft canopy configurations. In the afternoon, forest
patches cooled linearly to 50% cover and beyond but
distributed canopy had virtually no effect on temper-
ature (figure 5(c)). Given that distributed canopy was
much more prevalent within 200 m of our sampling
locations (figures 5(a) and 6), its ‘no effect’ signal
dominated the low SCF cover signal as well. Our find-
ing aligns with observations that the cooling effect of
smaller green spaces is less consistent than that of lar-
ger parks or forests (Santamouris et al 2018). How-
ever, existing research has not explored how time of
day factors into such apparent variability (discussed
below). In Washington, DC, there were no obser-
vations of distributed canopy above 50% cover, so
SCF cooling was driven entirely by those few loca-
tions within 200 m of large patches (figure 6). Large
forest patches, therefore, have a unique capacity to
sustain a cooling effect in the heat of the afternoon
when scattered soft canopy cannot. This is consistent
with recent findings emphasizing the importance of
the larger size patches, higher leaf area (multilayered
vegetation), and higher albedo for stable cooling in
high heat (Hardin and Jensen 2007, Huang et al 2008,
Kong et al 2014, Santamouris et al 2018, Shiflett et al
2017, Yu et al 2020b).

Zhou et al (2019) report in a review that
‘it remains controversial’ whether vegetation drives
cooling during summer nights. In our study, we
found soft canopy was associated with a 0.8 ◦C cool-
ing effect and hard canopywas associated with a small

amount of warming (0.4 ◦C to 25% cover) even in
predawn hours. Thus, cooling in soft canopy areas at
night is partially a function of perviousness, but may
also leverage drivers perhaps relating to reduced day-
time shortwave absorption via higher albedo or shad-
ing (Shiflett et al 2017). Our findings here were con-
sistent with those of Logan et al (2020) who found
cooling of up to 6 ◦C at night (using LST). Interest-
ingly, we show that predawn cooling started at lower
levels of canopy cover (figure 4(a)) and thus seemed
to be driven more by distributed soft canopy than by
larger patches (figure 5(b)). Thus, the apparent effect
of distributed soft canopy supports the interpreta-
tion that higher cover or patch-dominated areas had
either avoided heating in the afternoon or had already
cooled substantially through the previous evening
and night. Finally, in agreement with Acero et al
(2013), it was important in our study area to account
for local relief, particularly at night. While cold air
drainage has limited bearing on vegetation function,
it played a large role in the overall spatial distribution
of the DC’s UHI and should be considered in heat
mitigation planning.

Evening (18:00–19:00)measurements highlighted
strong cooling by soft canopy as well as perhaps a
transition in the warming and cooling mechanisms
within the urban landscape. SCF, across its range
of values, cooled linearly by 3.1 ◦C in the evening.
The linearity can be explained as efficient cooling by
both patches and distributed canopy at this time of
day (figure 5(d)). In our study, a 15 m tree would
cast a 14 m shadow in the afternoon but shadow-
ing would increase fourfold to 56 m in the evening.
This is noteworthy because distributed trees, by defin-
ition, providemore urban shade per unit canopy than
forest patches, thus highlighting their contribution
to cooling during times of lower sun angle (Yu et al
2020a). Furthermore, radiant flux density (W m−2)
on the surface as a function of solar zenith angle was
2.8× higher in the afternoon than later in the evening.
Higher rates of evening transpiration due to midday
stomatal downregulation (Gillner et al 2015), suggests
the potential, in vegetated zones, for the evening sur-
face energy balance to be increasingly dominated by
latent heat flux. Higher afternoon heat loads may also
contribute to effective shutdown of DISTRB cool-
ing in hot areas, whereas cooling in PATCH canopy,
buffered from impervious heat loads, is maintained.
While canopy cooling was substantial in the evening
measurement window, effects of three-dimensional
structures captured by building height and skyview
variables, shown elsewhere to relate to diurnal pat-
terns of the UHI (Voelkel and Shandas 2017, Shandas
et al 2019), were not fully examined in this study due
to limited variation from building height restrictions
in Washington, DC.

Although our study robustly demonstrates the
importance of soft canopy for cooling and shows
the utility of mobile temperature collection for UHI
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inquiry, it is not without limitation. Data collec-
tion via vehicular traverse was an effective way to
sample temperature intensively throughout the city
for snapshots of a representative, summer day. How-
ever, given the coordination of nine cars driven by
volunteers (Shandas et al 2019), it is infeasible to col-
lect repeated, coincident measurements. In sampling
a substantially smaller area, Ziter et al (2019) did
bike each traverse a minimum of three times in
order to characterize the variability due to meso-
scale weather conditions. Future research might also
examine whether scales of interaction between the
built environment and temperature remain consist-
ent in different bioclimatic regions. The present study
found that ∼200 m buffers adequately summarized
the area of influence on temperature readings, but it
is possible for that to vary under different advective
conditions (Alavipanah et al 2015) or as the thermo-
meter moves off of roadways. Regarding our under-
standing of the drivers of cooling: high predictor
variable correlation, concurvity, and residual spatial
autocorrelation add uncertainty to our results and
commonly goes un- or under-reported in other stud-
ies. For instance, inWashington, DC the inverse Pear-
son’s correlation between TCF and IMP and SCF and
IMP were r = −0.73 and −0.81 respectively. Such
correlations would likely be similar in many cities
developed from a forested matrix within a temperate
or humid subtropical biome. It is not possible to fully
remove variable intercorrelation in an observational
setup (Dormann et al 2013), thus, we recommend
that future effort—albeit at necessarily reduced spa-
tial extents—is dedicated to controlled experimental
setups such as that of Shashua-Bar et al (2009).

Our findings offer insight for developing tree
planting policies in urban areas. The results under-
score the importance of considering locations of
greatest need alongside efficient mitigation strategies.
Previous studies have found that cooling is most
dramatic in areas where there is already plenti-
ful urban green (Alavipanah et al 2015, Ziter et al
2019, Jung et al 2021). Our model results derived
from soft canopy in the afternoon align with these
findings. However, the fact that substantial distrib-
uted soft canopy can support cooling at other times
of day is relevant new information from a mitig-
ation standpoint. For instance, it lends empirical
support to tree planting programs that distribute
trees for residents to plant in their yards, a prag-
matic way to locate available planting sites (e.g.
Washington, DC Department of Energy and Envir-
onment RiverSmart program; https://doee.dcgov/
riversmartrebates). Still, this strategy is only viable
where single-family homes are common, leaving
higher intensity land uses and, sometimes, vulnerable
populations underserved (figure 6). Although Jung
et al (2021) show temperature benefits of planting
in higher intensity land-uses, further research on this

topic is required, as incremental removal of imper-
vious surfaces may be the most efficacious cooling
strategy for these areas.

5. Conclusion

By spatially subdividing urban tree canopy into hard
versus soft contexts, distinguishing patch versus dis-
tributed configurations, and assessing their effects
during predawn, afternoon, and evening hours, we
found that the capacity for tree canopy to cool the
surrounding environment varies substantially based
on context, configuration, and time of day. Con-
trary to some recent studies (e.g. Alavipanah et al
2015, Ziter et al 2019), these results suggest that
the all-inclusive tree canopy class (TCF) cooled lin-
early at all times of day, yet soft canopy (SCF)
cooled nonlinearly in the afternoon, possibly indic-
ating that the TCF class in previous studies was
largely SCF. It is likely that observed linearity in
TCF cooling in our study resulted from a combin-
ation of hard canopy (HCF) cooling at low cover
and high cover cooling from SCF. Time of day
played an important role in determining the rel-
ative cooling or warming effects from SCF, HCF,
and impervious surface. In the afternoon, only HCF
cooled at low cover fractions. Unlike earlier work,
removal of impervious surface from highly paved
areas did not result in significant cooling. This could
be because the locations with the highest impervi-
ous cover also had the largest buildings, resulting
in an offsetting shading effect. In the evening, SCF
cooled strongly across all cover fractions while imper-
vious surface cover warmed only slightly, but linearly.
This reflects transitions in the mechanisms for can-
opy cooling and impervious surfacewarming respect-
ively: at this time of day canopy can cool through
both shading and transpiration while areas with high
building density are shifting from shading to heat
trapping.

We found that nonlinearity in afternoon SCF
cooling was consistent with the combined effect of
negligible cooling from distributed canopy and sus-
tained cooling from patches. This highlights the
unique capacity for patches to maintain function
under high heat load due, perhaps, to better access
to water. Importantly though, distributed canopy
cooled strongly in the evening hour likely, in part,
due to widespread shading, and also offered a mod-
est cooling benefit in the predawn hours. As distrib-
uted canopy is more broadly accessible to the resid-
ents of most cities, distinguishing its effects provides
useful information for UHI mitigation planning. As
high resolution urban spatial datasets become more
available, it will be important to test how canopy
context and configuration impact cooling in cities
across a variety of climate zones and development
stages.
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