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Abstract 11 

Climate change is expected to have severe impacts on global hydrological cycle along with food-12 

water-energy nexus. Currently, there are many climate models used in predicting important 13 

climatic variables. Though there have been advances in the field, there are still many problems to 14 

be resolved related to reliability, uncertainty and computing needs, among many others. In the 15 

present work, we have analyzed performance of 20 different Global Climate Models (GCMs) from 16 

Climate Model Intercomparison project Phase 5 (CMIP5) dataset over the Columbia River Basin 17 

(CRB) in the Pacific North-West USA. We demonstrate a statistical multi-criteria approach, using 18 

univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change 19 

impact analysis in the region. Univariate methods includes Mean, Standard deviation, Coefficient 20 

of Variation, Relative Change (Variability), Mann-Kendall Test, and Kolmogorov-Smirnov test 21 

(KS-test); whereas multivariate methods used were Principal Component Analysis (PCA), 22 

Singular Value Decomposition (SVD), Canonical Correlation Analysis (CCA), and Cluster 23 

Analysis. The analysis is performed on raw GCM data, i.e. before bias correction, for precipitation 24 

and temperature climatic variables for all the 20 models to capture the reliability and nature of 25 

particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs 26 

and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based 27 

on the performance evaluated against gridded observational data on various temporal scales (daily, 28 

monthly, and seasonal). Results have provided insight into each of the methods and various 29 

statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also 30 

performed for raw GCM simulations against different set of gridded observational dataset in the 31 

area.   32 

 33 

 34 

Keywords: Statistical Multi-Criteria Analysis, Climate Change, Pacific North-West (PNW), 35 
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 Introduction 37 

Climate change is affecting environmental systems at global and regional scales (Moradkhani et 38 

al. 2010; Woldemeskel et al. 2012; Wang et al. 2013; Önol et al. 2014). Over the past decades, 39 

several institutions have provided future climate datasets for the Intergovernmental Panel on 40 

Climate Change (IPCC) (Pierce et al. 2009; Rupp et al. 2013), which in turn have been widely 41 

used to study climate change impacts. The World Climate Research Programme’s Coupled Model 42 

Inter-comparison Project Phase 5 (CMIP5) is the latest dataset available. There have been 43 

significant improvements from the former counterparts, in knowledge and understanding of the 44 

climate using these new generation climate models. Despite these improvements, there are still 45 

large uncertainties associated with the climatic scenarios. Reliability of GCMs to simulate 46 

observed climate and consequently climatic scenarios at a regional scale is still of major concern 47 

(Rupp et al. 2013).  48 

Evaluation of uncertainties associated with GCMs is an important aspect to consider when 49 

assessing future scenarios, e.g. their capability to simulate reliable fine scale datasets. It has been 50 

widely discussed and accepted that model uncertainty plays a big role in future projections of 51 

climatic data (Hawkins and Sutton 2011; Najafi et al. 2011). The estimation of model efficiencies 52 

is based on their performance under current or past climate conditions, and to some extent requires 53 

extrapolation to future conditions; although there are reported issues with the assumption of 54 

stationarity (Buser et al. 2009; Christensen et al. 2010). The large number of datasets, offered by 55 

various scenarios/forcings and models, adds to the uncertainty to be dealt with, along with the huge 56 

computational needs, among other varied concerns. It also adds to the ongoing debate about the 57 

reliability of GCMs to resolve features at local scale, which often are downscaled using statistical 58 

or dynamical downscaling techniques (Fowler et al. 2007; Samadi et al. 2013). Understanding of 59 
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the model processes would provide more reliable results and thus reliable future predictions. Since 60 

GCMs produce results on global scale (coarser resolution, table 1), they tend to over/under-61 

estimate climatic variables on regional and global scales, failing to resolve the micro-scale climate. 62 

Furthermore, due to natural variability in GCM predictions, uncertainty is inevitable in their 63 

predictions. The natural variability of GCMs is higher in finer temporal scales, and thus predictions 64 

at various timescales reveal different uncertainties (Hawkins and Sutton, 2011). Therefore, it is 65 

necessary to study GCMs at different regions and assess their performance in 66 

predicting/replicating the observed climate of the region, which would further reduce the 67 

computational needs and decrease the uncertainty associated with climate prediction. Each model 68 

accounts for large amounts of climatological information leading to huge data size which in turn 69 

requires vast computations. Thus, selecting models that aptly represents the regional scale climate 70 

is a necessary first step before a regional climate change impact assessment can be performed. 71 

Researches have been conducted in the past decade with the intention of providing ranking to 72 

GCMs performance with varied intents. Both qualitative and quantitative methods have been 73 

suggested in literature (Maxino et al. 2008; Pincus et al. 2008; Chiew et al. 2009; Christensen et 74 

al. 2010; Johnson et al. 2011) Miao et al. (2012) used four metrics, along with fitting Probability 75 

density functions (PDFs), to analyze the performance of CMIP3 precipitation and temperature 76 

datasets for China in historical period of 1960 to 1999. Rana et al. (2013) analyzed a five model 77 

ensemble of daily observed precipitation series over the period of 1961 to 2009 for Gothenburg, 78 

and assessed each model’s performance. They used statistical analysis for daily and multi-day 79 

extremes, among others. Wójcik (2014) evaluated variability of GCMs in 45 CMIP5 GCMs over 80 

Europe and North Atlantic. Basic statistical methods of MAE (Mean Absolute Error), correlation 81 

coefficient, and standard deviation were used to assess the reliability of GCMs in reproducing 82 
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atmospheric circulation patterns in historical period of 1971-2000. Raju and Nagesh Kumar (2014) 83 

ranked 11 GCMs over India for the climate variable ‘precipitation rate’ using 5 performance 84 

indicators (correlation coefficient, normalized root mean square error, absolute normalized mean 85 

bias error, average absolute relative error and skill score). Researchers have also focused on 86 

regional performance analysis of GCMs in the Pacific Northwest USA. Werner (2011) evaluated 87 

22 GCMs from CMIP3 datasets using various performance metrics generated by work from other 88 

groups namely Pincus et al. 2008; Pierce et al. 2009; Jost et al. 2012. Both global as well as regional 89 

performance analysis was used to have robust results. They used results of those studies and 90 

determined several decision factors. Some factors were based on statistical measures obtained from 91 

GCMs, and some considered availability and performance of GCMs in other studies. Recently, 92 

Rupp et al. (2013) used 41 CMIP5 GCMs and 24 CMIP3 GCMs and evaluated each model’s 93 

simulation for the Pacific Northwest USA with observational gridded dataset. They defined 19 94 

performance metrics and evaluated each model according to their performance on those metrics. 95 

In the present study, we have analyzed the performance of 20 GCMs from CMIP5 dataset based 96 

on their performance in accordance with historical gridded observational data (Livneh et al. 2013) 97 

over Columbia River Basin in Northwest USA. We have based our analysis on precipitation and 98 

temperature, since precipitation is the main input for hydrological models, and temperature plays 99 

a key role in the estimation of evaporation and evapotranspiration (Woldemeskel et al. 2012). A 100 

wide range of statistical methods have been applied on the raw simulations from GCMs and 101 

gridded observational data to assess their performance based on the properties/attributes captured 102 

by the particular statistical method in the historical period of 1970-2000. Nevertheless, our 103 

evaluation method is general (based on different statistical properties of data i.e. univariate and 104 

multivariate analysis) and can be used in any other regions to evaluate climate models. The 105 
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motivation for this study included analysis of daily data, which is reported in results section, but 106 

we have also performed the analysis on monthly and seasonal (summer and winter) dataset. For 107 

brevity, only daily dataset statistics are reported in results section and same could further be used 108 

in hydrological analysis on daily time scale. Other temporal scales are reported only for the final 109 

evaluation matrix. Effect of change of observational dataset was also studied by evaluating the raw 110 

GCM simulations with Abatzoglou (2013) gridded observational dataset in the study area.  111 

Results of this study were utilized in parallel efforts to assess the impacts of climate change and 112 

global warming on characteristics of climatic variables over Columbia River Basin (CRB). Rana 113 

and Moradkhani (2015) analyzed spatial, temporal, and frequency changes of future precipitation 114 

and temperature in CRB using this set of selected GCMs. The application of 40 different 115 

downscaled models/scenarios for various timescales has provided insight into probable changes in 116 

future climate. Demirel and Moradkhani (in press) applied Bayesian Model Averaging to reduce 117 

the uncertainty in GCM predictions for studying the seasonality and timing of historical 118 

precipitation over Columbia River Basin. Their results identified the changes in seasonality and 119 

persistence of extreme precipitation events for the study region. 120 

The paper is divided into 6 sections, introduction followed by description of study area and data. 121 

This is followed by description of univariate and multivariate statistical procedures used for 122 

analysis and results, discussion and finally summary and conclusion is outlined in section 5 and 6.   123 

 Study Area and Data Used 124 

Daily records of precipitation (P) and near surface temperature (T) in the study region (Figure 1) 125 

were collected for 20 GCMs (table 1) of the CMIP5 historical experiment (Taylor et al. 2012). The 126 

areal daily average for precipitation and temperature is calculated over the Columbia River Basin 127 
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(Figure 1) for each GCM along with other accumulated temporal scales of monthly and seasonal 128 

(summer and winter) datasets (accumulation from daily values). The GCM data is evaluated 129 

against gridded daily dataset acquired from University of Washington (Livneh et al. 2013) 130 

(hereafter referred to as gridded observational data), which has a spatial resolution of 1/16 Deg., 131 

and is available for the historical period of 1970-2000. This is the most widely used (and reliable) 132 

dataset in study area. Gridded observational dataset (Abatzoglou 2013) from University of Idaho 133 

with spatial resolution of 1/24 Deg. was also used to study the effect of observational dataset on 134 

selection/evaluation of GCMs. GCMs and gridded observation data each have different spatial 135 

resolution and hence, they cannot be compared on grid scale without statistical manipulations, like 136 

interpolation. Therefore, spatial average values of GCMs and observation are used in all the 137 

analysis. Also, each method is applied separately on Precipitation and Temperature.   138 

 Methods 139 

The performance evaluation matrix deployed in this paper is based on the ability of particular 140 

GCM to reproduce the statistical properties/attributes of the gridded observational data, and no 141 

direct comparison of time series is done for simulations and observations. We have not based the 142 

evaluation of models on a particular matrix/method as opposed to what is suggested by others 143 

(Hawkins and Sutton 2011; Deser et al. 2012a; Deser et al. 2012b; Deser et al. 2014). Instead we 144 

have reported the evaluation on a number of metrics to provide a broader basis for assessment and 145 

decision making on various time scales based on user interest. This would also help to remove 146 

subjectivity connected with regional/local properties or previous knowledge of the area concerned. 147 

Although, choice of relevant climate variables/spatial/temporal resolutions and ranges etc. would 148 

still be subjected to user discretion and not target study area. Thus, the process is objective and 149 

based only on the statistical properties of GCM data and that of gridded observational data and the 150 
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user need not have any prior knowledge of the area in concern, which in turn adds to the advantage 151 

of its application in any area. The performance of different GCMs in a particular method can also 152 

be investigated. Furthermore, it is possible to compare the ability of different methods as they 153 

address various statistical properties. 154 

Various performance metrics have been proposed by researchers. Some of these metrics focus on 155 

the mean climatological state, whereas others are related to temporal variability (e.g. seasonal 156 

variations, yearly and decadal changes). Since there is no standard methodology to evaluate 157 

climate models, we chose metrics, which are statistically credible, and are able to examine the 158 

statistical characteristics of models in accordance with gridded observational data. The metrics 159 

compare the distribution properties of models (mean, variance, correlation, among others) as well 160 

as the trends and relative changes. Various metrics applied focus on certain statistical properties 161 

of the dataset itself. An overall of 10 metrics are employed to compare the performance of each 162 

model (and each temporal scale) with the gridded observational data; this is the basis of multi-163 

criteria analysis. Thus, the end user has 40 metrics (4 temporal scales*10 evaluation methods) for 164 

each of the climatic variable, i.e. precipitation and temperature; total of 20 metrics for ranking 165 

GCMs on particular temporal scale. The metrics can be classified under univariate and multivariate 166 

statistical measures of performance.  167 

Univariate analysis explores each variable in a data set, separately. It looks at the range of values, 168 

as well as the central tendency of the values. It describes the pattern of response to the variable. 169 

The metrics that are used for univariate statistical analysis in the study are:  170 

1. Mean 171 

2. Standard deviation 172 
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3. Coefficient of Variation (CV)  173 

4. Relative Change (Variability) 174 

5. Mann-Kendall Trend 175 

6. Kolmogorov-Smirnov test (KS-test) 176 

Multivariate statistics is the form of statistics encompassing the simultaneous observation and 177 

analysis of more than one outcome variable in the dataset. The following multivariate techniques 178 

were applied in the study: 179 

7. Principal Component Analysis (PCA) or Empirical Orthogonal Function (EOF) 180 

8. Singular Value Decomposition (SVD) or Maximum Covariance Analysis 181 

9. Canonical Correlation Analysis (CCA) 182 

10. Cluster Analysis 183 

All the metrics are applied on spatially averaged GCMs and observational datasets. For 184 

multivariate metrics, the analysis is performed after standardizing datasets. A brief explanation of 185 

methods along with the statistical properties they address is provided in the following paragraphs. 186 

The methods are applied for both precipitation and temperature separately. More detailed 187 

information about multivariate methods can be found in Bretherton et al. (1992).  188 

3.1 Univariate Statistics 189 

Mean of dataset refers to the central tendency either of a probability distribution or of the random 190 

variable characterized by that distribution; and Standard deviation measures the amount of 191 

variation or dispersion of data from average/mean. Calculating them will reveal how data is 192 

distributed, and the range that most of the average values occur. The coefficient of variation is 193 

defined as the ratio of the standard deviation σ to the mean μ, i.e. normalized measure of dispersion 194 
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of a probability/frequency distribution. It removes the dependency of standard deviation on the 195 

mean, and investigates the variability in relation to mean of population. In this study, coefficient 196 

of variation is calculated for all temporal scales of each GCM and also for gridded observational 197 

data. For temperature, CV is calculated using data in Kelvin. 198 

Relative change (RC), in quantitative science, evaluates the relative difference or variability of 199 

models while taking into account sizes of things being compared. Since there is large variations in 200 

daily values of precipitation and temperature, relative change is only calculated at the yearly scale. 201 

Thus for each GCM, absolute annual RC is calculated in the study period for both variables. Then, 202 

average absolute RC over the entire period is used for ranking, and the GCM which has a similar 203 

average absolute RC to observation receives a higher score. Relative change of temperature is 204 

calculated using data in Kelvin. Large changes infer little or no consistency in 205 

precipitation/temperature between different years. Relative change removes the dependency of 206 

standard deviation on mean (Rana et al., 2013).  207 

Trends- Mann-Kendall Test: The rank-based Mann-Kendall test is a non-parametric test i.e. 208 

independent of the statistical distribution of the data. The Mann-Kendall trend test is based on the 209 

correlation between the ranks of a time series and their time order. For more information, readers 210 

are referred to Belle and Hughes (1984) and Govindarajulu (1992). Ranking is performed using 211 

the test statistics (z-value) at the given significance level (95% in this case). Using test statistics, 212 

one can easily understand if the trend is positive or negative. Furthermore, since all datasets have 213 

the same length and the confidence interval is constant, significant test statistics value can be easily 214 

found. The results are analyzed as follows: 215 Acc
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(a) If the test statistics obtained for gridded observational data is positive, models with positive 216 

and closer statistics to observation will receive a score of 5. Values calculated for other models are 217 

divided into 4 groups based on their test statistics, and ranking is performed based on the proximity 218 

to observational statistics. 219 

(b) If the test statistics obtained for gridded observational data is negative, models with negative 220 

and closer statistics to observation will receive a score of 5. Values calculated for other models are 221 

divided into 4 groups based on their test statistics, and ranking is performed based on the proximity 222 

to observational statistics. 223 

Kolmogorov-Smirnov test (KS-test) is one of the most useful and general non-parametric methods 224 

for comparing two samples to decide whether the samples come from a population with a specific 225 

distribution. The null distribution of this statistic is calculated under the null hypothesis that the 226 

samples are drawn from the same distribution (in the two-sample case) or that the sample is drawn 227 

from the reference distribution (in the one-sample case). It is sensitive to differences in both 228 

location and shape of the empirical cumulative distribution functions of the two samples. KS-test 229 

is distribution free test and is based on looking at the maximum vertical distance between the 230 

ECDF of the two distributions. More information about KS test can be found at Huth and Pokorn 231 

(2004). In this study, the two-sample KS test is applied over samples of each GCM and 232 

observation, and for each case test statistics are calculated and used for ranking. This is done for 233 

all temporal scales on daily, monthly, and seasonal. 234 

3.2 Multivariate Statistics 235 

Principal Component Analysis (PCA) or Empirical Orthogonal Function (EOF): It simplifies 236 

(using orthogonal transformation) the complex interrelationships in a dataset by constructing one 237 

Acc
ep

ted



12 

 

or few variables, which enable easier assessment of the relationships (Moradkhani and Meier 2010; 238 

Rana et al. 2012). PCA maximizes the variance explained by weighted sum of elements in two or 239 

more fields by recognizing linear transformations of the dataset that describes the variance as much 240 

as possible in a few number of variables. PCA specifies the relationship among various modes of 241 

variability by separating the modes in time series of different fields. It searches for basis vectors 242 

that can describe the behavior of multiple variable metrics (Nishii et al. 2012). PCA isolates the 243 

modes of variability observed in time series of different fields and gives their relationships in 244 

separate modes. In this study, PCA is performed on standardized data of each GCM and the gridded 245 

observational data for all temporal scales. Desired components are selected, and eigenvalues of 246 

each model are compared to the eigenvalue of gridded observational data. 247 

Singular Value Decomposition (SVD) or Maximum Covariance Analysis: SVD, a matrix 248 

operation, is applied to asymmetric or not squared matrices in the diagonalization of PCA. It 249 

provides the spatial patterns from the two fields that explains most of the covariance between them 250 

and thus also called Maximum covariance analysis. Maximizing the covariance between linearly 251 

related variables makes SVD neutralize the linear combination of variables, which seem to be 252 

linearly related to each other. The principal difference in both the techniques applied here is 253 

maximization of variance in PCA whereas we maximize covariance of predictor and predictand in 254 

case of SVD. For more information and detailed explanation of SVD refer to Bretherton et al. 255 

(1992). Covariance explained by predictor in the predictand field in a particular mode is used to 256 

compare the relative significance of certain mode in the expansion. The correlation coefficient 257 

between the predictor and predictand provides information about how strong the two fields are 258 

related to each other (Wallace et al. 1992). In this study, SVD is applied to the cross-covariance 259 

matrix of the standardized GCMs and observation, where gridded observational data is assumed 260 
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as the predictand, and the models are treated as predictors. Heterogeneous correlation map—261 

defined as the correlation between model values and the first expansion coefficient, obtained from 262 

each model is taken into account, and the model with higher correlation gets a higher score, 263 

performed for each temporal steps. It should be noted that there is no direct comparison of the time 264 

series itself, but instead with attributes of the time series, expansion series, and weight vectors, on 265 

various temporal scales i.e. daily, monthly, and seasonal.  266 

Canonical Correlation Analysis (CCA): CCA measures the linear relationship between two multi-267 

dimensional variables i.e. of the cross-covariance matrices of the data. It finds two optimal bases 268 

(one for each variable) according to correlation, and finds the corresponding correlations. CCA 269 

tries to find the bases in which correlation matrix between the variables is diagonal and the 270 

correlations on the diagonal are maximized. It might be treated as a special form of empirical 271 

orthogonal function (EOF) analysis, where it can describe the correlation between predictor and 272 

predictand more comprehensively using various modes in it (Barnston and Ropelewski 1992).  273 

CCA is applied on standardized data in the present study. Since CCA is a linear technique, its 274 

applicability is narrowed to relations wherein predictand and predictor have the same response. 275 

Therefore, it brings information about small perturbations than to assess strong nonlinear relations 276 

(Wójcik 2014).  277 

More information and detailed explanation of CCA can be found in Wilks (2011). The differences 278 

among PCA, SVD, and CCA can be found at Bretherton et al. (1992). Spatial canonical 279 

correlations obtained from CCA performed on each GCM and gridded observational data is used 280 

to rank them accordingly for each of the temporal scales in consideration. More details about 281 

ranking and criteria used can be found in section 3.3. 282 Acc
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Cluster Analysis: It methodologically tries to separate objects in various groups each having more 283 

similarities together than with other clusters (Bratchell 1989). Cluster analysis is an appropriate 284 

method to classify climate zones, and is becoming more practical in atmospheric research studies 285 

(Unal et al. 2003). It graphically depicts the relation among various observations by producing 286 

dendograms. Dendograms (also called cluster trees) present a number of levels of (dis)similarities, 287 

and place observations in different levels according to their similarities. Here we have constructed 288 

clusters from the agglomerative (start with points as individual clusters and, at each step, merge 289 

the closest pair of clusters) hierarchical clustering as generated by the linkage function. We have 290 

used flexible linkage method to classify models since it seemed to work more reasonable with 291 

climatic and hydrological datasets, based on literature review. Each GCM has a linkage distance 292 

to connect to the gridded observational data. These distances are extracted for models and they are 293 

ranked accordingly for all temporal scales. More information about cluster analysis can be found 294 

in Wilks (2011). 295 

A summary of the type/characteristic of datasets used to perform each method is provided in table 296 

2. 297 

3.3 Model ranking 298 

Evaluating GCMs with various statistical tests helps investigate the advantages and caveats of each 299 

model/GCM from various statistical aspects in respect to gridded observational dataset. However, 300 

it brings some challenges to interpret the results. In some studies, researchers have eliminated those 301 

metrics, and provided their ranking with some of their previously chosen metrics (Werner, 2011). 302 

Whereas in some researches, weights have been assigned to each method and then final ranking is 303 

presented based on weighted methods (Rupp et al., 2013), with some working on previous 304 Acc
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knowledge of the area to eliminate the method/model which in turn brings subjectivity in the 305 

scenario. 306 

In this study, we have chosen metrics which evaluate the important aspects of climate data and are 307 

not significantly redundant. Although some of the methods might seem similar and evaluate same 308 

feature, they are targeting different aspects of datasets. Moreover, in each method, outlier GCMs 309 

are excluded with lowest rank assigned, and thus ranks obtained by each method is checked to 310 

avoid possible overrating of a model. In other words, considering one method, if one of the GCMs 311 

performs poorly, it is first excluded to provide a more meaningful comparison among the GCMs. 312 

This can be verified in the figures of final rankings in results section. Metrics are treated equally 313 

to treat the methods objectively, since adding weights will be based on another assumption, which 314 

may increase the uncertainty. We have provided results of each metric for all models for further 315 

use in certain applications and for all the temporal scale in consideration. Use of various temporal 316 

scales, i.e. daily, monthly, and seasonal provides a wide range of array for stakeholders and 317 

decision makers to make decision based on the utility. It also contributes to study of various low 318 

frequency events that are not prominent on daily scale but are part of monthly and seasonal scale 319 

data, thus accommodating all the possible ranges of variability explained by the data. Daily scale 320 

results are emphasized throughout the study due to importance of daily data in driving hydrological 321 

models and analysis. Rankings are based on assigning scores of 1 to 5 for each metric. In other 322 

words, performance of each model will be compared to the gridded observational data and 323 

consequently it will receive a score of 1 to 5 on each metric, where 1 shows the least efficiency 324 

and 5 represents the best performance on the metric. Overall ranking is the summation of scores 325 

obtained for precipitation and temperature in each method for a GCM. Average of overall ranks of 326 Acc
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each GCM is calculated and will be used to select GCMs on each time scale. Representative results 327 

are explained in the result section for each of the methodology applied. 328 

 Results 329 

Evaluating each metric and studying the performance of models in them is an important aspect of 330 

investigating the overall performance for both variables. Therefore, results for each metric will be 331 

evaluated and discussed in the following sections and eventually ranking would be done based on 332 

results of each metric. An overall ranking based on averaged score for both variables would be 333 

provided thereafter. 334 

4.1 Raw GCM Simulations and Gridded Observational Data 335 

Before evaluation of GCM simulations, it is vital to explain the data itself and its characteristics. 336 

Boxplots and violin plots are the tools used to investigate/illustrate the raw GCM simulations and 337 

gridded observational data. Figure 2 illustrates boxplots of precipitation and temperature. In the 338 

figure, plots A, B, and C are depicting GCM raw simulation for each model and the gridded 339 

observational data for daily and seasonal precipitation; plots D, E, and F are representing 340 

temperature for the same timescales. In the figure, outliers are specified using markers with red 341 

color along with median in center of box and 25th and 75th percentiles marking box boundaries. 342 

Since there are many days with no precipitation, the median is around zero, and therefore, most of 343 

the data is assumed as outliers. However, for temperature (Fig. 2c), median and quartiles are clearly 344 

obvious and models can easily be compared to the gridded observational data. From figure 2, for 345 

daily precipitation (plot A), it can be noted that most of the models are overestimating the 346 

precipitation values and underestimating the dry days, all the models have median, along with 25th 347 

and 75th percentiles, higher than the gridded observational dataset. Overestimating precipitation is 348 
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more noticeable in warm season (plot B) when all GCMs are predicting higher values, and only 349 

CanESM2 shows low bias. Precipitation prediction of GCMs has less bias in cold seasons (plot 350 

C). On the other hand, for daily temperature, median and quartiles seem to be well predicted by 351 

climate models (Fig.2 D), and the outliers are only towards the lower temperature ranges. The 352 

observation has narrow box and fewer outliers than the GCM simulations and median is always 353 

equal or lower than the GCM simulations (Fig.2D). This simply indicates that GCMs tend to 354 

predict more extreme cold temperatures than observation. For seasonal temperature (Fig.2 E and 355 

F), most GCMs seem to underestimate observed temperature of cold season, and they show less 356 

bias in warm season.  357 

4.2 Mean, Standard Deviation, Coefficient of Variation and Relative change  358 

Results of Mean, standard deviation, coefficient of variation and relative change for each GCM 359 

and gridded observational data are depicted in figure 3. The figure 3a and 3b represents the mean 360 

along with ±1 standard deviation of precipitation and temperature, respectively. It can be observed 361 

from the figure that the precipitation distribution of GCMs are strikingly different from that of the 362 

gridded observational dataset, usually overestimating the precipitation and underestimating the dry 363 

days which can be attributed to drizzle effect in climate models (Beven, 2011). Thus, mean of 364 

gridded observational dataset is lower than all the GCMs and accordingly the spread (standard 365 

deviation) of dataset. Proximity of mean and standard deviation of each of the GCM is compared 366 

to that of observational mean and standard deviation to rank the models (from 1-5) consequently. 367 

However, the temperature distribution is in line with gridded observational data with GCM 368 

depicting higher spread than the latter. Similarly, mean and standard deviation proximity of the 369 

GCM is evaluated against the gridded observational data for ranking. Fig. 3c, CV for precipitation 370 

and temperature are specified with blue and red markers, respectively. The far right values (number 371 
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21) present results of gridded observational data. For precipitation, CV for gridded observational 372 

dataset is always higher than GCMs whereas 4 models have higher CV than the latter in case of 373 

temperature. As mentioned in methodology section, for temperature, CV and RC are calculated 374 

using data in Kelvin, since we have non-zero (negative) values in the region. Consequently, models 375 

with close proximity to gridded observational dataset would be ranked higher.  Relative change 376 

shows the inter-annual variations of each variable (Fig. 3d and 3e for precipitation and temperature, 377 

respectively). Thus, it might be positive for some years and negative in some other years. The RC 378 

for precipitation of gridded observational dataset shows higher spread in boxplot suggesting higher 379 

relative change during years than in GCMs whereas it is opposite for temperature wherein the 380 

gridded observations have lower relative change than GCMs. The absolute value RC is calculated 381 

for each year and then average absolute RC for each GCM and gridded observation is calculated 382 

for evaluation. Proximity of CV and RC values of GCMs to gridded observational dataset is used 383 

for ranking from 1-5. 384 

4.3 Mann-Kendall test 385 

Trend analysis is performed using Mann-Kendall for gridded observational data and for each 386 

model. Values for models are then compared to the value obtained for gridded observational data. 387 

Results of trend analysis of precipitation and temperature are tabulated in table 3. In the table, 388 

results from Mann-Kendall test on daily precipitation and temperature are shown in the first two 389 

columns, followed by decadal change in each variable (using annual data) presented in the last 390 

column. Daily results are used for ranking on daily timescale and decadal change is shown to 391 

provide more knowledge about the study area. Results from daily Mann-Kendall test on 392 

observation dataset show significant positive trend for both precipitation and temperature dataset. 393 

Thus for both variables, all the models showing positive trend would be ranked higher relative to 394 
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negative trend ones in the period under consideration. For precipitation, BCC_CSM1_1m, 395 

BNU_ESM, GFDL_ESM2G, GFDL-CSM5A-LR, GFDL-CSM5B-LR, and MIROC5 gets the 396 

highest ranking of 5 due to positive, significant trend and proximity to statistics of observational 397 

dataset and other models are ranked accordingly. Whereas, for temperature, only BCC_CSM1_1 398 

and CanESM2 gets ranking 5 and other models are ranked consequently in comparison to observed 399 

statistics. In both cases, i.e. for precipitation and temperature, models with negative trends would 400 

receive a least score. It can be observed from the table that many of the models are showing 401 

significant trend at 99% as well (p values ≤0.01) for both the variables and only few models do 402 

not show any trend in the dataset.  403 

4.4 Kolmogorov-Smirnov test (KS-test) 404 

KS-test is performed for gridded observational data and each GCM simulations at all the temporal 405 

scales. KS-test statistics are then compared to provide model ranking, on all temporal scales, for 406 

both the variables i.e. precipitation and temperature. Results of KS-test are presented in table 4. 407 

Since all the simulations, for both precipitation and temperature, rejected null hypothesis i.e. no 408 

time series were same at desired alpha, we have considered statistics of the test to evaluate the 409 

models in comparison to observational gridded data. The p-values were significantly very small in 410 

all the cases to develop a rational comparison of observational data and simulations. Therefore, 411 

test statistics are extracted and used for rankings. The statistics close to zero are better 412 

representation of the observational dataset and result in lower p-value and thus ranked higher. As 413 

can be seen from table 4, for daily precipitation data, BCC_CSM1_1m, CCSM4, CSIRO_Mk3, 414 

HadGEM2-CC, HadGEM2-ES, IPSL-CM5A-MR, and NorESM1-M are closest in respect to 415 

maximum vertical distance of empirical distribution function to observational gridded data and 416 

thus given highest ranking and vice versa for MIROC-ESM and MIROC-ESM-CHEM, with 417 
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farthest from observational data for precipitation. Whereas, in case of temperature daily data, 418 

GFDL-ESM2M, INMCM4, IPSL-CM5A-LR, IPSL-CM5B-LR, and MRI-CGCM3 are closest as 419 

opposed to HadGEM2-ES and MIROC5, being the farthest ones to observational dataset. Same 420 

procedure was applied to rank the models on other temporal scales of monthly and seasonal. 421 

4.5 Principal Component Analysis (PCA) 422 

The percentage of variance explained by each component in PCA is studied and presented as pareto 423 

graph in figure 4c and 4d for precipitation and temperature, respectively. Different components 424 

describe different features in each variable and can be used for various purposes. Depending on 425 

variance explained (acceptable level of variance explained based on user interest) by each mode 426 

of PCA, user can decide on the number of modes to be used in analysis of the data. In this study, 427 

for precipitation the first component explained about 10% of total variance whereas for 428 

temperature it was about 89% of the total variance. The local variance (squared correlation 429 

between the GCM simulation and the gridded observational dataset) in first component of PCA is 430 

used for ranking the models for both variables. Performance of all the models in accordance to 431 

squared correlation with gridded observational data is classified in 5 equal intervals, resulting in a 432 

score of 1-5 based on their performance. Results for precipitation and temperature are graphically 433 

presented in figure 4a and 4b, respectively. Figure 4a represents the various models in relation to 434 

averaged gridded observational data in various components of PCA for precipitation and 4b 435 

represents the same for temperature. The relative length i.e. distance from center for a particular 436 

component (component 1 in this case) of the GCMs defines the relative proximity with the gridded 437 

observational data. When the GCM is closer to gridded observational dataset (e.g. 438 

BCC_CSM1_1m, CCSM4, and INMCM4 for precipitation), they will receive higher ranking, as 439 

compared to ones which are distant from the same (e.g. IPSL-CM5B-LR, MIROC5, MIROC-440 
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ESM, and MIROC-ESM-CHEM). Similarly, for temperature, GCMs (BCC_CSM1_1m, 441 

BNU_ESM, CANESM2, CCSM4, GFDL_ESM2G, GFDL_ESM2M, HadGEM2-CC, INMCM4, 442 

IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MRI-CGCM3, and NorESM1-M) closer to 443 

gridded observational dataset receives higher ranks and vice-versa (Fig. 4b).Same procedure is 444 

performed for other temporal scales of monthly and seasonal. 445 

4.6 SVD and CCA 446 

Heterogeneous correlation representing maximized covariance between the predictand and 447 

predictor is calculated for each GCM using SVD and is used to rank models (table 5). GCMs with 448 

higher heterogeneous correlation represents similar properties/attributes with reference to gridded 449 

observational data and are more suited for the study area. From table 5, it can be inferred that 450 

BCC_CSM1_1, BCC_CSM1_1m, and BNU_ESM presents highest heterogeneous correlation and 451 

thus receive the highest ranking for precipitation dataset, with IPSL-CM5A-LR, MIROC-ESM, 452 

MIROC-ESM-CHEM, and NorESM1-M receiving the lowest. For temperature, CNRM_CM5, 453 

IPSL-CM5A-MR, andMIROC5 are in close proximity to gridded observational dataset (based on 454 

heterogeneous correlation) and are ranked highest; whereas HadGEM2-ES, MIROC-ESM, and 455 

MIROC-ESM-CHEM are on the other end of ranking. 456 

Similarly, CCA results were analyzed based on the similar property of GCMs and gridded 457 

observational dataset. In other words, after calculating anomalies of a matrix (GCMs) versus 458 

gridded observational data, and calculating PCA of the predictand, predictor canonical spatial 459 

function is computed. Values of canonical spatial function (SF) are used to rank models. Models 460 

with higher SF values will receive a higher score (table 6). The range of SF across the models is 461 

divided in 5 groups and the highest value group will receive a score of 5. For CCA, BCC_CSM1_1, 462 

CCSM4, HadGEM2-CC, INMCM4, IPSL-CM5A-MR, and MIROC5 receives the highest ranks 463 
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for precipitation dataset, whereas MIROC-ESM and MIROC-ESM-CHEM are ranked lowest. For 464 

temperature, BCC_CSM1_1, CanESM2, HadGEM2-CC, IPSL-CM5A-LR, and MRI-CGCM3 are 465 

amongst the higher ranked ones, whereas INMCM4, IPSL-CM5B-LR, and MIROC-ESM-CHEM 466 

receives the lower ranks. 467 

4.7 Cluster Analysis  468 

Results for cluster analysis are presented in figure 5a and 5b for precipitation and temperature, 469 

respectively. The plots/dendograms are showing different clusters among models and gridded 470 

observational data. Dendograms represents both the cluster-subcluster relationships and the order 471 

in which clusters are merged or split. Cluster group and linkage distance are important in 472 

determining the relative likelihood of models to represent the gridded observational dataset. As it 473 

can be interpreted from the dendograms, models have been distributed in several clusters which in 474 

turn are connected to each other in the last merged row. In figure 5, the plots show the value of 475 

linkage distance in accordance to the merged cluster indices, which are linked in pairs to form 476 

binary tree. Linkage distance reflects the degree of difference between branches i.e. longer lines 477 

indicate greater difference, principle applied to rank the models. Models which are in the same 478 

cluster with the observation (close proximity), are better performing than others. Similarly, the 479 

lesser the linkage distance of the model to observation, the higher the performance of the model, 480 

and the model receives a better rank. For precipitation (figure 5a), it can be observed that 481 

BCC_CSM1_1m (number 2) is in the closest proximity and belongs to same cluster as gridded 482 

observational dataset followed by BCC_CSM1_1 (number 1) and CCSM4 (number 5), forming 483 

the next closest cluster, and thus would receive highest rankings. The scale of model ranks are 484 

classified into 5 classes and ranked on the basis of same. IPSL-CM5B-LR, MIROC-ESM, and 485 

MIROC_ESM_CHEM are farthest forming a farthest cluster based on linkage distance and thus 486 
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receives lowest scores for precipitation dataset. For temperature (figure 5b), GFDL_ESM2G, 487 

IPSL-CM5A-LR, CCSM4, and IPSL-CM5A-MR are in close proximity to gridded observational 488 

dataset (ranked highest), whereas MIROC-ESM, MIROC-ESM-CHEM, BNU_ESM, 489 

BCC_CSM1_1m, and MRI-CGCM3 forms the farther clusters and thus ranked lower. 490 

4.8 Overall Performance 491 

Models performances were assessed in 10 metrics for precipitation and temperature, totaling to 20 492 

metrics for each of the temporal scales in consideration, and each model received a score of 1-5 in 493 

each metric. Overall ranking, summation of ranks for precipitation and temperature, is provided 494 

using all 20 metrics values for each of the temporal scales in consideration. Performance of models 495 

on all temporal scales and each metric is depicted in figure 6. From figure 6 and table 7 it can be 496 

inferred, based on average overall performance for daily temporal scale, that CCSM4, IPSL-497 

CM5A-MR, INMCM4, IPSL-CM5A-LR, CanESM2, GFDL_ESM2G, BCC_CSM1_1, 498 

GFDL_ESM2M, IPSL-CM5B-LR, and MIROC5 are 10  best representative GCMs of the gridded 499 

observational dataset (in order of decreasing ranking) in the desired period for the study region. 500 

Similar rankings for 10 best representative models for monthly, and seasonal and dataset is 501 

provided in figure 6 and table 7. End users can choose to have their own set of models based on 502 

utility and time scale in consideration. It can be observed from table 7 that GFDL_ESM2G, 503 

CCSM4, IPSL-CM5A-MR, and CanESM2 are among those selected at daily, monthly, summer, 504 

and winter temporal scales.  505 

 Discussion 506 

The changing climate requires an investigation on understanding of its effects and causes on the 507 

environment and hydrological cycle. One of the most used resources for this purpose now-a-days, 508 
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are GCMs which represent the conditions of climate over the globe with predictions for future 509 

scenarios. Each of these models has uncertainty associated in their predictions, and as they are 510 

large-scale (coarse resolution), they might have different performances in regional scales/finer 511 

resolution. Thus, there is a demand to investigate the performance of global models on regional 512 

scales. We also intended to study the effects of observation dataset on the GCM selection 513 

procedure thus we changed the gridded observational dataset with another gridded observational 514 

dataset (Abatzoglou 2013). Similar statistical evaluation and ranking was performed for raw GCM 515 

and the changed observational dataset on daily, monthly, and seasonal temporal scale, results are 516 

presented in figure 7. It can be noted that the 10 best representative models (with changed gridded 517 

observation) includes BCC_CSM1_1, GFDL_ESM2M, CCSM4, GFDL_ESM2G, MIROC5, 518 

CanESM2, IPSL-CM5A-MR, IPSL-CM5B-LR, IPSL-CM5A-LR, and MIROC-ESM (in order of 519 

decreasing ranking). On comparison, at daily temporal scale, with raw simulation evaluation based 520 

on Livneh et al. (2013) gridded observational dataset to that of Abatzoglou (2013) it was found 521 

that 9 of the models are represented in both the procedures, with only INMCM4 excluded in later 522 

one (which is ranked 11th in changed observational evaluation). It can be concluded that the 523 

observational dataset have minimal effect on selection of GCMs which could be attributed to 524 

averaging of climatic variables in the study area, making the two observational dataset comparable 525 

to each other. Thus it becomes increasingly important to select the observational dataset based on 526 

the physical representation in the study area for such analysis. 527 

Various statistical methods, temporal scales and dataset have been used to analyze the range of 528 

selection possibilities of GCMs in the study area. The advantages of this approach, among others, 529 

include easy classification of models, quantitative-based and objective ranking. Hence, less 530 

subjectivity is included in the results and users are not expected to be familiar with the study area 531 
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in question and thus could be applied in any study area. Moreover, the proposed methods are easy 532 

to perform and are handy in understanding the distribution and various statistical properties of the 533 

data. It is also suggested in literature (Werner, 2011) to remove multiple models from the same 534 

climate institutions so as to deal with the uncertainty associated with them, but that would not 535 

suffice the goal of the study in authors’ opinion, as we are evaluating the model and not the 536 

institution for the capability of prediction. Moreover the GCMs from same institutions have 537 

different model setup and thus different simulations from each of them. Also, the results of study 538 

have indicated that models from same institution have behaved differently towards the analysis 539 

performed in the study. 540 

It is also worth exploring the spatial aspects of the GCM selection in comparison to observational 541 

dataset. As pointed out in table 1, most of the GCMs have very varied spatial resolution and thus 542 

we adopted spatial average approach to evaluate GCMs against observational gridded data in 543 

Columbia River Basin. Depending on the scale and intent of the study same procedures can be 544 

applied on finer resolution of spatial data, as per availability of fine resolution observations, to 545 

compare the two sets. It would be interesting to study the spatial aspects based on elevation and 546 

various hydrological regimes in the study area, depending on the intent of the study. 547 

CMIP3/CMIP5 simulations have long been used in various studies to evaluate different 548 

characteristics of climate change on humans and environment. Characteristics/trends of extreme 549 

events have been assessed in various studies (Mallakpour and Villarini, 2015; Najafi and 550 

Moazzami, 2015), some of which have used GCM data. The methodology proposed in this study 551 

can be applied on daily to multi-day extreme precipitation and temperature data to evaluate GCMs 552 

according to their performance in regard to extremes of these variables. Selecting appropriate 553 

GCMs would reduce uncertainty of future predictions (in comparison to other GCMs in the study 554 

Acc
ep

ted



26 

 

region), which is crucial for studying extreme conditions (e.g. floods or droughts), when the least 555 

uncertainty is desired. GCM predictions have been used in various studies to detect and attribute 556 

hydroclimate changes to human effects (Najafi et al, 2015; Zhang et al. 2013). Eventually, 557 

selection of GCMs based on statistical attributes to evaluate various impacts according to the study 558 

purpose would help reduce the various uncertainties associated with the larger GCM scale and be 559 

helpful in large scale planning and management.  560 

Daily dataset from CMIP5 has helped in a more robust analysis, and compare models with more 561 

reliability. Metrics used in the present study are among the common statistical methods used in 562 

several previous researches, and proved to work fine. Utilizing a variety of methods, each focusing 563 

on a certain aspect of performance, along with using two most common climatic parameters brings 564 

robustness to the analysis. Different temporal scales are considered in the study for various 565 

stakeholder interest and user based analysis. Evaluation of the results of the present study reveals 566 

that models generally perform better in temperature than in precipitation and a variable. This is 567 

mainly because of the more stable nature of temperature which makes it easier to predict. Models 568 

seemed to work differently in various methods. This might infer that models do not have high 569 

correlation with each other. Finally, overall scores obtained by GCMs can be used for model 570 

averaging or multi-modeling e.g.,(Najafi et al. 2011; Madadgar and Moradkhani 2014). In other 571 

words, overall score of GCMs can be standardized and used as the weights applied in weighted 572 

averaging. However, since this study is done using spatially averaged data and multi-modeling is 573 

usually done at grid scale, it is not suggested to use the scores gathered here for weighted 574 

averaging. Instead, one can first downscale all GCMs to a fixed spatial resolution and then apply 575 

the methods proposed in this study and use results of each grid to calculate weights for GCMs 576 

(Najafi and Moradkhani 2015). 577 
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 Summary and Conclusion 578 

Historical data for 20 GCMs from CMIP5, as well as gridded observational data were acquired 579 

and accumulated for different temporal scales of daily, monthly and seasonal (summer and winter). 580 

GCMs were evaluated with respect to their performance in simulating the climate in Columbia 581 

River Basin for historical period. Generally, all GCMs work fairly well in simulating temperature. 582 

However for precipitation, GCMs had various behaviors. This is mainly because the average rate 583 

of daily variations in precipitation is higher than temperature (e.g. considering two consequent 584 

days, one with no precipitation, the other one with heavy rain). 585 

Utilizing daily data for 30 years, 10 metrics for 2 different parameters and different temporal scales 586 

have helped in robust assessment of models. Several metrics were chosen to investigate various 587 

aspects of model statistical properties. All metrics were treated equally and no weights were 588 

applied to the results of each metric to decrease the uncertainties. In general, GCMs usually behave 589 

differently in various methods, and no fixed methodology is presented to evaluate them. It is up to 590 

the research and the purpose of study to conduct a methodology and assess GCMs. The GCMs 591 

were also evaluated against different set of gridded observational dataset to study the effect of 592 

same on selection procedure. The presented methods can be applied/used for bias correction of the 593 

raw GCM data along with any or the statistical and dynamic downscaling method before using 594 

them in any study. This would help reduce the uncertainty in the model data. The present research 595 

should be considered as qualitative and that could be employed in dealing with GCMs data which 596 

in turn is driven by statistical properties of the data itself, which are often used in the field.  597 
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Tables 729 

Table 1.Models used in this study and their characteristics 730 

S.No. Model Center 

Atm. 

Resolution 

(Lon x Lat) 

Vertical 

levels in 

Atm. 

1 bcc-csm1-1 Beijing Climate Center, China Meteorological Administration 2.8 × 2.8 26 

2 bcc-csm1-1-m Beijing Climate Center, China Meteorological Administration 1.12 × 1.12 26 

3 BNU-ESM 
College of Global Change and Earth System Science, Beijing 

Normal University, China 
2.8 × 2.8 26 

4 CanESM2 Canadian Centre for Climate Modeling and Analysis 2.8 × 2.8 35 

5 CCSM4 National Center of Atmospheric Research, USA 1.25 × 0.94 26 

6 CNRM-CM5 National Centre of Meteorological Research, France 1.4 × 1.4 31 

7 CSIRO-Mk3-6-0 

Commonwealth Scientific and Industrial Research 

Organization/ Queensland Climate Change Centre of 

Excellence, Australia 

1.8 × 1.8 18 

8 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 48 

9 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA 2.5 × 2.0 48 

10 HadGEM2-CC Met Office Hadley Center, UK 1.88 × 1.25 60 

11 HadGEM2-ES Met Office Hadley Center, UK 1.88 × 1.25 38 

12 INMCM4 Institute for Numerical Mathematics, Russia 2.0 × 1.5 21 

13 IPSL-CM5A-LR Institut Pierre Simon Laplace, France 3.75 × 1.8 39 

14 IPSL-CM5A-MR Institut Pierre Simon Laplace, France 2.5 × 1.25 39 

15 IPSL-CM5B-LR Institut Pierre Simon Laplace, France 3.75 × 1.8 39 

16 MIROC5 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science and Technology 

1.4 × 1.4 40 

17 MIROC-ESM 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

2.8 × 2.8 80 

18 
MIROC-ESM-

CHEM 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

2.8 × 2.8 80 

19 MRI-CGCM3 Meteorological Research Institute, Japan 1.1 × 1.1 48 

20 NorESM1-M Norwegian Climate Center, Norway 2.5 × 1.9 26 

 731 

 732 

 733 

 734 

 735 

 736 
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Table 2. Summary of data types/characteristics used in each method 737 

Metric Precipitation Temperature 

Mean SA* SA 

Std dev SA SA 

CV SA SA, Data in Kelvin 

RC SA, Annual timescale SA, Data in Kelvin, Annual timescale 

Mann-Kendall SA SA 

KS-test SA SA 

PCA SA, Stdz** SA, Stdz 

SVD SA, Stdz SA, Stdz 

CCA SA, Stdz SA, Stdz 

Cluster SA, Stdz SA, Stdz 

* SA: Spatially averaged over the study area 

** Stdz: Standardized data   

 738 
Table 3. Mann-Kendall test statistics of both precipitation and temperature data (Values in bold are 739 
significant at 95%). The last two columns indicate 30-year mean change of annual precipitation and 740 
temperature for each model. 741 

S. No. Model 
Precipitation Temperature 

30-year mean change of 

annual datasets 

Z-Value P-Value Z-Value P-Value Prec. (%) Temp. (°C) 

1 BCC_CSM1_1 -2.169 0.030 3.318 0.001 -6.44 1.07 

2 BCC_CSM1_1m 3.589 0.000 1.176 0.239 12.29 0.14 

3 BNU_ESM 2.057 0.040 2.506 0.012 5.40 0.70 

4 CanESM2 -1.651 0.099 3.916 0.000 -5.44 1.18 

5 CCSM4 0.422 0.673 5.009 0.000 4.07 1.59 

6 CNRM_CM5 0.658 0.510 4.151 0.000 0.70 0.86 

7 CSIRO_MK3 1.910 0.056 1.073 0.283 7.46 0.14 

8 GFDL_ESM2G 2.232 0.026 2.381 0.017 6.12 0.57 

9 GFDL_ESM2M -2.151 0.032 1.254 0.210 -4.16 0.08 

10 HadGEM2-CC 1.281 0.200 0.372 0.710 3.66 0.07 

11 HadGEM2-ES -0.598 0.550 0.913 0.361 -0.75 0.37 

12 INMCM4 -0.034 0.973 4.268 0.000 0.42 0.98 

13 IPSL-CM5A-LR 3.484 0.000 1.558 0.119 9.71 0.32 

14 IPSL-CM5A-MR -2.229 0.026 2.448 0.014 -2.51 0.67 

15 IPSL-CM5B-LR 4.605 0.000 -0.058 0.954 8.36 0.34 

16 MIROC5 2.325 0.020 4.470 0.000 6.32 1.27 

17 MIROC-ESM -1.051 0.293 6.819 0.000 -1.24 1.81 

18 MIROC-ESM-CHEM 0.775 0.438 2.466 0.014 1.28 0.30 

19 MRI-CGCM3 0.923 0.356 0.383 0.702 1.91 0.07 

20 NorESM1-M -2.629 0.009 0.980 0.327 -4.67 -0.09 
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21 Gridded observational Data 3.039 0.002 3.431 0.001 6.95 0.61 

 742 

Table 4. Statistics calculated in the two-sample Kolmogorov-Smirnov test. 95% confidence interval and 743 
unequal tail condition are taken as the assumptions in all cases. Smaller statistics value represent less 744 
difference in cumulative density function of model and observation, and thus is of more interest. 745 

S. No. Model Precipitation Temperature 

1 BCC-CSM1-1 0.220 0.186 

2 BCC-CSM1-1m 0.130 0.189 

3 BNU-ESM 0.291 0.180 

4 CanESM2 0.135 0.251 

5 CCSM4 0.170 0.223 

6 CNRM-CM5 0.262 0.160 

7 CSIRO-Mk3 0.168 0.176 

8 GFDL-ESM2G 0.230 0.212 

9 GFDL-ESM2M 0.289 0.145 

10 HadGEM2-CC 0.142 0.238 

11 HadGEM2-ES 0.137 0.245 

12 INMCM4 0.377 0.121 

13 IPSL-CM5A-LR 0.236 0.144 

14 IPSL-CM5A-MR 0.176 0.178 

15 IPSL-CM5B-LR 0.179 0.143 

16 MIROC5 0.224 0.272 

17 MIROC-ESM 0.373 0.236 

18 MIROC-ESM-CHEM 0.371 0.239 

19 MRI-CGCM3 0.307 0.100 

20 NorESM1-M 0.179 0.185 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 
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Table 5. Heterogeneous correlation calculated for each GCM by SVD  756 

S. No. Model 
SVD 

Precipitation Temperature 

1 BCC-CSM1-1 0.090 0.824 

2 BCC-CSM1-1m 0.127 0.800 

3 BNU-ESM 0.107 0.823 

4 CanESM2 0.057 0.843 

5 CCSM4 0.100 0.830 

6 CNRM-CM5 0.071 0.862 

7 CSIRO-Mk3 0.087 0.859 

8 GFDL-ESM2G 0.067 0.845 

9 GFDL-ESM2M 0.051 0.836 

10 HadGEM2-CC 0.076 0.846 

11 HadGEM2-ES 0.064 0.775 

12 INMCM4 0.071 0.822 

13 IPSL-CM5A-LR 0.024 0.833 

14 IPSL-CM5A-MR 0.079 0.842 

15 IPSL-CM5B-LR 0.058 0.820 

16 MIROC5 0.053 0.858 

17 MIROC-ESM -0.025 0.687 

18 MIROC-ESM-CHEM -0.016 0.683 

19 MRI-CGCM3 0.053 0.816 

20 NorESM1-M 0.038 0.816 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 
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Table 6. Canonical spatial function (SF) calculated by CCA for each GCM 769 

S. No. Model 
CCA 

Precipitation Temperature 

1 BCC-CSM1-1 0.248 0.431 

2 BCC-CSM1-1m 0.183 0.150 

3 BNU-ESM 0.170 0.052 

4 CanESM2 0.129 0.099 

5 CCSM4 0.229 0.043 

6 CNRM-CM5 0.146 0.043 

7 CSIRO-Mk3 0.130 0.165 

8 GFDL-ESM2G 0.113 0.029 

9 GFDL-ESM2M 0.146 0.042 

10 HadGEM2-CC 0.260 0.125 

11 HadGEM2-ES 0.136 0.077 

12 INMCM4 0.221 -0.180 

13 IPSL-CM5A-LR -0.024 0.101 

14 IPSL-CM5A-MR 0.293 0.038 

15 IPSL-CM5B-LR 0.024 -0.179 

16 MIROC5 0.212 0.040 

17 MIROC-ESM -0.082 -0.105 

18 MIROC-ESM-CHEM -0.088 -0.151 

19 MRI-CGCM3 0.172 0.107 

20 NorESM1-M -0.005 0.073 

 770 

Table 7. List of top 10 models from 20 GCMs in the study for various temporal scales in order of decreasing 771 
ranking. (Models in bold are common to all temporal scales) 772 

No. Daily Monthly Seasonal- Summers Seasonal- Winters 

1 CCSM4 IPSL-CM5A-MR BCC_CSM1_1 INMCM4 

2 IPSL-CM5A-MR BCC_CSM1_1m GFDL_ESM2G CanESM2 

3 INMCM4 CSIRO_MK3 CanESM2 CCSM4 

4 IPSL-CM5A-LR INMCM4 BCC_CSM1_1m IPSL-CM5B-LR 

5 CanESM2 IPSL-CM5A-LR IPSL-CM5A-MR MIROC5 

6 GFDL_ESM2G CCSM4 MRI-CGCM3 GFDL_ESM2M 

7 BCC_CSM1_1 CNRM_CM5 CNRM_CM5 IPSL-CM5A-MR 

8 GFDL_ESM2M CanESM2 CCSM4 BCC_CSM1_1 

9 IPSL-CM5B-LR MRI-CGCM3 HadGEM2-CC BCC_CSM1_1m 

10 MIROC5 GFDL_ESM2G IPSL-CM5A-LR GFDL_ESM2G 

 773 

 774 
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Figures 775 

 776 

Figure 1. Study Area, Columbia River Basin (CRB) in the Pacific North-West USA 777 
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Figure 2. Boxplots depicting the distribution of precipitation and temperature in models and observation. 

Precipitation is plotted on the left, and temperature on the right. Daily, and seasonal data distribution are 

plotted from top to bottom, respectively. In each plot, observation is plotted after all GCMs, and is 

specified by green label. Acc
ep

ted
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Figure 3. (a) Mean and (+/- 1) Standard Deviation of precipitation in models and observation (Violon 

Plot), (b) Mean and (+/- 1) Standard Deviation of temperature in models and observation (Violon Plot), 

(c) Values of CV for precipitation and temperature. Precipitation is depicted using ‘*’ with values on 

the left y-axis; whereas temperature is depicted using ‘+’ with values on the right y-axis, (d) Box plot 

of RC for precipitation in all the 30 years of data analysis, and (e) Box plot of RC for temperature in 

all the 30 years of data analysis. Model numbers on x-axis are the same as those provided in table 1.Acc
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Figure 4. (a) Plots of relative distance of GCMs and gridded observational data on particular component of PCA for precipitation. 

Relative distance of GCMs on the axis of principal components compared to gridded observational data represents their proximity to 

observation, and is used to rank GCMs (the lower the distance, the closer the GCM predictions are to the gridded observational data), 

(b) Same as (a) for temperature, (c) Pareto plot (individual variance explained by principal components are represented in descending 

order by bars, and the cumulative total of variance is represented by the line) for total variance explained for a particular PCA component 

for precipitation, and (d) Same as (c) for temperature. Acc
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Figure 5. Dendograms generated with cluster analysis. (a) Cluster plot for precipitation dataset and 

(b) Cluster plots for temperature dataset. Linkage distance (between gridded observational data 

and GCMs) forms the basis of relative performance of GCM. Successive order of linkage is used 

to find the proximity of model to gridded observational data.  
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Figure 6. Performance of GCMs as evaluated against gridded observational dataset (Livneh et al. 2013) in each metric based on daily, 

monthly, and seasonal (summer and winter) data for precipitation (top), temperature (middle), and overall performance (bottom). In 

each plot, mean and median of all metrics are provided for each model in the last two rows. 
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Figure 7. Performance of GCMs as evaluated against changed gridded observational dataset (Abatzoglou 2013) in each metric based on 

daily, monthly, and seasonal (summer and winter) data for precipitation (top), temperature (middle), and overall performance (bottom). 

In each plot, mean and median of all metrics are provided for each model in the last two rows. 
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