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A Dynamic Neural Network Designed Using Analytical Methods
Produces Dynamic Control Properties Similar to an Analogous

Classical Controller

Wade W. Hilts1, Nicholas S. Szczecinski2, Roger D. Quinn2, Alexander J. Hunt1

Abstract— Human balance is achieved using many con-
current control loops that combine to react to changes in
environment, posture, center of mass and other factors affecting
stability. Though numerous engineering models of human
balance control have been tested, no methods for porting these
models to a neural architecture have been established. It is
our hypothesis that the analytical methods we have developed,
combined with classical control techniques will provide a rea-
sonable starting point for developing dynamic neural controllers
that can reproduce classical control capabilities. In previous
work, we tested this hypothesis and demonstrated that a
biologically-constrained neural controller that replicates human
balance control characteristics is achievable. The objective of
the work presented in this paper was to further understand
how parameters within the neural model affect stability and
correspond to expected changes predicted by classical control
theory. We compare the performance between the neural and
classical engineering models for bipedal balance in an inverted
pendulum balance experiment. We then carry out an extended
analysis on the performance of the neural controller by varying
neural parameters, observing the changes in system dynamics,
and comparing these changes to those predicted by the classical
model. Our methods generate compact neural systems with few
parameters, all of which are correlated to classical engineering
parameters for a given control model. This works serves as
a basis for how to port classical control problems to neural
control architectures.

I. INTRODUCTION

In recent years, neuromorphic computing chips with
promises to revolutionize computing technology have be-
come available, however, there are few synthetic neural con-
trol algorithms that can utilize them. These chips effectively
model neurons and synapses in a compact architecture that
consumes orders of magnitude less power than a comparable
digital system [1], [2]. Most synthetic neural research has
been focused around pattern recognition, image processing,
or decision making [3], [4], [5]. Almost all of these systems
do not require quick reactions to external changes or inter-
action with an unpredictable environment.

For dynamic non-linear control situations, neural nets
have been shown to provide effective means for providing
control in the face of unknowns [6], [7], [8]. However,
although these systems have abstract roots in biology, they
are engineered solutions to control problems. When they are
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applied to models of biological control, they provide little to
no insight into how an animal might be solving the control
problem. To bridge this gap, more dynamic controllers based
directly from neurobiology have been developed and applied
to robotic systems. A few neural controllers that must dynam-
ically interact with their environment have been developed
for legged systems [9], [10], [11]. These controllers quickly
process sensory data and take action to maintain effec-
tive interaction with the surrounding environment. However,
these neural systems are built on individual case studies,
and though insights can be gathered from how the control
systems worked, they are not easily portable to new problems
or systems.

To this end, tools that assist in creating neural controllers
for new systems have been developed. For example, Nengo
provides methods to set up spiking neural systems and then
train them to produce specific desired outputs [12]. We have
crafted methods in which parameters in small neural systems
can be set analytically to perform mathematical operations
such as addition, subtraction, multiplication, division, differ-
entiation, and integration [13]. These different subnetworks
can be developed and tuned independently and then con-
nected together to perform complex, multipart mathematical
or control operations.

Put into broad terms, the objective of this research is to
take an existing engineering model of biological control, and
reproduce this model’s behavior using simulated biological
circuitry (neurons and synapses). This approach is novel, no
simulated neural network with biologically realistic param-
eters and analogous classical control model parameters has
been demonstrated to perform control with similar dynamics
observed in biological test subjects. The development of
these networks is a detailed hypothesis of what types of
networks may be required to generate this performance in the
animal. We show how it is possible for simulated networks of
neurons with biologically realistic parameters to reproduce
behavior observed in biological testing.

It is our hypothesis that the analytical methods we have
developed, combined with classical control techniques will
provide a reasonable starting point for developing dynamic
neural controllers that can reproduce classical control ca-
pabilities. In previous work, we tested this hypothesis by
developing a neural controller that is analogous to a classical
control model fit to human test subject data [14]. In this
system, a PD controller with time delay and low-passed
positive feedback uses corrective torque to keep an inverted



pendulum system upright under perturbations. Parameters
in the system are first calculated using classical control
methods. Then, our analytical methods are applied to the
system to determine neural network connectivity and pa-
rameters needed to replicate the classical control results. We
present here an expansion of this work by varying network
parameters and demonstrating that network control results
also vary as predicted by classical control theory. This opens
the door for porting these systems to biologically analogous
hardware and materials, such as a neuromorphic computing
chip, or even a lab controlled growth of real neurons for use
in organismal robotics [15], [16].

II. METHODS FOR SYSTEM IDENTIFICATION AND
CONTROLLER DESIGN

A. A Linear Model for Human Balance

The human balance controller in this paper was based on
a model derived by Peterka from human test subject data
collected on a tilting platform [17]. The test subjects in
Peterka’s experiment had profound vestibular loss, and the
data was collected with their eyes closed, thus only propri-
oceptive feedback was available. Additionally, the subjects
were strapped to a fixture that allowed them to only use cor-
rective torque at the ankle joint. This experiment effectively
eliminated the contribution of vestibular and visual feedback
while constraining the corrective output to torque at the ankle
joint.

Frequency response data points were collected for these
test subjects and Peterka proposed a control architecture
to fit the test data. The plant model for the human body
consisted of a simple inverted pendulum model, free of any
damping effects. He also proposed a model for the control
response that includes a positive torque feedback with a low-
pass filter, a time delayed PD controller in the standard
controller position, and a feedforward controller modeling
the passive muscle dynamics (unaffected by the time delay)
[17]. Peterka’s results provide an engineering control model
that has been tuned to match human test data in simulation on
an inverted pendulum plant model. This engineering model
was used as the basis for the neural control structure in this
paper.

B. Identifying the Plant Model Used in the Experiment

To model an upright human maintaining balance by ap-
plying torque at the ankles, we constructed a single jointed
inverted pendulum model with a servomotor placed at the
base joint (Fig. 1) modeled by the time domain differential
equation:

Jθ̈ +bθ̇ −mghθ = Tc. (1)

Where θ is the angular position, Tc is the commanded
torque, J is the moment of inertia, b is the damping ratio and
the mgh term is the destabilizing torque due to gravity. We
assume an ideal motor that produces the commanded torque
instantly, the HEBI servomotor behaves as such. We also use
the small-angle approximation, sin(θ) = θ , to linearize the

Fig. 1. Controlled system used in experimentation. This system models
human balance control and is comprised of a several pieces of steel rigidly
fastened together, with a torque controlled servomotor acting as the base
joint.

model for the controller design process.
System identification is performed using a closed loop

controller because the inverted pendulum plant model is
unstable for open-loop position control. The moment of
inertia, destabilizing torque due to gravity of the system were
measured before the experiment. These values were found
to be J = 0.44 kg·m2, and mgh = 9.5 kg·m2/s2 respectively.
The damping ratio was derived from test data. A proportional
controller was used to experimentally determine the gain and
phase shift of the system output with a closed loop transfer
function of the form:

θact

θdes
=

Kp

Js2 +bs−mgh+Kp
=

GcGp

1+GcGp
. (2)

Where Gc = Kp represents the proportional controller and
Gp is the plant model. An 8-degree peak to peak sinusoidal
commanded position signal was used. The proportional gain,
Kp, was set to 30.

The servomotor used to control the system had more
complex dynamics at torque values near zero and introduced
damping to the system. A state space model of this system
was constructed in MATLAB, and the theoretical form of
the model enforced by using the greyest linear function
fitting tool. The damping ratio parameter was set completely
free and the other known parameters were fixed to their
measured values. The greyest function was used to optimize
the damping ratio value to best match experimental results
by minimizing the error between the model prediction and
the experimental data. The damping ratio was found to be
b=0.40.

C. Designing a Controller to Produce a Closed Loop Re-
sponse Similar to the Test Subject Data

After identifying a linear plant model for the inverted
pendulum system, a controller that produces similar fre-
quency response characteristics as the human test subjects
was developed. The proposed control system takes a single



input, the inverted pendulum’s angular position, and outputs
a corrective torque that is applied at the base joint. This
control system can be represented by the block diagram in
Fig. 2 and closed loop transfer function (eq. 3):

∑ G
+_

Cmd 
Position

Cmd 
Torque

Actual
Position

c

HT

Gpτd

Fig. 2. Block diagram of human balance control engineering model.
There are two nested feedback loops. The inner feedback loop consists of
a time delayed controller receiving a low-passed positive torque feedback
signal. The outer loop provides negative angular position feedback from the
measured response of the plant model.

θact

θdes
=

τdGcGp

1− τdGcHT + τdGcGp
(3)

Gp =
1

Js2 +bs−mgh
(4)

Gc = Kp +Kds (5)

HT =
Ktωc

s+ωc
(6)

τd =
(−τs+2)
(τs+2)

≈ e−τs (7)

Where Kp is proportional gain, Kd is derivative gain, Kt is
positive torque feedback gain, ωc is low-pass filter cutoff fre-
quency and τ is a time delay. A first order Padé approximant
was used to linearize the time delay (eq. 7).

Using a similar method as in the plant model identification,
the above transfer function was converted into state space
form and plugged into the MATLAB greyest function. We
set the time delay, low-pass filter cutoff frequency, and the
proportional, derivative and torque positive feedback gains as
free parameters and used the greyest function to minimize
the error between the test subject data and the controlled
system’s forecasted closed loop frequency response. This
process produced a controller for our inverted pendulum
plant model that would emulate the response of a blindfolded
human with vestibular loss on a tilting platform using only
corrective torque at the ankle joints.

The classical controller was validated using MATLAB’s
system identification toolbox to derive the closed loop trans-
fer function of the controlled system. We used time domain
experimental data to determiine a transfer function. Filtered
Gaussian white noise was sent as an input, with a low-
pass filter applied that removed frequencies above 2 Hz. The
max amplitude was set at 8 degrees peak to peak, which
represented the majority of the operating space observed in
the human data [17]. We took the input and output time
domain data and fit it to a fourth order transfer function
using the MATLAB System Identification toolbox. Based on
the plant model and the controller design that was defined
in (eq. 3), the resulting closed loop system should be well

represented by a transfer function with 4 poles and 3 zeros.
The transfer function fit to this data was then compared to
the human data and the theoretical prediction of the classical
controller’s performance.

III. METHODS FOR DYNAMIC NEURAL CONTROL
SYSTEM DESIGN

The neural controller, shown in Fig. 3, was created by
connecting a series of subnetworks to create a PD controller
with a time delay and low passed positive torque feedback.
The neurons and synapses in each subnetwork are assigned
specific characteristics and connections to approximate the
mathematical operations of the classical controller. This
work utilizes a leaky integrator non-spiking neuron model.
Information is encoded in the neurons’ membrane voltage,
and is transmitted via synaptic connections. The membrane
voltage of a neuron is governed by:

Cm
dV
dt

= Ileak + Isyn + Iapp, (8)

where Cm is the membrane capacitance, V is membrane
voltage, and Ix are the various current sources and sinks.
The leak current is:

Ileak = Gm · (Er −V ). (9)

Where Gm is the membrane conductance. Neurons can trans-
mit signals via synapses. This input current, Isyn, is defined
as:

Isyn =
n

∑
i=1

Gs,i · (Es,i −V ). (10)

Where Gs,i represents the synapse conductance of the ith
synapse. The synapse conductance can be described by a
piecewise function:

Gs,i =


0 Vpre < Elo

gs,i
Vpre−Elo
Ehi−Elo Elo ≤Vpre ≤ Ehi.

gs,i Vpre > Ehi

(11)

Equation 11 parametrizes the range over which postsynaptic
neurons receive increasing current from presynaptic neu-
rons, after which the synapse is saturated at its maximum
conductance, g(s, i). Elo and Ehi are the lower and upper
thresholds of this conductance activation range. Iapp, is an
external stimulus current. For the purpose of this simulation,
the external stimulus current is injected into a neuron to
represent outside information, such as the angular position
of the inverted pendulum model.

A. Subnetworks

A graphical representation of each subnetwork is shown
in Fig. 4. For more details on the formulation of the network
and parameter choices, see [13], [14], [18]. The parameters
for the neural controller are for a network designed with
an operating range of 20 mV. Since the selected control
parameters called for large gain values that stretched the
linear bounds of Szczecinski’s multiplication subnetworks,
we increased the synapse conductance to preamplify input
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Fig. 3. A network of neurons and synapses that outputs a torque command based on a joint angle input signal. The circuit is a collection of interconnected
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(about the marginally stable midpoint) of the pendulum system. CW and CCW torque response signals are manifest in the membrane potentials of neurons
14 and 22.
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Fig. 4. Graphical representations of the neurons and synapses. From left
to right: addition, subtraction, multiplication and derivative subnetworks.
Synapses terminating in a triangle are excitatory, whereas the shaded circular
terminals are inhibitory synapses. For details, see [13].

signals to the multiplication network. This allows the mul-
tiplication subnetworks used in the proportional, derivative
and positive feedback portions of the neural controller to
function as modulating circuits, allowing a secondary gain
adjustment between 0.1 and 1. Another useful tunable pa-
rameter in these subnetworks is the neuron time constant. In
our model, neurons behave as RC low-pass filters where the
cutoff frequency is determined by the membrane capacitance
and conductance. We used this property to filter out high
frequency noise from the motor position feedback signal and
the commanded torque output signals. It also is used to filter
the positive torque feedback signal.

The neural system control parameters were matched to
the classical control parameters by hand tuning synapse
conductances and multiplication neuron stimulus currents.
This was validated by sending a test signal to the network
and observing the output.

B. Simulating the Network in Animatlab
The subnetworks outlined above were assembled into a

larger network (Fig. 3) that emulates the classical controller
design. The network was simulated in Animatlab [19], an
open source neuromechanical simulation tool. It provides a
powerful environment based in C++ that can perform neural
network simulation in real-time. It simulates the same leaky
integrator non-spiking neuron model as used in Szczecinski’s
subnetworks [13]. Animatlab also allows the user to construct
a visual model of the network and graphically represent the
signal at different points throughout the circuit.

Animatlab has the ability to interface with external devices
or software via a serial connection. In order to control
the HEBI X8-9 torque control servomotor in the inverted
pendulum system, the HEBI MATLAB API is used to send
torque commands and pull feedback information from the
servomotor (Fig. 5). The control loop timing was enforced
by the HEBI MATLAB API, and the control loop was run at
a sampling frequency of 150 Hz. Achieving faster sampling
times was not limited by processing time, it was limited by
the effects of ’jitter’ in the Windows 10 OS. A constant +/-
1 ms jitter was observed for each sample duration, thus a
slower sampling time reduced the error caused by jitter.

Animatlab 

Simulation

Motor & 

Pendulum

θ Feedback

Torque Command

Desired θ, 

Feedback θ

Torque Commands

{Serial}{Ethernet}

Fig. 5. Schematic representation of information flow between software
and hardware platforms. MATLAB manages the communication between
the motor/pendulum system and the neural controller in Animatlab.



IV. RESULTS

For the controllers in this study, we collected time domain
data on both the classical and neural closed loop controllers
operating on the physical motor/pendulum system. Fitting a
4-poles, 3-zeros transfer function to this input/output data
resulted in the highest degree of accuracy compared to other
transfer function forms for both the neural and classical
controllers. The controller parameters that were found to be
the best fit using the greyest function are Kp=11.69, Kd=1.90,
Kt=0.0548, ωc=0.209 and τ=0.0774. Tables displaying the
neural system parameters selected to emulate the classical
control performance are provided in the supplementary ma-
terials submitted with this paper.

The neural and classical controllers’ gain and phase mar-
gin in the frequency domain matched well, having significant
overlap and following similar trajectories (Fig. 6). All of the
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Fig. 6. Comparison of human test data with the responses of the classical
controller design in both simulation and experiment, as well as the response
of the neural controller in an experiment

tested and simulated models agreed reasonably well with the
phase and gain plots of the human test data, until they diverge
near 0.4 Hz. The human data drops in gain and phase much
quicker than the other models beyond this threshold. The
neural system response exhibits a slight swell in gain and
phase in the higher frequencies between 0.5 and 1.5 Hz that
the classical controller simulation and experimental data do
not show.

A. Neural Controller Parameter Sensitivity Testing Results
The neural controller has different behavior depending

on the gains assigned within the network. We tested how
changes in these gains affected the overall system and
compared the results to the simulated classical model’s
prediction. The neural controller’s gain was less than the
simulated prediction in all cases, but the overall shape of
the gain and phase plots were similar. The highest gain on
the derivative gain plot disagreed most significantly from the
experimental data. For clarity of understanding, the multi-
plication subnetwork gains controlled by a stimulus current
within the network have been converted to their classical
control parameter equivalents in the proceeding figures.

V. DISCUSSION

We hypothesized that the analytical methods we have
developed, combined with classical control techniques will
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Fig. 7. The frequency response of the neural controller and motor/pendulum
system is explored with various parameter gain values. The dashed lines
correspond to the classical model simulation and the solid lines are the
neural controller experimental results.

provide a reasonable starting point for developing dynamic
neural controllers that can reproduce classical control capa-
bilities. We demonstrated this by taking a classical control
model fit to test subject data and capturing core dynamical
features with a network of continuous time model neurons
(demonstrated in the frequency domain in Fig. 6). Our
experiment shows that continuous time neural systems are
capable of emulating classical control for an inverted pen-
dulum, however this process could be generalized to any
physical system that can be linearly modeled. To do this,
the control designer can specify the desired dynamics of
the systems and perform system analysis in the well-mapped
classical controls domain. The resultant controller can then
be converted into a neural counterparts and tuned to produce
the desired gains. These subnetworks can be connected
together to produce the final desired control network with
no further tuning. While the network designed in this paper
succeeded in replicating control dynamics observed in human
test subjects, it also was designed with biologically realistic
simulation parameters in the neural controller.

When fitting a transfer function to experimental data, it
was found that a 4 poles, 3 zeros transfer function provided
a better fit than other transfer function orders. This suggests
that our overall theoretical transfer function (eq. 3) for the
system model was an accurate representation.

The controllers simulated and tested in this paper de-
viated from human test data more significantly at higher



frequencies. This stems from the lack of muscle dynamics. A
feedforward PD component was included in Peterka’s model
to account for passive muscle dynamics [17], [20], and it
was intentionally omitted in our work as it is an artifact of
the physical constraints of the human body - not a deliberate
control calculation.

The figures in Section IV-A that show varied gains within
the network gave a qualitative display of the neural con-
troller’s versatility in modulating the inverted pendulum
system’s dynamics. The classical model simulation was able
to predict the general behavior and effects of the neural
controller parameter variation, although significant differ-
ences in magnitude were observed in some cases near the
highest gains. As the system gains approach 10 dB, the
sin(θ )=θ linearizing approximation used in the classical
model begins to lose its accuracy. Most notably, this range of
performance was achieved solely by adjusting the stimulus
currents in the multiplication subnetworks. This provides
the ability for the neural controller to update its internal
gains, without changing any fundamental parameters such
as synapse conductance, time constants and other biological
analogs determined in the design process. Since the neural
controller’s behavior changed in a manner that correlated to
the classical simulation, neural control design and tuning can
be partially carried out using classical methods before being
fine tuned in the neural form.

In future works, this neural control design process can
be used to build large models of balance control with a
cascaded control model built off of many neural subnetworks.
Centralized vestibular and visual information can be used
to determine the desired stabilizing maneuvers that are
necessary to achieve the optimal posture for quality sensory
feedback and minimize the likelihood of falling over [20].
Engineering models of human balance control that include
vestibular and visual feedback loops, with the reliance on
each of these sensory signals varying with their quality, have
already been postulated [21], [17].
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