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MULTILEVEL HIERARCHICAL DECOMPOSITION OF FINITE
ELEMENT WHITE NOISE WITH APPLICATION TO MULTILEVEL

MARKOV CHAIN MONTE CARLO

HILLARY R. FAIRBANKS1 AND UMBERTO VILLA2 AND PANAYOT S.
VASSILEVSKI1,3

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA, USA

2Electrical & Systems Engineering Department, Washington University in St. Louis, St.
Louis, MO, USA

3Fariborz Maseeh Department of Mathematics and Statistics, Portland State University,
Portland, OR, USA

Abstract. In this work we develop a new hierarchical multilevel approach to generate
Gaussian random field realizations in an algorithmically scalable manner that is well-suited
to incorporate into multilevel Markov chain Monte Carlo (MCMC) algorithms. This ap-
proach builds off of other partial differential equation (PDE) approaches for generating
Gaussian random field realizations; in particular, a single field realization may be formed
by solving a reaction-diffusion PDE with a spatial white noise source function as the right-
hand side. While these approaches have been explored to accelerate forward uncertainty
quantification tasks, e.g. multilevel Monte Carlo, the previous constructions are not directly
applicable to multilevel MCMC frameworks which build fine scale random fields in a hier-
archical fashion from coarse scale random fields. Our new hierarchical multilevel method
relies on a hierarchical decomposition of the white noise source function in L2 which allows
us to form Gaussian random field realizations across multiple levels of discretization in a
way that fits into multilevel MCMC algorithmic frameworks. After presenting our main the-
oretical results and numerical scaling results to showcase the utility of this new hierarchical
PDE method for generating Gaussian random field realizations, this method is tested on a
four-level MCMC algorithm to explore its feasibility.

Keywords. Gaussian random field, nonlinear Bayesian inference, Markov chain Monte
Carlo, multilevel Markov chain Monte Carlo, high-dimensional uncertainty quantification,
algebraic multigrid

1. Introduction

Spatially correlated random fields are commonly used in the numerical simulation of partial
differential equations (PDEs) with variable coefficients. In the case where these coefficients
are not well known, as is typically the case in many geophysics applications where the
coefficient describes a physical parameter, the coefficient is modeled as a random field, and
uncertainty quantification (UQ) may be applied as a tool to assess the reliability of the
model as well as the sensitivity to changes in this parameter. To reduce the uncertainty in

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-820098).
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the system, we may further improve the model by utilizing observational data in a Bayesian
framework. That is, data related to the model output, as well as information about the
model may be combined to learn the probability distribution of the variable coefficient.

For large-scale applications, common methods to perform Bayesian inference are infeasible.
With the refinement of the spatial discretization scheme, both forming realizations of these
random fields and performing forward PDE simulations are computationally demanding,
as many approaches do not scale with the increase in problem size. Furthermore, Bayesian
inference approaches are typically limited to Markov chain Monte Carlo (MCMC) [40, 31, 44],
and its variants, which require a large number of simulations as the parameter space is
explored. However infeasible this approach may be, MCMC methods still lie at the root of
many nonlinear Bayesian inference algorithms due to ease of implementation as well as the
ability to be applied in a blackbox fashion.

Over the recent decades new MCMC approaches have been developed to accelerate the
parameter space exploration, in some cases allowing to perform nonlinear Bayesian inference
on large-scale applications. Notable approaches include those which utilize local approxi-
mations of the Hessian and gradient to modify the MCMC proposal [39, 43, 18, 19, 12, 10].
This method, dubbed, stochastic Newton MCMC, was shown in [43] to accelerate mixing;
however, it requires gradient and Hessian information in addition to having solvers for the
forward PDE and adjoint PDE models, as opposed to simply having the forward PDE model.

Another class of approaches includes delayed acceptance MCMC algorithms, which utilize
cheaper model approximations to accelerate the parameter search (also via proposal distribu-
tion modification) [13]. Several works have been completed that develop and explore the use
of cheaper models with coarser spatial discretizations in a two-stage or multilevel framework.
Early works that employ coarser spatial discretizations include [33] and [24]; the former uti-
lizes a Metropolis coupled MCMC to swap proposals between coarse and fine chains, and
the latter performs a delayed acceptance where sample proposals are only completed with
the fine grid solver if their associated coarse grid solutions have been accepted. More recent
works have investigated multilevel MCMC approaches. In particular, in [22], the authors
developed an approach to both accelerate the mixing of the MCMC chain by using multiple
levels, each with coarser spatial discretizations, and accelerate the sampling by perform-
ing variance reduction via multilevel Monte Carlo following the ideas of [32, 28, 8, 14, 48].
Analysis of a multilevel MCMC was completed in [34]. While promising speed up results
have been shown, numerical testing has been limited to 2D spatial domains and structured
meshes.

While scalable solvers are available for several classes of PDE forward models, the sampling
of large-scale Gaussian random field on unstructured meshes in an algorithmically scalable
manner is still a challenging task. The use of a Karhunen-Loève (KL) expansion to form
Gaussian random field realizations requires calculating the eigenvalues and eigenfunctions
of the covariance function [27]. A straightforward, though perhaps näıve implementation
will have a cost that grows cubically with the degrees of freedom associated with the spatial
discretization of the random field, i.e., the mesh size. While there are tools to improve this
scaling, e.g., hierarchical matrix formations [9] or Nyström methods [51], storage and the
ability to calculate the KL expansions for unstructured meshes are roadblocks to large-scale
and extreme-scale applications. Other approaches to sampling, such as circulant embed-
ding [30], are not directly applicable to problems with unstructured meshes.
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An alternative scalable approach to generate random field realizations is via the stochastic
reaction-diffusion PDE formulated in [50] and solved with finite elements in [38]. Using this
approach, each independent realization requires solving the stochastic PDE with an inde-
pendent realization of spatial white noise function as forcing term. Applying this approach
in a multilevel setting, such as multilevel Monte Carlo or multilevel MCMC requires forming
coupled realizations of Gaussian random fields on multiple levels of discretization. A few
works have completed this, including [23] where fine and coarse level realizations are coupled
together to perform massively parallel multilevel Monte Carlo. In [41, 42] the authors solve
a mixed PDE on the space of piecewise constants, and generate matching fine and coarse
realizations by restricting the fine grid spatial white noise to the coarse level, using opera-
tors and solvers from element agglomerated algebraic multigrid (AMGe). In [16] the authors
couple the coarse and fine level realizations using the primal formulation of the PDE.

While these approaches have been incorporated successfully into the multilevel Monte
Carlo framework, they are not useful in the multilevel MCMC framework. This is because,
in the multilevel MCMC approach, we must first sample from the coarse level, and then
form a fine level random field in a hierarchical manner from the coarse realization. As this
sampling approach has not yet been developed (to the best of the authors’ knowledge), this
paper seeks to fill this void.

1.1. Contributions of this Work. In this work, we develop an algorithmically scalable,
hierarchical Gaussian random field sampling method that can be used to construct proposals
distributions in the multilevel MCMC framework. Specifically, we plug our sampling method
into the multilevel MCMC framework of [22], though it is also applicable to other two-
level MCMC or delayed acceptance MCMC approaches discussed earlier. To do this, we
utilize the finite element solvers from [42] to map an independent realization of spatial white
noise to a Gaussian random field realization. Within this mapping, we incorporate a new
component: a hierarchical decomposition of the white noise (via L2 projection operators)
across discretization levels. This new feature allows us to perform MCMC stepping on coarse
level white noise, extend it to a finer level, and then perform an MCMC step on independent
white noise in the complementary space.

The remainder of this paper is organized as follows. In Section 2, mathematical notation
relevant to Gaussian random fields is presented. Our new hierarchical approach is presented
in Section 3; this includes the theoretical aspects of performing a hierarchical direct decom-
position of white noise – in a two-level and multilevel framework – resulting in a hierarchical
approach to form Gaussian random field realizations. The numerical implementation is dis-
cussed in Section 4, in the form of algorithms, as well as visualizations of the random field
hierarchical decomposition. Section 5 explores the cost and scaling of our multilevel hier-
archical sampling technique applied to the Egg Model [35] using three levels; in particular,
we show that the algorithm is scalable. Section 6 incorporates this new hierarchical sam-
pling technique into a four-level MCMC following the approach of [22], and shows that we
obtain similar improvements in the multilevel acceptance rate, variance decay, and total
computational cost when compared to the single-level approach.

1.2. Mathematical Notation. As a reference to the reader, we define the majority of this
paper’s notation in Table 1. The first section of the table introduces general variables that
provide a basis for the majority of the mathematical notation. The second section of the
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table refers to discrete variables that are used in various finite element representations, and
that are frequently referred to throughout this work.

2. Gaussian Random Fields

In this work we consider a particular class of random fields, that is, spatially correlated
Gaussian random fields, which in this context, will be used to describe an uncertain physical
process. Define the probability space (Ω,F ,P), with sample space Ω, σ-algebra F , and
probability P. Given the spatial domain of interest D ⊂ Rd, with d = 2, 3, we seek to form
random field realizations of {u(x, ω) ∈ L2(D) : x ∈ D, ω ∈ Ω}, that follow a Gaussian
prior density u ∼ N (0, C) with zero mean and covariance operator C. To ensure the mesh
independent statistics of the random field u, C is a trace-class operator [47]. Specifically, we
define the covariance operator as the squared inverse elliptic operator (see e.g. [25, 11, 43]).
That is,

(1) C = A−2 with Au := − div

(
1

g
∇u
)

+
κ2

g
u,

where κ denotes the inverse of the correlation length and g controls the marginal variance
of the field. Using the above notation, we then define the probability density function as

(2) dµ(u) ∝ exp

(
−1

2
〈Au,Au〉

)
,

where 〈Au,Au〉 =
∫
D

(Au)2dx.

Table 1. Mathematical Notation.

Variable Description

x ∈ D ⊂ Rd Point in spatial domain, d = 2 or 3
ω ∈ Ω Outcome of Sample Space
u ∈ Θ := L2(D) L2 function defined over D
ζ := ζ(x, ω) White noise function in D
q ∈ R := H(div;D) H(div) function defined over D

Discrete Variable

h,H Subscripts to denote fine and coarse level objects
` Subscript denoting running level ` index, with ` = 0 as finest
k Subscript denoting target level of an algorithm
T` Level ` finite element triangulation
u` ∈ Θ` Piecewise constant function defined on T`
Q` Orthogonal projection from L2 to Θ`

P` Interpolation operator mapping between Θ`+1 and Θ`

Π` Restriction operator mapping between Θ` and Θ`+1

ζ` White noise representation in Θ`

ζ` Coefficient vector of white noise finite element representation in Θ`

ξ` Vector of random elements
b` Vector representation of white noise in Θ`

q` ∈ R` Function of the lowest order Raviat-Thomas space on T`
M`, B`,W` Mass matrices for various level ` spaces
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As described in [50, 38], for unbounded domains D := Rd, the covariance operator in (1)
leads to a Gaussian random field of the Matérn family with smoothness parameter ν and
marginal variance σ2 respectively given by

ν = 2− d

2
and σ2 =

g2Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν
.

In particular, in three-spatial dimensions, this gives the well-known exponential covariance
operator

(Cu)(x) :=

∫
D

cov(x,y)u(y)dy, with cov(x,y) :=
g2

8πκ
exp (−κ ‖x− y‖2) .

For a finite domain D ⊂ Rd, suitable boundary conditions need be stipulated to reduce
boundary artifacts, see e.g. [45, 36, 20]. In this work, we choose to extend the domain D to
a larger domain D ⊂ Rd and equip A with homogeneous Neumann boundary conditions on
∂D, as described in [42].

For sample-based UQ approaches—such as standard Monte Carlo—we desire to generate
samples of this random field u(x, ω) to serve as input field data to a model of interest. In
our application (which we further detail in Section 6), we wish to generate permeability field
realizations, k = exp(u(x, ω)), each of which serves as an input to Darcy’s equations.

2.1. A Stochastic PDE Approach for Finite Element Random Fields. As presented
in [25, 11, 43], a realization of a Gaussian random field, with covariance operator C given by
(1), can be generated by solving the stochastic reaction-diffusion PDE

Au = ζ,

where ζ := ζ(x, ω) is spatial Gaussian white noise. The spatial Gaussian white noise ζ is an
L2(D)-bounded generalized function [38, Appendix B], such that

(3) 〈ζ, v〉 ∼ N (0, ‖v‖2
L2(D)) ∀v ∈ L2(D).

In the following, we consider a particular PDE-based approach that uses a mixed formulation
to generate field realizations. That is, we follow the approach of [41, 42], which allows us
to work in the space of piecewise constants. For large-scale applications this is beneficial as
it provides a natural way to define spatial white noise, and the associated mass matrix is
easily diagonalizable.

2.1.1. A Mixed Formulation. For a fixed ω ∈ Ω, a Gaussian random field realization u :=
u(x, ω) is calculated by solving the stochastic PDE:

(4)
(ρ, s) + (div s, u) = 0 ∀s ∈ H(div)
(divρ, v)− κ2 (u, v) = −g 〈ζ, v〉 ∀v ∈ L2,

where (·, ·) denotes the L2(D) inner product [41, 42]. Above, the spatial Gaussian white noise
ζ := ζ(x, ω) is a zero-mean random Gaussian field on D such that 〈ζ, v〉 ∼ N (0, ‖v‖2

L2(D)),

for any function v ∈ L2(D) (see (3)). Note, properties of finite element white noise will be
discussed in the following section.

Define the spaces Θ = L2(D) with inner product (u, v) =
∫
D
uvdx for all u, v ∈ Θ and

R = H(div;D) := {q ∈ [L2(D)]d| div q ∈ L2(D), q · n = 0 on ∂D} with inner product
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(q, s) =
∫
D
q · sdx for all q, s ∈ R. Let Rh,Θh be the pair of the lowest order Raviart-

Thomas and piecewise constant finite element spaces associated with the given triangulation
Th.

For a fixed ω ∈ Ω, discrete solutions ρh ∈ Rh and uh ∈ Θh are calculated from the mixed
system,

(5)
(ρh, sh) + (div sh, uh) = 0 ∀sh ∈ Rh

(divρh, vh)− κ2 (uh, vh) = −g 〈ζ, vh〉 ∀vh ∈ Θh.

2.1.2. Finite Element Representation of White Noise. Since moments of ζ are well-defined
for functions in Θh, we can define the mapping Qh : ζ 7→ Qhζ ∈ Θh using the identity

(6) (Qhζ, vh) = 〈ζ, vh〉 ∀vh ∈ Θh.

That is, a realization of white noise on a given finite element mesh Th can be represented in
Θh using the mapping Qh as follows

(7) ζh := Qhζ =
∑
τ∈Th

ζτχτ ,

where {χτ} is an L2-orthogonal basis of piecewise constants spanning Θh.
Using the expansion in (7) and the equivalence in (6), it follows that the righthand side of

(5) will have the coefficient vector bh ≡ ((ζh, χτ ))τ∈Th . As a consequence of using piecewise
constant basis functions, each inner product simplifies as

bh = (ζh, χτ ) = ζτ‖χτ‖2.

In other words, bh = Whζh, where Wh the diagonal mass matrix for the space Θh and bh is
the vector collecting the coefficients ζτ in the expansion (6).

To generate realizations of white noise in Θh, we consider the following properties (see [6,
Section 1.4.3] and [7, Section 2.4.5] for details). We note that, while we present these prop-
erties with respect to an L2-orthogonal basis of piecewise constants, they can be generalized
to the situation of a non-orthogonal basis.

Property 2.1 (White noise in Θh). Let ζ be white noise in D. Then, for the projection of
ζ onto the basis {χτ}τ∈Th of Θh, denoted ζh as in (7), it follows that,

E[(ζh, χτ )] = E[〈ζ, χτ 〉] = 0,

and

E[(ζh, χτi)(ζh, χτj)] = E[〈ζ, χτi〉
〈
ζ, χτj

〉
] = (χτi , χτj),

which implies

E[((ζh, χτi))τi∈Th (((ζh, χτi))τj∈Th)T ] = ((χτi , χτi))τi,τj∈Th = Wh,

where Wh is the (diagonal) mass matrix for the space Θh.

These properties follow from the theoretical aspects of white noise. Specifically, the covari-
ance between two volumes A and B (within D) is equivalent to the mass of the intersection
of the two volumes (further theoretical aspects of Gaussian white noise may be found in
[6, 7]), and for finite element white noise this implies that the covariance is equivalent to the
mass matrix. Using the above properties, we can show that for Whζh to be a realization of
Gaussian white noise, we require ζh = (ζτ )τ∈Th ∼ N (0, W−1

h ).



ML HIERARCHICAL DECOMPOSITION OF FINITE ELEMENT WHITE NOISE 7

Lemma 2.1. Given the basis {χτ}τ∈Th of Θh, associated mass matrix Wh = ((χτi , χτi))τi,τj∈Th,

and ζh = (ζτ )τ∈Th sampled from N (0, W−1
h ), it follows that Whζh is a realization of white

noise in Θh.

Proof. Following Property 2.1, it is sufficient to show that E[Whζh] = 0 and E[Whζh(Whζh)
T ] =

Wh. As ζh ∼ N (0, W−1
h ), it is clear that E[Whζh] = 0. As for the covariance, we have

E[Whζh(Whζh)
T ] = WhE[ζhζ

T
h ]Wh

= Wh.

�

2.1.3. Finite Element Representation of Gaussian Random Fields. In the actual computation
of uh, we use the equivalent vector representation for the righthand side of (5), defined as

(8) −gbh = −gW 1/2
h ξh,

with ξh ∼ N (0, I). We note this equivalence is made clearer in Section 4. As we are in the
space of piecewise constants in L2, the square root of the (diagonal) mass matrix Wh is easily
calculated. Let Mh be the mass matrix associated with inner product (ρh, sh) and Bh the
mass matrix associated with the bilinear form (div sh, uh). Then the matrix representation
of (5) is given as

(9)

[
Mh BT

h

Bh −κ2Wh

] [
ρh
uh

]
=

[
0
−gbh

]
,

with bh defined by (8).
For ease of notation, we introduce the scaled negative Schur Complement of (9) defined

by

(10) Ah :=
κ2

g
Wh +

1

g
BhM

−1
h BT

h .

As demonstrated in [41], solutions uh of the mixed system in (9) are discrete realizations of a
Gaussian random field with density µh ∼ N (0, Ch), where Ch = A−1

h WhA
−1
h . It then follows

that the corresponding probability density function is

(11) µh(uh) ∝ exp (−uThAhW−1
h Ahuh) = exp (−bThW−1

h bh).

3. Multilevel Hierarchical Decomposition of Finite Element White Noise

In what follows we study the computational aspects of sampling the righthand side in (5)
from a coarse finite element space ΘH ⊂ Θh, and its (direct) hierarchical complement space
(I − QH)Θh, where QH : L2 7→ ΘH is the corresponding L2-projection. For any ζh ∈ Θh,
we use the two-level hierarchical decomposition

ζh = QHζh + (I −QH)ζh

to decompose ζh into the spaces ΘH and Θh\ΘH . Since we work with spaces of discontinu-
ous (piecewise constant) functions Θh and ΘH with associated mass matrices Wh and WH ,
respectively, the projection QH is easily implemented (by inverting a diagonal (coarse) mass
matrix).
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Define P to be the interpolation matrix that relates the coarse coefficient vector ζH of ζH
(expanded in terms of the basis of ΘH) and the fine coefficient vector ζh of ζH ∈ ΘH ⊂ Θh

expanded in terms of the basis of Θh. That is,

ζh = PζH .

Let Π = W−1
H P TWh denote the restriction operator, then PΠ is the matrix representation

of QH and ΠP = I. That is, we have PζH = PΠζh, or ζH = Πζh.
In what follows, we first seek to show that QHζh gives rise to a coarse random coefficient

vector ζH ∼ N (0, W−1
H ).

Lemma 3.1. Let ζh ∈ Θh, with coefficient vector ζh ∼ N (0, W−1
h ). Then ζH ≡ QHζh has

coefficient vector ζH ∼ N (0, W−1
H ).

Proof. Given the associated coarse coefficient ζH = Πζh with ζh ∼ N (0, W−1
h ), it is clear

the mean is zero. For the covariance matrix, we have

E[ζHζ
T
H ] = E[Πζh(Πζh)

T ]
= W−1

H P TWhE[ζhζ
T
h ]WhPW

−1
H

= W−1
H .

Above, we use E[ζhζ
T
h ] = W−1

h and the Galerkin relation between the coarse and the fine
level mass matrices, WH = P TWhP . �

Next we present our main lemma, which allows us to utilize this two-level, hierarchical
decomposition to form a realization of white noise on Θh.

Lemma 3.2. Let ζH ∈ ΘH be a coarse representation of white noise with a coarse coefficient
vector ζH ∼ N (0, W−1

H ), and let ζh ∈ Θh be a fine representation of white noise with fine
coefficient vector ζh ∼ N (0, W−1

h ), such that ζH and ζh are independent. Then the fine level
function

(12) ζ
′

h = ζH + (I −QH)ζh

is a representation of the white noise in Θh.

Proof. First, consider the coefficient vector of ζ
′

h, given as

(13) ζ
′

h = PζH + (I − PΠ)ζh.

To prove ζ
′

h is a representation of Gaussian white noise, we must show Definition 2.1 holds,
that is E[ζ

′

h] = 0, and E[ζ
′

h(ζ
′

h)
T ] = W−1

h . We assume that ζH and ζh are independent, which
implies that E[ζHζ

T
h ] = E[ζH ]E[ζTh ] = 0. Hence for the covariance matrix, we have

E[ζ
′

h

(
ζ
′

h

)T
] = E[(PζH + (I − PW−1

H P TWh)ζh)(PζH + (I − PW−1
H P TWh)ζh)

T ]
= PE[ζHζ

T
H ]P T + (I − PW−1

H P TWh)E[ζhζ
T
h ](I −WhPW

−1
H P T )

= PW−1
H P T + (I − PW−1

H P TWh)W
−1
h (I −WhPW

−1
H P T )

= W−1
h .

That is, ζ
′

h ∼ N (0, W−1
h ); hence ζ

′

h is a fine finite element representation of white noise. It
is clear also that ζH = QHζ ′h and (I −QH)ζh = (I −QH)ζ ′h. �

In conclusion, the finite element hierarchical (direct) decomposition based on QH provides
a hierarchical decomposition of the fine finite element white noise into a coarse finite element
representation of white noise plus a computational hierarchical (direct) complement which
also involves fine finite element representation of white noise.
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3.1. The multilevel hierarchical decomposition. To extend the the above two-level hi-
erarchical decomposition of Gaussian white noise to a multilevel hierarchical decomposition,
we introduce the following notation. Let T0 ≡ Th denote the finest level triangulation of D,
with a hierarchy of L coarser levels given as {T`}L`=1, such that TL represents the coarsest
triangulation. We consider the finite element space Θ` to be the space of piecewise con-
stant functions associated with the triangulation T`, for ` = 0, . . . , L, and with mass matrix
W`; and R` the lowest order Raviart-Thomas space associated with the triangulation T`.
Additionally, define the sequence of L2-projections Q` : L2 7→ Θ` with ` = 0, . . . L.

In what follows, we construct the multilevel hierarchical decomposition of white noise for
a given level k < L.

Theorem 3.1. Consider the representations of white noise, given as ζ` ∈ Θ` with associated
coefficient vectors ζ` ∼ N (0, W−1

` ), for ` = k, . . . , L, such that each ζ` is independent. Then
the level k function

(14) ζ
′

k = ζL +
L−1∑
`=k

(I −Q`+1)ζ`,

with k < L, is a representation of the white noise in Θk.

Proof. From Lemma 3.1 the result is clear for k = L − 1, i.e., the two-level case. For
additional levels, the result follows by applying Lemma 3.1 in a recursive manner. �

The associated coefficient representation is defined similarly to (13); however, we replace
the subscript h with k to denote the level, and let Pk be the interpolation matrix that maps
the level k + 1 coefficient vector ζk+1 of ζk+1 to the level k coefficient vector ζk of ζk, such
that ζk = Pkζk+1. This hierarchical coefficient representation (in two-level form) is given as

(15) ζ
′

k = Pkζk+1 + (I − PkW−1
k+1P

T
k Wk)ζk.

Just as in the proof, we can hierarchically build a level k coefficient vector by starting on the
coarsest level and adding on coefficients projected onto the complimentary spaces, as will be
further detailed in the next section (see, e.g., Algorithm 4.1).

4. Implementation of the Hierarchical Sampler

Recall from Lemma 2.1 that we may sample (single-level) finite element white noise on
level k via bk = Wkζk with ζk = (ζi)

n
i=1 ∼ N (0, W−1

k ). While we can use the decomposition
in (15) for our hierarchical implementation, we instead alter this representation to accomplish
two additional goals: first, that on each level we sample from a N (0, I) distribution, and
second, that we utilize the interpolation and restriction operators Pk and Πk = W−1

k+1P
T
k Wk.

By multiplying (15) by Wk, and after simple algebraic manipulation, we obtain the fol-
lowing hierarchical representation of the right hand side of (5):

b
′

k = ΠT
k bk+1 + (I − ΠT

kP
T
k )bk,

where b
′

k = Wkζ
′

k.
For algorithmic efficiency (and to meet our additional two goals), we simplify the above

using the fact that b` = W
1/2
` ξ` with ξ` ∼ N (0, I) for ` = k, k + 1 and write

b
′

k = W
1/2
k ξ

′

k = ΠT
k (W

1/2
k+1ξk+1) + (I − ΠT

kP
T
k )(W

1/2
k ξk).
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In practice, we use this finite element white noise formulation of bk, where we may construct
a realization using multiple coarser levels, beyond that of level k+1. This process is described
in Algorithm 4.1. For a given level k, we first calculate finite element white noise on the
coarsest level L, denoted bL. Then we iterate through each finer level, where we calculate
b` by first interpolating the coarser b`+1 (which was previously calculated), and then adding
a spatial white noise realization that is complementary to the coarser ` + 1 space – this is

accomplished by multiplying level ` spatial white noise, W
1/2
` ξ`, with (I − ΠT

` P
T
` ), which

projects the level ` spatial white noise orthogonal to the coarser space(s). After each iterate,
we refine a level (decrease ` by 1), and repeat this process. This done until we reach level
k, and the resulting bk provides us with our hierarchically generated realization of spatial
white noise, which can then be used in the righthand side of the discrete problem (5).

Algorithm 4.1: Form finite element white noise via new hierarchical approach.

Input: Current level k (with 0 ≤ k ≤ L), L, independent {ξL, ξL−1, . . . , ξk} with
each N (0, Ik)

` = L
bL = W

1/2
L ξL

` = `− 1
while ` ≥ k do

b` = ΠT
` b`+1 + (I − ΠT

` P
T
` )W

1/2
` ξ`

` = `− 1
end
Output: {bL, bL−1, . . . , bk}

In this work we employ the same linear system of [41, Section 2.2], but instead of spatial
white noise generated strictly on the fine level, we use our hierarchical approach. For a given
level k, we seek to calculate solutions (ρk, uk) ∈ Rk ×Θk via the linear system

(16)

[
Mk BT

k

Bk −κ2Wk

] [
ρk
uk

]
=

[
0
−g bk

]
,

where Mk be the mass matrix associated with inner product (ρk, sk), Wk with the inner prod-
uct (uk, vk) which is diagonal, Bk with the bilinear form (div sk, uk), and bk is hierarchically
generated spatial white noise (generated via Algorithm 4.1). For a scalable, parallelizable
implementation, we have several solvers we may consider, one of which – hybridization AMG
approach from [37, 21] – is amenable to large-scale applications because the mass matrices
need only be computed one time (on each level), and then may be reapplied to different
realizations of bk.

To define the Gaussian densities µk at level k we proceed as in Section 2.1.3. Let us
formally introduce the negative scaled Schur Complement of (16) defined by

Ak :=
κ2

g
Wk +

1

g
BkM

−1
k BT

k .

Then solutions of (16) are Gaussian random vectors with distribution µk ∼ N (0, A−1
k WkA

−1
k )

and corresponding probability density

µk(uk) ∝ exp (−uTkAkW−1
k Akuk) = exp (−bTkW−1

k bk).
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We also define the conditionally Gaussian density uk|uk+1 based on our hierarchical de-
composition of white noise in Algorithm 4.1. Sampling from the prior distribution µk and
from the conditional distribution uk|uk+1 are summarized in Algorithm 4.2 and Algorithm
4.3. These algorithms will be used to define the proposal distributions within the multilevel
MCMC algorithm in Section 6.

Algorithm 4.2: Generate a sample uk from the prior distribution µk at level k.

Input: Current level k (with 0 ≤ k ≤ L)
Sample ξk ∼ N (0, Ik)

Define bk = W
1/2
k ξk

Compute uk by solving (16)
Output: uk

Algorithm 4.3: Generate a sample uk from the conditional distribution uk|uk+1

Input: Current level k (with 0 ≤ k < L), the coarse level sample uk+1 = A−1
k+1bk+1

Sample ξk ∼ N (0, Ik)

Define bk = ΠT
k bk+1 + (I − ΠT

kP
T
k )W

1/2
k ξk

Compute uk by solving (16)
Output: uk

4.1. Random Field Realizations Using Hierarchical Components. To visualize the
hierarchical components of a fine level solution u0, we consider the Egg model domain [35]
using three levels of refinement with 18.5K, 148K, and 1.18M elements for levels ` = 2, 1,
and 0, respectively. Here we skip over the model details, as these will be addressed in the
following section, and focus on the new hierarchical sampler.

Using Algorithm 4.1 with k = 0 and L = 2, we generate the three components of the

righthand side given as b0 = ΠT
0 ΠT

1W
1/2
2 ξ2 + ΠT

0 (I − ΠT
1 P

T
1 )W

1/2
1 ξ1 + (I − ΠT

0 P
T
0 )W

1/2
0 ξ0.

For visualization purposes, we separate these three components of b0 and solve with each
independently. That is, we seek solutions uC`0 via

(17)

A0u
C2
0 = ΠT

0 ΠT
1W

1/2
2 ξ2,

A0u
C1
0 = ΠT

0 (I − ΠT
1 P

T
1 )W

1/2
1 ξ1,

A0u
C0
0 = (I − ΠT

0 P
T
0 )W

1/2
0 ξ0.

Note that the fine level realization is simply u0 := uC2
0 +uC1

0 +uC0
0 . Figure 1 (a)-(c) displays

the solutions uC2
0 , uC1

0 , and uC0
0 . These results showcase the novelty of this hierarchical

approach – that is, the finite element white noise decomposition enables a realization u0 to be
decomposed into independent components across multiple levels. Moreover, this hierarchical
approach induces a separation of scales among the terms uC`0 , similar to that induced by
the hierarchical KL-based sampling in [22]. On the coarse levels, the terms uC`0 capture
the smooth components of u0, while, on finer levels, the terms uC`0 only contain the highly
oscillatory components of u0. This property plays a fundamental role in accelerating the
mixing and reducing the variance of the multilevel MCMC in Section 6. This is clearly
illustrated by considering the sums of the components uC`0 shown in Figure 1 (d)-(e). In
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particular, Figure 1 (d) displays uC2
0 + uC1

0 , and Figure 1 (e) displays the complete fine level
realization u0.

5. Numerical Results: Multilevel Hierarchical Sample Generation

In this section, we test the hierarchical sampler scaling performance on the ‘Egg model’
[35], as it contains a large, irregular domain. The Egg domain is contained by a 480 m ×
480 m × 28 m bounding box. We note that, as we are employing the approach of [42], we
require performing mesh embedding, that is, the Egg model domain is embedded within a
512 m× 512 m× 44 m domain. This mitigates variance inflation along the boundary due to
Neumann boundary conditions (see [38, Section 2.3] and [41, 42] for additional discussion).
Figure 2 displays both the original Egg model mesh and enlarged mesh (in which it is
embedded) for the coarsest level, both with hexahedral elements of size 8 m × 8 m × 4 m.
Finer mesh resolutions are formed by uniformly refining by a factor of two in each direction.

We consider three levels ` = 0, 1, 2, with degrees of freedom (corresponding to the number
of unknowns in the mixed PDE system as in (16)) given in Table 2 with NP = 36 total MPI
processes; then, for a fixed problem size per processor, we increase the number of processes to
NP = 288 and then NP = 2304. Gaussian random field realizations were generated following
our new hierarchical PDE sampling approach; that is, for levels ` = 0, 1, 2, level ` hierarchical
white noise was sampled according to Algorithm 4.1, and realizations of u` were formed by
solving the linear system in (16) on the Egg domain. Numerical simulations were performed

(a) uC2
0 (b) uC1

0 (c) uC0
0

(d) uC2
0 + uC1

0 (e) u0 = uC2
0 + uC1

0 + uC0
0

Figure 1. Various components of a realization u0 on three levels as defined
in (17), and generated from Algorithm 4.2 and Algorithm 4.3. Visualizations
are rendered with GLVis [1].
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(a) (b)

Figure 2. (a) Original Egg model mesh containing 18.5K elements. (b) En-
larged mesh, in which the Egg model mesh is embedded, extends two elements
in each direction beyond the Egg model mesh bounding box, and contains 45K
elements. Both meshes displayed correspond to the coarsest level.

Table 2. Number of global degrees of freedom (DOFs) associated with each
level, for each set of process numbers. The DOFs here are associated with the
number of unknowns in the mixed PDE system as in (16).

NP DOFs ` = 0 DOFs ` = 1 DOFs ` = 2

36 4.8063e+06 6.0788e+05 7.7758e+04
288 3.8223e+07 4.8063e+06 6.079e+05
2304 3.0488e+08 3.8223e+07 4.8063e+06

using tools developed in ParELAG [4], a parallel C++ library for performing numerical
upscaling of finite element discretizations and AMG techniques, and ParELAGMC [5], a
parallel element agglomeration MLMC library. These libraries use MFEM [3] to generate
the fine grid finite element discretization and HYPRE [2] to handle massively parallel linear
algebra. In particular, we employ hybridization AMG [37, 21], where the rescaled linear
system is solved with conjugate gradient (CG) preconditioned by HYPRE’s BoomerAMG.
Note, all timing results were executed on the Quartz cluster at Lawrence Livermore National
Laboratory, consisting of 2,688 nodes where each node has two 18-core Intel Xeon E5-2695
processors. For the weak scaling results, we use 36 MPI processes per node.

Table 3 provides the average wall time for the hybridization AMG solver, where the number
of preconditioned CG (PCG) iterations – to reduce the l2 norm of the residual by a factor
of 106 – are provided in parentheses. These timing results indicate favorable scaling on the
finest level; however, parallel efficiency does degrade on the coarser levels, which is to be
expected, as we are limited to our solver and AMG’s performance on coarse levels (see [26]).
Nonetheless, these results show mesh independence of our approach for all levels in the
hierarchy, as the iteration count is stable with increased problem size.

In addition, Figure 3 displays these weak scaling results (for 100 simulations), as well as the
efficiency decay with increased problem size. While we can claim algorithmic scalability, the
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Table 3. Average wall time (seconds) to solve (16) using hybridization AMG
(averaged over 100 realizations). The average number of PCG iterations are
provided in parentheses.

Level ` Local DOFs NP=36 NP =288 NP =2304

0 135, 438 2.42 (11) 2.88 (12) 3.15 (13)
1 17, 368 0.187 (10) 0.258 (11) 0.316 (12)
2 2, 280 0.0152 (9) 0.0297 (11) 0.0635 (11)
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Figure 3. (a) Weak scaling for the three different levels; here levels refers
to a fixed number of elements per processor. (b) Associated efficiency across
the three levels.

degraded scaling on the coarser levels indicates a drawback with our solver implementation,
that is, for coarser discretizations we require fewer processes than the fine discretizations
to obtain favorable parallel efficiency on all levels. Because of this, we are unable to get
complete scaling across all levels; rather each level will benefit from a different number of
processes. A topic for a follow up study will include coarse-grid redistribution in order to
improve the coarse level performance, see, e.g., [49]. Nonetheless, it is still clear that the
coarse level samples are significantly faster to generate than the finest level samples, which
is essential for multilevel MCMC performance.

6. Hierarchical PDE Approach for Multilevel MCMC

In this section, we apply the proposed hierarchical PDE-based sampling approach to solve
a nonlinear Bayesian inference problem. We use the multilevel MCMC framework in [22]
to explore the posterior distribution of the uncertain parameter and estimate moments (the
mean) of a scalar quantity of interest Q.

In particular, we consider the problem of inferring a log-normal permeability field from
cell-averaged pressure measurements for a single phase steady state subsurface problem. In
what follows, we denote with u ∈ Θ the uncertain parameter representing the logarithm of
the permeability field, with (q, p) ∈ R×Θ the state variables representing the flow velocity
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and pressure, and with pobs ∈ Rm the data representing cell-averaged pressure observations
at m given measurement locations.

Prior distribution. We assume a Gaussian prior density on the spatially varying log-
permeability coefficient, i.e. u ∼ N (u∗, C), with covariance operator C and mean value
u∗ = 0. To ensure that the inference problem is well-posed in infinite dimensions, we use
a squared inverse elliptic operator in (1) to define the prior covariance operator, see for
example [47, 25, 11, 43]. Samples from the prior distribution can then be drawn by solving
(4) as we explained in Section 2.1, and their probability can be computed using (2).

Forward map. Let y = F(u) denote the forward map from the uncertain field u ∈ Θ to
the observable y ∈ Rm. The map F = B ◦ H is the composition of a forward PDE solve H
that computes the pressure field p for a given realization of log-permeability u and a linear
operator B that evaluates the pressure p on local cells. For a single phase porous media flow,
with k = exp(u), we define p = H(u) as the solution to the mixed formulation of the Darcy’s
equations

(18)
(k−1q, s)− (div s, p) = (f , s) ∀s ∈ R
(div q, v) = 0 ∀v ∈ Θ,

with Dirichlet boundary condition p = pD on ΓD, enforced by the right-hand side f , and
Neumann boundary condition q · n = 0 on ΓN , where ΓD and ΓN are non-overlapping
partitions of ∂D.

Likelihood function. We assume that the measured data pobs ∈ Rm are corrupted by
additive Gaussian noise η with zero mean and covariance Γη = σ2

ηIm, where Im is the identity
matrix in Rm. That is,

(19) pobs = F(u) + η, η ∼ N (0,Γη).

From the noise model in (19), we have that the conditional probability of pobs given u is also
Gaussian with mean F(u) and covariance Γη, that is

pobs|u ∼ N (F(u),Γη).

The likelihood function πlike(pobs|u) then reads

(20) πlike(pobs|u) ∝ exp

(
−1

2
‖pobs −F(u)‖2

Γ−1
η

)
,

where ‖ · ‖2
Γ−1
η

denotes the Γ−1
η -weighted l2 norm in Rm.

Posterior distribution. By applying Bayes’ theorem, the posterior density ν in the infinite
dimensional case is given by

(21) ν(u|pobs) ∝ πlike(pobs|u)dµ(u),

where πlike(pobs|u) is the likelihood function in (20) and dµ(u) is the prior density in (2). We
note that, although the prior distribution and likelihood functions are both Gaussian, the
posterior distribution ν(u|pobs) is not Gaussian because of the nonlinearity introduced by the
forward map F . Thus, there is no closed form solution to the Bayesian inference problem
and therefore we will use MCMC sampling to explore the posterior distribution.

Quantity of interest. Finally, let us introduce the scalar quantity of interest Q = Q(u)
representing the flux across the outflow boundary Γout, which is defined as

(22) Q =
1

|Γout|

∫
Γout

q(·, ω) · n dS,
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where n represents the outward unit vector normal to Γout ⊂ ∂D.
Our goal is to estimate the posterior mean of Q, defined as

(23) Eν [Q] =

∫
Ω

Q(u) dν(u|pobs),

by sampling the posterior distribution (21) using multilevel MCMC. As a reference to the
reader, notation introduced and frequently used in this section is provided in Table 4.

6.1. Markov Chain Monte Carlo. For the single-level approach, the log-permeability
u, associated likelihood πlike(pobs|u), and QoI Q (see (4), (20), (22), and, respectively) are
approximated numerically by solving the mixed PDEs in (4) and (18) utilizing a finite element
approach on triangulation Tk (for the finest level k). We denote these discrete approximations
as uk, π

like
k , and Qk = Q(uk).

MCMC, and in particular, Metropolis-Hastings, is a modified Monte Carlo approach,
where samples Qk are generated from the target (posterior) distribution via a Markov chain.
Then the posterior QoI expectation Eνk [Q] may be approximated as

(24) Q̂MCMC
k =

1

N

n+N∑
i=n+1

Q
(it)
k ,

where Q
(it)
k = Q(u

(it)
k ), n is the number of samples discarded as burn-in, and t is the sub-

sampling rate to obtain independent samples (see Appendix A). To generate subsequent
samples within a chain, a new uprop

k is sampled from the proposal distribution and subjected
to Metropolis-Hastings acceptance/rejection criterion. In this work, we utilize a precondi-
tioned Crank-Nicolson stepping scheme with step size β > 0, where samples ψk from µk are
drawn using Algorithm 4.2. Thanks to the prior-invariance of the preconditioned Crank-
Nicolson proposal, the sample uprop

k is then accepted with probability αSLk defined in (26)

Table 4. Bayesian inference notation.

Infinite-Dimensional Variable Description

dµ(u) Prior density of u
pobs Observed local pressure data in D
πlike(pobs|u) Likelihood function
ν(u|pobs) Posterior density
Eν [·] Mean with respect to posterior density
Q = Q(u) Quantity of interest

Finite-Dimensional Variable

dµ`(u`) Prior density of u` on level `
πlike` (pobs|u`) Likelihood function
ν`(u`|pobs) Posterior density on level `
αSL` Single-level acceptance probability on level `
αML
` Multilevel acceptance probability on level `

Eν` [·] Mean with respect to level ` posterior density
Vν` [·] Variance with respect to level ` posterior density
Q` = Q(u`) Quantity of interest on level `



ML HIERARCHICAL DECOMPOSITION OF FINITE ELEMENT WHITE NOISE 17

[15]. The procedure is summarized in Algorithm 6.1; additional details can be found in [22].

Algorithm 6.1: Single level Metropolis-Hastings MCMC Algorithm with precondi-

tioned Crank-Nicolson proposal to generate a posterior sample u
(i)
k |u

(i−1)
k

• Given u
(i−1)
k , propose uprop

k using preconditioned Crank-Nicolson:

(25) uprop
k :=

√
1− β2u

(i−1)
k + βψk,

where ψk ∼ µk is computed using Algorithm 4.2.

• Accept u
(i)
k = uprop

k with probability

(26) αSLk (uprop
k |u(i−1)

k ) = min

{
1,
πlike
k (pobs|uprop

k )

πlike
k (pobs|u(i−1)

k )

}
• Return u

(i)
k and Q

(i)
k = Qk(u

(i)
k ).

The cost of performing MCMC depends on how quickly the chain mixes as well as the
variance of Q̂k. The first—the mixing of the chain—is controlled by the autocorrelation
of samples within the chain. As adjacent samples in the chain are correlated (and not
independent), the integrated autocorrelation time τQ of the chain will determine how many
steps (and thus forward simulations) are required to get to the next independent sample.

The second—the variance of Q̂k—is controlled by the number of independent samples used
in the estimator, i.e., N . The accuracy is similar to Monte Carlo in that the required number
of (independent) samples to achieve a desired mean squared error depends on the variance
of Qk as well as the bias introduced by numerically approximating Q. If we require N
independent simulations, with an integrated autocorrelation time (rounded up to an integer
value) of t (see Appendix A), then we require at least tN simulations. Thus acceleration
approaches should seek to reduce t and N by increasing the mixing of the chain and reducing
the variance of the estimator, respectively.

6.2. Multilevel Markov Chain Monte Carlo. To accelerate MCMC, we consider the
multilevel framework in [22], which utilizes chains at coarser spatial discretization levels to
perform the majority of likelihood functions evaluations. Similar to previous sections, let
us denote the log-normal permeability field, the Darcy pressure and flux, and the QoI at
dicretization level ` with the symbols u`, (p`,q`), Q` := Q`(u`), respectively, for k = 0 ≤ ` ≤
L. Then the posterior mean of Q0 is equivalently written as

(27) Eν0 [Q0] = EνL [QL] +
L−1∑
`=0

(
Eν` [Q`]− Eν`+1

[Q`+1]
)
,

where ν` is the discrete posterior measure on level `. Following [22], for each level `, we

define a multilevel estimator Ŷ N`
` of the difference Eν` [Q`]− Eν`+1

[Q`+1] and write

(28) Ŷ N`
` =

1

N`

n`+N`∑
i=n`+1

Y
(it`)
` =

1

N`

n`+N`∑
i=n`+1

(
Q

(it`)
` −Q(it`t`+1)

`+1

)
.
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Above n` corresponds to the burn-in on level `, N` is the effective sample size on level
` (defined later in (32)), t` and t`+1 are the estimated integrated autocorrelation times
of the chains at levels ` and ` + 1, respectively (see Appendix A for details). The key
aspect of the multilevel MCMC is how to couple Markov chains at different levels so that:
i) the variance of Y` is much smaller than that of Q`, ii) information from coarser level
chains are used to accelerate mixing of finer level chains (higher acceptace rate, smaller
integrated autocorrelation time). In this section, we focus on how to generalize the multilevel
MCMC algorithm [22, Algorithm 3] to replace the KL decomposition-based sampling with
our scalable multilevel PDE samplers described in Section 4.

As motivated in Remark 1, in what follows, we describe a two-level chain to evaluate the

difference estimator Ŷ` at a generic level 0 ≤ ` < L. Given a coarse sample u
(j−1)t`+1

`+1 , we
advance the coarse chain at level ` + 1 by t`+1 steps using single-level Metropolis-Hastings

as in Algorithm 6.1. This results in a coarse sample u
(jt`+1)
`+1 that is independent of u

(j−1)t`+1

`+1 .
To propose u` on the finer level `, we use the two-level preconditioned Crank-Nicolson in

(29), where ψ` is sampled from the conditional distribution ψ`|u(j−1)t`+1

`+1 using Algorithm

4.3. Note that the independence of u
(jt`+1)
`+1 from u

(j−1)t`+1

`+1 guarantees that also ψ` is inde-

pendent of u
(j−1)
` . That means that the two-level preconditioned Crank-Nicolson proposal

in (29) satisfies the assumptions of [22, Lemma 3.1], and therefore the multilevel acceptance

probability αML
` (uprop

` |u(i−1)
` ) in (30) satisfies the detailed balance condition. Algorithm 6.2

summarizes the generation of the paired fine and coarse level samples u
(j)
` and u

(jt`+1)
`+1 .

Note that, if uprop
` is accepted at step j, then u

(j)
` and u

(jt`+1)
`+1 are correlated. Specifically,

both u
(j)
` and u

(jt`+1)
`+1 are generated from the same coarse level white noise functional b`+1,

and thus the difference u
(j)
` − P`u

(jt`+1)
`+1 is small. This is observed in Section 4.1, where Fig-

ure 1 (b)-(c) display these differences, defined as solutions uC`0 (see (17)). This means that

one should expect Y
(j)
` to be small when step j is accepted, which is a necessary condition to

achieve multilevel acceleration. The numerical results presented next demonstrate that our
algorithm is indeed able to achieve multilevel acceleration of the chain mixing and variance
reduction.

Remark 1. Another small difference with respect to the work in [22] is that each Ŷ N`
` estimate

uses only two levels. Specifically, Algorithm 6.2 uses a single auxiliary chain on the coarser
level `+ 1 to estimate Ŷ`, while [22] runs auxiliary chains on all coarser levels. Our decision
to do this is based on algorithmic simplicity and scalability. That said, utilizing all coarser
levels is a detail that may be considered in future work.

6.3. Four-Level Markov Chain Monte Carlo Results. To demonstrate our method is
well-suited for multilevel MCMC algorithms, we test a four-level MCMC with the hierarchical
stochastic PDE solver by utilizing Algorithm 6.2. The computational domain is a unit cube
discretized using tetrahedral elements, with about 1.57M elements on the finest level. Each
coarser level is formed by uniformly coarsening by a factor of 8, until obtaining 3, 072 elements
on the coarsest level. For the prior, we consider Gaussian random fields with correlation
length λ = 0.3 and marginal variance of σ2 = 0.5. For the observational pressure data, we
synthetically generate a realization pobs ∈ R25 with σ2

η = 0.005; this is done via (19) on a
reference mesh with approximately 12.5M elements.
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Algorithm 6.2: Two-level Metropolis-Hastings MCMC Algorithm to generate paired

samples u
(jt`+1)
`+1 and u

(j)
` |u

(j−1)
`

Part I. Advance the coarse chain at level `+ 1 by t`+1 steps:

• Given u
(j−1)t`+1

`+1 , apply Algorithm 6.1 on level `+ 1 for t`+1 steps

• Store u
(jt`+1)
`+1 and Q(u

(jt`+1)
`+1 )

Part II. Advance the fine chain at level ` by one step:

• Given u
(j−1)
` and u

(jt`+1)
`+1 , propose uprop

` :

(29) uprop
` :=

√
1− β2u

(j−1)
` + βψ`,

where ψ`|u(jt`+1)
`+1 is sampled using Algorithm 4.3.

• Accept u
(j)
` = uprop

` with probability

(30) αML
` (uprop

` |u(i−1)
` ) = min

{
1,
πlike
` (pobs|uprop

` )πlike
`+1(pobs|u(j−1)t`+1

`+1 )

πlike
` (pobs|u(j−1)

` )πlike
`+1(pobs|ujt`+1

`+1 )

}
.

• Return u
(j)
` , u

(jt`+1)
`+1 , Y

(j)
` = Q(u

(j)
` )−Q(u

(jt`+1)
`+1 )

We run five independent two-level chains (as in Algorithm 6.2) using step size β2 = 0.3 to

estimate Ŷ` at levels ` = 0, 1, 2. For each of these chains, the first 1, 000 samples of Y` are
discarded as burn-in; then the following 1, 000 independent samples—properly subsampled
according to integrated autocorrelation time estimates—are used in our statistical approxi-
mations. Similarly we estimate Q̂3 with five independent single-level chains (as in Algorithm
6.1); however on this coarsest level, we use a longer burn-in of 3, 000 samples.

From the five resulting chains of Y` = Q` − Q`+1 (for each ` = 0, 1, 2), we estimate the
autocorrelation as a function of lag time. In Figure 4, the top row displays these estimates
for Q`+1, which indicate the mixing of the coarse chain in the estimation of Y`. The bottom
row of Figure 4 displays these estimates for Y`, where the faster decay in autocorrelation is
the result of the coarse level being subsampled. We further note that the autocorrelation
time of Y` decays faster for smaller `, as we expect the acceptance rate to increase with mesh
refinement as shown in Figure 5 (a).

Figure 5 (a) displays the average acceptance rate from the five chains, on the four different
levels. The small error bars indicate the range of acceptance rate values from the five chains.
This increase in the acceptance rate with the refinement of levels is similar to that reported in
[22], numerically demonstrating that indeed our method of using multilevel stochastic PDE
samplers is a computationally efficient alternative to KL-decomposition based sampling for
multilevel MCMC. Figure 5 (b) provides average variance estimates for Q` on each level,
as well as average variance estimates for the correction terms Y` = Q` − Q`+1. Error bars
indicate the range of variance values from the five chains. The decay in the Y` variance
estimate indicates that fewer samples are required on the finer levels (relative to the coarsest)
to obtain a target mean square error. This result is similar to that of [22]; however, our decay
is not quite as rapid. This is likely due to the difference in problem setup (d = 3, λ = 0.3), as
well as the fact that we’re doing inference in a higher-dimensional space. More specifically,
we have one DOF per element with 196K elements on the finest level, while the work in
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Figure 4. Autocorrelation estimates for increasing lag time for 5 two-level
chains used to estimate Y` = Q` −Q`+1 at levels ` = 0, 1, 2. Top row displays
the autocorrelation for the coarse Q`+1 samples, while the bottom row shows
the autocorrelation for corresponding correction chain Y`.
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Figure 5. (a) Average Acceptance rate for the two-level MCMC Algorithm
6.2 as a function of the level `. (b) Average variance estimates for Q` and
Y`. Averages are taken over 5 independent runs, with error bars indicating
minimum and maximum values.

[22] has a KL expansion truncated at 150 DOFs on the finest level. Furthermore, we note
this decay is dependent on the multilevel acceptance rates for each level. In Algorithm 6.2,

upon rejection of a fine sample, the realization Y
(j)
` = Q(u

(j)
` )−Q(u

(jt`+1)
`+1 ) is calculated from

unrelated realizations of u` and u`+1. This feature results in a variance that decays slower
than in typical multilevel Monte Carlo (see, e.g., [28, 29, 14, 48]).

In Table 5, we provide the averaged statistical estimates derived from these five chains
(on each level). In particular, we provide the estimated integrated autocorrelation times
for each level, as well as the estimated mean and variance values for Q` and Y`. We note
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Table 5. Multilevel MCMC average estimates from 5 chains. Values of the
effective cost and sample size are calculated via (31) and (32), with ε = 0.01.

Level ` C` t`+1 t` Ceff
` E[Q`] E[Y`] E[|Y`|] V[Q`] V[Y`] Predicted N eff

`

0 494.08 44 4 12902.4 1.22 0.0054 0.0366 0.15 0.0207 773
1 62.08 36 3 1033.0 1.20 0.0046 0.0808 0.13 0.0503 4265
2 7.84 40 5 239.2 1.21 0.0169 0.1509 0.14 0.0891 11788
3 1.00 − 45 45.0 1.17 1.1709 1.1709 0.13 0.1254 32245

that, while the V[Y`] and E[|Y`|] approximations decay with mesh refinement, the E[Y`]
approximations are not monotonic. However, this result does not conflict with the expected
results, as the variance indicates error in our estimates. Using these multilevel estimates of
E[Y`] and E[Q3] we predict a posterior mean of 1.198, with a variance (based on the number
of effective samples defined in (32)) of 5 · 10−5. With an equivalent cost, we expect the
single-level estimator to have a variance of 1.74 · 10−4.

Finally we compare the predicted cost to run this approach with that of single-level
MCMC, based on the calculations in Table 5. As the scalability of solvers was investi-
gated in [37, 21, 42], which show cost per iteration is proportional to the DOFs, and we
demonstrate the number of iterations stays stable with mesh refinement, we define the cost
per simulation on level `, denoted C`, to be the number of global DOFs in our linear system,
normalized with respect to the coarsest level. Subsequently, the optimal effective cost per
independent sample of Y` is defined as

(31) Ceff
` := t`(C` + t`+1C`+1)

for ` = 0, . . . , L− 1, and Ceff
` = t`C` for ` = L. Then, from [22], the effective sample size (for

a mean square error tolerance of ε2) on each level is calculated via

(32) N eff
` =

2

ε2

(
L∑
k=0

√
Vνk,νk+1

[Yk]Ceff
k

)√
Vν`,ν`+1

[Y`]

Ceff
`

,

where Vν`,ν`+1
[Y`] is the variance of Y` with respect to the joint distribution of u` and u`+1.

For single-level MCMC, the number of effective samples for the target mean square error ε2 is
N eff
sl = 2Vν0 [Q0]/ε2, and the effective cost is Ceff

sl = tLC0. Using these results, we estimate that
performing our four-level MCMC is about 3.5 times faster than the single-level approach. In
comparison the hierarchical four-level approach of [22] is about 5 times faster than the single-
level approach. Aside from different statistical estimates, a key difference of these approaches
(that impacts the cost) lies in the number of levels used to estimate each Y` chain. As noted
before, the approach of [22] utilizes all coarser levels in a hierarchical manner to estimate
these differences. Although this component of the algorithm was not implemented in our
numerical results, it is a feature that we would like to include in future work.

7. Conclusion

In this work we develop a novel, (algorithmically) scalable, hierarchical PDE-based ap-
proach to generate Gaussian random field realizations that is well-suited for multilevel
MCMC on large-scale three-dimensional problems. The novelty and advantages of our two-
level preconditioned Crank-Nicolson proposal in Algorithm 6.2 lies in the use of a scalable,
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memory efficient stochastic PDE sampler in lieu of a computationally and memory expen-
sive KL-decomposition in [22]. Similarly to the proposals in [22], our proposals are linear
transformations of independent Gaussian vectors defined on the coarse and fine grids: the
coarser-level random variables define the smooth components of the random field u`, while
the finer-level random variables control the high frequency components of u`. However,
our method uses sparse finite element interpolation operators and scalable fast PDE linear
solvers to define such linear transformation, while the one in [22] uses dense matrices whose
columns represents the dominant eigenvectors of the covariance method.

As our numerical result showed, Algorithm 6.2 offers comparable multilevel acceleration
to that presented in [22]. First, the great majority of likelihood evaluations are done the
coarse levels of the hierarchy, where evaluating the forward model is inexpensive. Second, the
acceptance rate improves as the mesh is refined thus reducing the variance of the estimator
Ŷ` at finer levels. Third, the auxiliary coarse level chain allows for drastically reducing
the integrated autocorrelation time t` thanks to the use of independent samples from the
coarse chain. As numerically illustrated in Section 4.1, our hierarchical sampler induces a
multiscale decomposition of the random field u, where the finer-level proposal u` shares the
same smooth components of the corresponding sample from the posterior distribution ν`+1

at the coarser-level ` + 1. As we move to finer and finer levels we expect the likelihood
function to become insensitive to the difference u` − Pu`+1, thus drastically increasing the
acceptance rate. The increased mixing of the chain is then a direct consequence of the
increased acceptance rate and of the independence of the coarse grid samples used in the
two-level preconditioned Crank-Nicolson proposal.

The next stage of research will include investigating the overall scaling of multilevel MCMC
with this new hierarchical sampler. In particular, an important—and necessary—component
will be coarse grid redistribution for improved performance on all levels in the sampling hier-
archy. In addition, possible future directions of this work include performing this multilevel
MCMC approach with a derivative enhanced proposal, e.g., local Hessian information, as in
[17], which combines the multilevel approach of [22] with dimension-independent likelihood-
informed MCMC samplers of [18] to further accelerate multilevel MCMC.

Acknowledgements

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or as-
sumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

References

[1] GLVis: Opengl finite element visualization tool. glvis.org.

glvis.org


ML HIERARCHICAL DECOMPOSITION OF FINITE ELEMENT WHITE NOISE 23

[2] HYPRE: High performance preconditioners. http://www.llnl.gov/CASC/hypre/.
[3] MFEM: Modular finite element methods library. mfem.org.
[4] ParELAG: Element-agglomeration algebraic multigrid and upscaling library, version 2.0. http://

github.com/LLNL/parelag, 2015.
[5] ParELAGMC: Parallel element agglomeration multilevel Monte Carlo library. http://github.com/

LLNL/parelagmc, 2018.
[6] R.J. Adler and J.E. Taylor. Random fields and geometry. Springer Science & Business Media, 2009.
[7] R.J. Adler, J.E. Taylor, and K.J. Worsley. Applications of random fields and geometry: foundations

and case studies. 2007. In preparation.
[8] A. Barth, C. Schwab, and N. Zollinger. Multi-level Monte Carlo finite element method for elliptic PDEs

with stochastic coefficients. Numerische Mathematik, 119(1):123–161, 2011.
[9] M. Bebendorf. Hierarchical matrices. Springer, 2008.

[10] A. Beskos, M. Girolami, S. Lan, P.E. Farrell, and A.M. Stuart. Geometric MCMC for infinite-
dimensional inverse problems. Journal of Computational Physics, 335:327–351, 2017.

[11] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler. A computational framework for infinite-
dimensional Bayesian inverse problems part I: The linearized case, with application to global seismic
inversion. SIAM Journal on Scientific Computing, 35(6):A2494–A2523, 2013.

[12] T. Bui-Thanh and M.A. Girolami. Solving large-scale PDE-constrained Bayesian inverse problems with
Riemann manifold Hamiltonian Monte Carlo. Inverse Problems, 30:114014, 2014.

[13] J.A. Christen and C. Fox. Markov chain Monte Carlo using an approximation. Journal of Computational
and Graphical Statistics, 14(4):795–810, 2005.

[14] K.A. Cliffe, M.B. Giles, R. Scheichl, and A.L. Teckentrup. Multilevel Monte Carlo methods and appli-
cations to elliptic PDEs with random coefficients. Computing and Visualization in Science, 14(1):3–15,
2011.

[15] S.L. Cotter, G.O. Roberts, A.M. Stuart, and D. White. MCMC methods for functions: modifying old
algorithms to make them faster. Statistical Science, pages 424–446, 2013.

[16] M. Croci, M.B. Giles, M.E. Rognes, and P.E. Farrell. Efficient white noise sampling and coupling for
multilevel Monte Carlo with nonnested meshes. SIAM/ASA Journal on Uncertainty Quantification,
6(4):1630–1655, 2018.

[17] T. Cui, G. Detommaso, and R. Scheichl. Multilevel dimension-independent likelihood-informed mcmc
for large-scale inverse problems. arXiv preprint arXiv:1910.12431, 2019.

[18] T. Cui, K.J.H. Law, and Y.M. Marzouk. Dimension-independent likelihood-informed MCMC. Journal
of Computational Physics, 304:109–137, 2016.

[19] T. Cui, J. Martin, Y.M. Marzouk, A. Solonen, and A. Spantini. Likelihood-informed dimension reduction
for nonlinear inverse problems. Inverse Problems, 30(11):114015, 2014.

[20] Y. Daon and G. Stadler. Mitigating the influence of the boundary on PDE-based covariance operators.
Inverse Problems & Imaging, 12(5):1083–1102, 2018.

[21] V. Dobrev, T. Kolev, C.S. Lee, V. Tomov, and P.S. Vassilevski. Algebraic hybridization and static con-
densation with application to scalable H(div) preconditioning. SIAM Journal on Scientific Computing,
41(3):B425–B447, 2019.

[22] T.J. Dodwell, C. Ketelsen, R. Scheichl, and A.L. Teckentrup. A hierarchical multilevel Markov chain
Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. SIAM/ASA
Journal on Uncertainty Quantification, 3(1):1075–1108, 2015.
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Appendix A. Integrated Autocorrelation Time

To obtain independent samples for unbiased estimates of QoI moments from the chain

{Q(i)
0 }i>0, we subsample the chain according to its integrated autocorrelation time τQ. In

this work, we estimate τQ as

(33) τ̂Q = 1 + 2
M∑
τ=1

ρ̂Q(τ)

where the normalized autocorrelation function is estimated as

(34) ρ̂Q(τ) =
1

N − τ

N−τ∑
i=1

(Q
(i)
0 − µ̂Q)(Q

(i+τ)
0 − µ̂Q)

σ̂2
Q

,

with µ̂Q and σ̂2
Q as the estimated mean and variance (respectively) of the data {Q(i)

0 }Ni=1,
and M � N (see [46] for more information on integrated autocorrelation time).

In practice we subsample at a rate of t := dτ̂Qe. We denote t` (with ` < L) as the estimate

for the multilevel chains {Y (i)
` }i>0.


	Multilevel Hierarchical Decomposition of Finite Element White Noise with Application to Multilevel Markov Chain Monte Carlo
	Let us know how access to this document benefits you.
	Citation Details

	1. Introduction
	1.1. Contributions of this Work
	1.2. Mathematical Notation

	2. Gaussian Random Fields
	2.1. A Stochastic PDE Approach for Finite Element Random Fields

	3. Multilevel Hierarchical Decomposition of Finite Element White Noise
	3.1. The multilevel hierarchical decomposition

	4. Implementation of the Hierarchical Sampler
	4.1. Random Field Realizations Using Hierarchical Components

	5. Numerical Results: Multilevel Hierarchical Sample Generation
	6. Hierarchical PDE Approach for Multilevel MCMC
	6.1. Markov Chain Monte Carlo
	6.2. Multilevel Markov Chain Monte Carlo
	6.3. Four-Level Markov Chain Monte Carlo Results

	7. Conclusion
	Acknowledgements
	References
	Appendix A. Integrated Autocorrelation Time

