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TORSION AND CURVATURE IN CONTINUOUSLY
DEFECTIVE SOLID CRYSTALS

MAREK Z. ELŻANOWSKI ∗

ABSTRACT. I show how one can utilize the concept of a canonical connection on a homo-
geneous space to describe defectiveness of a continuous elastic crystal solid.

1. Introduction

The kinematic theory of continuously defective elastic crystals proposed by Davini
(1986) has been developed over last 25 years by Davini and Parry, and their collaborators
(see, for example, Parry and Šilhavý 1999; Parry and Sigrist 2012; Elżanowski and Parry
2020). The key assumption of this approach is that the state of a defective continuous
crystal body is defined by three linearly independent smooth vector fields which are to
represent an underlaying atomic structure. The defectiveness of such a state is described
by the dislocation density tensor (see Eq. 13) measuring the first order interactions of the
defining vector fields.

When the dislocation density tensor is position independent the underlying space can
be identified with a Lie group acting on itself (Parry 2003). This allows one to use the
techniques of the theory of Lie group to analyze in a systematic way the properties of the
uniformly defective crystal states, in particular, its classification and symmetries. In contrast,
when the defining vector fields are such that the corresponding dislocation density tensor
is point dependent such an identification is no longer possible. Instead, one can show that
the body manifold can be equipped with the properly defined homogeneous space structure
(Elżanowski and Preston 2013; Elżanowski and Parry 2020). This in turn allows one to
utilize, subject to some additional assumptions, the concept of a canonical connection on a
homogeneous space (Wang 1958), the torsion and curvature of which can serve as additional
characteristics of the defectiveness of a lattice.

In this paper I discuss the non-uniformly defective elastic crystal states. Continuing the
work presented by Elżanowski and Parry (2019) (see also Elżanowski and Parry 2020) where
we introduced the canonical connection as a tool in describing non-uniformly defective
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A3-2 P. M. Z. ELŻANOWSKI

crystals, I show that for a certain subclass of states, called the reductive states, one can
relate the torsion of a lattice canonical connection to the dislocation density tensor (and the
Burgers vector: Parry 2003) while its curvature describes the second order interactions of
the defining vector fields being possibly indicative of the existence of the disclinations (see,
e.g., Bowick and Giomi 2009; Yavari and Goriely 2013). I conclude the presentation by
showing a couple of examples of different non-uniformly defective structures.

2. Continuous lattice and its Lie algebra

Following Davini’s approach (Davini 1986), we assume that the kinematic state of a
continuous crystal solid body is defined by a continuous lattice l, that is, three linearly
independent smooth vector fields l1, l2, l3 on the body manifold M of the same dimension. As
our considerations are local, the reader may view the manifold M as an open neighborhood in
R3. We postulate that the vector fields li, i = 1,2,3, generate a finite dimensional complete1

Lie subalgebra L of the algebra of all smooth vector fields on M. We call such an algebra L
the lattice algebra of the continuous lattice l2.

Given the (Lie) algebra L, there exists an abstract Lie group G, viewed as a subgroup of
the group of all diffeomorphism of M, acting smoothly on the left on M, whose Lie algebra
g is isomorphic to the algebra L (Palais 1957; Kobayashi 1995). That is, there exists a
smooth mapping

Ψ : G×M → M (1)
such that for every g,g ∈ G

Ψg = Ψ(g, ·) : M → M (2)
is a diffeomorphism and

Ψ(gg, p) = Ψ(g,Ψ(g, p)) (3)
at any p ∈ M, where gg denote a group multiplication in G. We also postulate that the action
Ψ is transitive on M. This implies that the (right) Lie algebra of the group G is isomorphic
to the lattice algebra L via the tangent map

dΨp : T G → T M (4)

where Ψp : G → M is the orbit map at p ∈ M induced by the action Ψ.
Selecting a point, say, p0 ∈ M, the isotropy group Gp0 of the action Ψ at p0

Gp0 = {g ∈ G : Ψ(g, p0) = p0} (5)

is a closed subgroup of the group G. Although, in general, the isotropy group is point p0
dependent, the isotropy groups at different points are conjugate due to the transitivity of the
action Ψ.

Selecting specific isotropy group Gp0 , one can show that the body manifold M becomes
a homogeneous space as it can be identified diffeomorphically with the left quotient G\Gp0 .
The identification is provided by the map ψ : G\Gp0 → M such that

ψ(gGp0) = Ψp0(g) = Ψ(g, p0) (6)

1These are purely technical assumptions which, as far as I know, have no physical significance.
2The presentation is mathematically correct in any finite dimension. However, for physical reasons we assume

that body manifold M is either of dimension three or two.
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TORSION AND CURVATURE IN CONTINUOUSLY DEFECTIVE SOLID CRYSTALS A3-3

where gGp0 denotes a coset of the isotropy group Gp0 generated by an element g ∈ G.
Moreover, the group G acts on the quotient G\Gp0 on the left mimicking the corresponding
left action of Ψ on M. That is,

ψ(h(gGp0)) = Ψp0(hg) = Ψ(h(Ψ(g, p0)) = Ψ(h,ψ(gGp0)). (7)

This, together with the fact that the isotropy group acts freely of G on the right preserving
individual fiber, implies that one may view the group G as a total space of a principal
fiber bundle π : G → M with the structure group Gp0 where π = Ψp0 . In turn, the bundle
π : G → M induces on L(M), the bundle of linear frames on M, an isomorphic structure
by representing the isotropy group as a subgroup of the general linear group GL(3,R).
Indeed, given h ∈ Gp0 , the tangent mapping dp0Ψh is an automorphism of the tangent space
Tp0M. Selecting a frame in Tp0M, that is a linear isomorphism u0 : R3 → Tp0M assigning
coordinates to a vector, one obtains a representation of the isotropy group Gp0 in the general
linear group. It is a straightforward exercise to show that the mapping λ : Gp0 → GL(3,R)

λ (h) = u−1
0 ◦dp0Ψh ◦u0, (8)

called as a linear isotropy representation of Gp0 , is a group homomorphism (see, e.g.,
Kobayashi and Nomizu 1996). Consequently, the collection of mappings

L(M,G0) = {dp0Ψg ◦u0 : R3 → M : g ∈ G} (9)

is a reduction of the bundle of linear frames of M to the linear isotropy group G0 = λ (Gp0).
It is easy to show that the principle bundles π : G → M and L(M,G0) are isomorphic.

3. Lattice connection

A continuous lattice l= {l1, l2, l3}, defining a state of a crystal body M, not only induces
a homogeneous space structure on M but it also introduces a long-distance parallelism
on the body manifold M. Such a parallelizm implies the existence of a linear connection
characterized by a vanishing curvature. We shall call this connection a lattice connection.
Its Christoffel’s coefficients Γi

jk, i, j,k = 1,2,3, take the form (see, e.g., Epstein 2010)

Γ
i
jk =−(la

j )
−1 ∂ li

a

∂xk
(10)

where the matrix li
a (viewed as mappings from R3 to R3) represents the vector fields la,

a = 1,2,3 in the natural basis of the coordinate system x1,x2,x3 and where the summation
convention over the repeated indices is enforced. Its torsion tensor

T = T i
jkli ⊗η

j ∧η
k, (11)

where T i
jk = Γi

[ jk] and where η l , l = 1,2,3 denote the co-frame dual to the frame l. In terms
of the Lie brackets of the lattice algebra L the components of the torsion tensor T are given
by

[l j, lk] = T i
jkli, i, j,k = 1,2,3. (12)

As it was mentioned in the introduction, we postulate that the defectiveness of a continuous
lattice l is characterized by the dislocation density tensor (ddt) Si j (Davini 1986; Parry 2003)
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A3-4 P. M. Z. ELŻANOWSKI

defined by the equations

n(p)Si j(p) = ∇∧η
i(p) ·η j(p), i, j = 1,2,3, p ∈ M, (13)

where n(p) is the lattice volume element. It can be shown (Elżanowski and Parry 2004) that
the dislocation density tensor and the torsion T are related by

T i
jk = εr jkSir (14)

where εr jk is the alternating tensor.
The following three cases are particularly relevant both mathematically and physically.

First, if the torsion of the lattice connection Γi
jk vanishes the connection is trivial and

the lattice vector fields defining the corresponding parallelism commute. The lattice l is
holonomic and the lattice Lie algebra L is abelian. Physically, the kinematic state the lattice
l represents is homogenoeus, that is, no defects are present and the dislocation density tensor
Si j vanishes identically. The group G the algebra L induces can be viewed, without the loss
of generality, as a group of linear translations on R3. In fact, G can be identify with R3

acting on itself by translations. In other words, the kinematic state the lattice l defines is
invariant under translations.

Next, assume that the torsion of the lattice connection does not vanish but its value is
base point independent. This implies that the components of the torsion tensor T i

jk are
identical to the Lie algebra constants of the lattice algebra L, i.e., the dislocation density
tensor is constant. We say that such a kinematic state is uniformly defective. As before, the
Lie group G is diffeomorphic to R3 but its action is non-trivial.

Finally, if the torsion of the lattice connection is a non-trivial function of position, the
lattice algebra L is of a finite dimension m > dimM, and the kinematic state l is said to be
non-uniformly defective. The lattice algebra L induces an m-parameter connected Lie group
G acting on M in such a way that the isotropy group Gp0 is non-trivial and of dimension
m−dimM. As the isotropy group is a Lie subgroup of the Lie group G its (left) Lie algebra
g0 is a Lie subalgebra of the (left) Lie algebra g. Viewing g as the algebra of all left-invariant
vector fields on G, it can always be presented as a simple sum of the isotropy algebra g0
and a vector space complement V ⊊ g, that is,

g= g0 ⊕V, (15)

where the vector space V is not uniquely defined. Note that, in general, V is not a subalgebra
of g. In what follows we shall consider non-uniformly defective kinematic states.

4. Lattice canonical connection

Consider a lattice l= {l1, l2, l3} representing a non-uniformly defective kinematic state of
the solid M. In other words, the frame li, i = 1,2,3, is non-holonomic and the corresponding
lattice algebra L is of dimension bigger than the dimension of M. This implies that the
isotropy group Gp0 of the action of the Lie group G on M is non-trivial and its algebra g can
be represented as g= g0 ⊕V for some 3-dimensional vector space V ⊂ g of left-invariant
vector fields on G. As the choice of the subspace V is not unique, we shall assume that g
admits a reductive decomposition(Kobayashi and Nomizu 1996), that is, a decomposition
g0 ⊕V in which the vector complement V is such that

[g0,V]⊆ V. (16)
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TORSION AND CURVATURE IN CONTINUOUSLY DEFECTIVE SOLID CRYSTALS A3-5

We should point out here that although given a subalgebra g0 ⊊ g there is always a vector
space V ⊆ g such that g= g0 ⊕V, not every such decomposition is reductive. In fact, given
g there may not exists a complement V making the decomposition g = g0 ⊕V reductive
(Poor 1981).

The vector space V forms a horizontal distribution on the principle bundle π : G → M
in the sense that it depends smoothly on G and the projection dπ : T G → T M is surjective
with the subalgebra g0 as its kernel. Moreover, V defines a horizontal distribution of a left
invariant principle bundle connection on π : G → M. Indeed, the fact that the decomposition
g= g0 ⊕V is reductive implies that V is also invariant under the right action of the isotropy
group (Wang 1958; Elżanowski and Parry 2020). Such a principle bundle connection is
called a canonical connection of the homogeneous space M ∼= G\Gp0 .

As the bundles π : G→M and L(M,G0)⊂ L(M) are isomorphic, the principal connection
associated with the distribution V induces a linear connection on M (Wang 1958; Kobayashi
and Nomizu 1996). To this end, let Π be an equivariant linear mapping from the Lie algebra
g to the Lie algebra gl(3,R) of the general linear group GL(3,R) such that

Π(X) =

{︄
dλ (X), X ∈ g0,

0, X ∈ V,
(17)

where dλ denotes the tangent map of the linear isotropy representation λ . The corresponding
linear canonical connection on the reduced frame bundle L(M,G0) is given by a gl0(3,R)-
valued one-form ω (a connection form) such that

ω(˜︁X) = Π(X), X ∈ g, (18)

where ˜︁X is the natural lift3 of a vector field X to the bundle L(M,G0) and gl0(n,R) denotes
the Lie algebra of the linear isotropy group G0 ⊆ Gl(n,R) (Kobayashi and Nomizu 1996).
Note that thus defined linear canonical connection ω is left-invariant under the induced
action of G on L(M,G0) and that its horizontal distribution is simply the image of the vector
space V under the said principle bundle isomorphism4. Consequently, identifying V with
R3 via the projection π and the frame u0, one is able to obtain its torsion and curvature
(Kobayashi and Nomizu 1996).

Theorem 1. Let l be continuous lattice defined on a body manifold M. Select a base point
p0 ∈ M and a frame u0 : R3 → Tx0M. Assume also that the homogenous space G\Gp0
associated with the lattice l is reductive, that is, that the Lie algebra g= g0 ⊕V for some
vector complement V such that [g0,V]⊆ V. Then, relative to the choice of the frame u0, the
torsion and curvature of the corresponding linear canonical connection are given at p0 by

(a) T (X ,Y ) =−[X ,Y ]V,
(b) R(X ,Y )Z =−[[X ,Y ]g0 ,Z]

for any X ,Y,Z ∈ V where [·, ·]V and [·, ·]g0 denote respectively the V and g0 components of
the Lie algebra bracket in g. In addition, both tensors are covariantly constant.

3A vector field X on the group G generates a one-parameter group of left translations which in turn induces a
one-parameter group of transformation of L(M,G0) the tangent vector of which is defined as a natural lift of X
(Kobayashi and Nomizu 1996).

4For a more detailed derivation (see, for example, Kobayashi and Nomizu 1996; Elżanowski and Parry 2020).
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A3-6 P. M. Z. ELŻANOWSKI

Given a continuous lattice l, let w1,w2,w3 denote right-invariant vector fields on G such
that

dgΛx0(wi) = li, i = 1,2,3. (19)

As the mapping dgΛp0 is of rank 3 and as the vector fields l1, l2, l3 are linearly independent,
the right-invariant vector fields w1,w2,w3 are also linearly independent. Let v1,v2,v3 be the
equivalent set of left-invariant vector fields on G, that is, the set of elements of the algebra g
such that

vi = di(wi), i = 1,2,3, (20)

where i is the inverse map on the group G, i.e., i(g) = g−1, g ∈ G. It can be shown (Olver
1995) that

[vi,v j] =−[wi,w j], [vi,w j] = 0, i, j = 1,2,3. (21)

Let a vector space Vl = span{v1,v2,v3}. Clearly, Vl is a vector subspace of the Lie algebra g
and g= g0⊕Vl as the isotropy subalgebra g0 is the kernel of the projection dπ : T G → T M.
Assume that the lattice l is such that the decomposition g= g0 ⊕Vl is reductive, a property
which cannot be guaranteed in general (see the lattice (30)). We call the corresponding
linear canonical connection ωl the lattice canonical connection of a continuous reductive
lattice l.

As shown by Wang (1958) (see also Kobayashi and Nomizu 1996), the coefficients of the
torsion tensor of the lattice canonical connection ωl (in the frame v1,v2,v3) are the smooth
functions ˆ︁T i

jk : M → R, i, j,k = 1,2,3, such that

ˆ︁T i
jkvi = [v j,vk]Vl , (22)

where [·, ·]Vl denotes the Vl-component of the Lie bracket of the algebra g. Respectively,
the coefficients of the curvature tensor of the connection ωl are the smooth functionsˆ︁Ri

jkl : M → R defined by ˆ︁Ri
jklvi = [[v j,vk]g0 ,vl ] (23)

where [·, ·]g0 is the g0 component of the Lie bracket in g5.
The following corollary is the immediate consequence of Theorem 1 and the definition

and the properties of the equivalent set of left-invariant vector fields (19), (20), (21).

Corollary 1. If a continuous lattice l defined by the vector fields li, i = 1,2,3, admits a
reductive decomposition g0 ⊕Vl , then the torsion of the lattice canonical connection ωl is
minus the torsion of the lattice connection Γi

jk.

In conclusion, the defectiveness of a kinematic state defined by a continuous reductive
lattice is described not only by the dislocation density tensor

Sir =
1
2

ε
rklT i

kl =−1
2

ε
rkl ˆ︁T i

kl (24)

but also by the curvature ˆ︁Ri
jkl of the corresponding lattice canonical connection ωl measuring

the second order interactions of the defining vector fields.

5Note that the curvature ˆ︁Ri
jkl is not defined for a non-reductive decomposition of a lattice.
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TORSION AND CURVATURE IN CONTINUOUSLY DEFECTIVE SOLID CRYSTALS A3-7

5. Examples

In this last section I briefly discuss two different lattice structures. Namely, I show
that the first lattice is reductive, thus allowing for the existence of the lattice canonical
connection ωl , while the second lattice is not reductive and the only characteristic of its
defectiveness is provided by the torsion of its lattice connection Γi

jk.

(A) Consider a continuous lattice l in R3 defined (in the standard coordinate system) by
the vector fields

l1 = (1,0,0), l2 = (−y,1,0), l3 = (x,y,1). (25)

Straightforward calculations show, that it generates a four dimensional lattice
algebra L such that

T 1
13 = T 2

23 = 1, T 1
23 = y (26)

while all other Lie algebra constants vanish. It induces on R3 a left action Λ of a
four parameter group G = {(a,b,c,d) : a,b,c,d ∈ R} such that

gg =
(︂

a+ae−d −b(b+ c),b+b,(b+ c)e−d + c−b,d +d
)︂

(27)

and

Λ((a,b,c,d),(x,y,z) =
(︂
(x+a− yb)ed ,(y+b+ c)ed ,z+d

)︂
(28)

for any x,y,z) ∈ R3. The isotropy group of the action Λ at p0 = (x0,y0,z0) is

G0 = {(y0b,b,−b,0) : b ∈ R}. (29)

As the algebra g of all left-invariant vector fields on G is spanned by v1 =(1,0,0,0), v2 =
(−b,1,0,0), v3 = (−b,0,1,0) and v4 = (−a,0,−b−c,1) and as the Lie algebra of
the isotropy group g0 is generated by (y0,1,−1,0), the decomposition g= g0 ⊕Vl ,
where Vl = span{v1,v2,v4} is reductive and Vl is consistent, (20), with the lattice
frame l = {l1, l2, l3}. The torsion of the corresponding lattice canonical connec-
tion is such that ˆ︁T 1

13 =
ˆ︁T 2
23 =−1, ˆ︁T 1

23 =−y and has only two non-zero curvature
coefficients ˆ︁R1

232 =−ˆ︁R1
233 = 1.

(B) Let the lattice l in R2 be defined by the vector fields

l1 = (x,0), l2 = (1,1). (30)

It generates an action of a three parameter group G given by the function Λ :
G×R2 → R2 such that

Λ(g,(x,y)) = (xea +b+ c,y+ c) (31)

where g = (a,b,c) ∈ G and where the group multiplication is given by

gg = (a+a,(b+ c)ea +b− c,c+ c). (32)

The isotropy group of the action Λ at a point p0 = (x0,y0) is Gp0 = {(a,−x0ea,0) :
a∈R} and its Lie algebra g0 is defined by the left invariant vector field (1,−x0ea,0).
It is easy to show that its Vl complement to the Lie algebra g is spanned by the
left invariant vector fields (1,0,0) and (0,ea − 1,1). However, it is also easy to
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A3-8 P. M. Z. ELŻANOWSKI

show that the decomposition g= g0 ⊕Vl is not reductive. Thus, a lattice canonical
connection ωl is not available. The only measure of defectiveness available for this
lattice is the torsion of the lattice connection

T 1
12 =

1
x
, T 2

12 = 0. (33)
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Elżanowski, M. and Parry, G. P. (2004). “Material symmetry in a theory of continuously defective
crystals”. Journal of Elasticity 74, 215–237. DOI: 10.1023/B:ELAS.0000039620.56146.89.
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Elżanowski, M. and Parry, G. P. (2020). “A Kinematics of Defects in Solid Crystals”. In: Geometric
Continuum Mechanics. Ed. by R. Segev and M. Epstein. Vol. 42. Advances in Mechanics and
Mathematics. Birkhäuser, Cham. DOI: 10.1007/978-3-030-42683-5_7.
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