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Abstract

We show how some differential geometric structures associated with a concept of a homogeneous space appear naturally

in a kinematic model of continuously distributed defects in an elastic crystal solid and discuss how one can use them to

describe the defectiveness of such a continuum.
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1. Introduction

One of the fundamental questions of the kinematic model of defective elastic crystals proposed by Davini [1]
is to identify quantities which properly characterize the defectiveness of a crystal and which can also be useful
in phenomenological approaches describing inelastic behavior of continuum bodies. Assuming that a kinematic
state of a continuous crystal is determined by three linearly independent vector fields (a lattice) defined over
an open region in R3, a non-commutativity of pairs of these vector fields is considered a sign of a presence of
defects. The said vector fields are viewed as obtained from the underlaying discrete atomic structure by some
averaging process and are expected to be invariant under elastic deformations of a continuum. Respectively, the
objects which characterize locally such a collection of vector fields are also expected to be elastically invariant.
One such object, which can be viewed as a first-order measure of defectiveness at a point of a lattice, is the
dislocation density tensor [1] (see Equation (21)).

When the dislocation density tensor is a constant function of position, thus defining a uniformly defective
state of a continuous crystal, the underlying space can be identified with a Lie group acting on itself and the
theory of Lie groups and algebras is used to study such states [2]. However, when the dislocation density tensor
is a non-trivial function of a material point, this identification is no longer available. That is, even though the
underlying space cannot be identified with a Lie group, there still exists a Lie group (of dimension higher than
three) acting on R3 in a manner consistent with the lattice vector fields [3]. This allows us to equip R3 with
a structure of a differentiable homogeneous space and use the notion of a canonical linear connection and, in
particular, its curvature as a second-order measure of defectiveness of a crystal state.1

Starting from a perspective of the uniformly defective states, we focus in our presentation on states which
are non-uniformly defective and, in particular, canonically reductive (26), as other states are not fully amenable
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to this approach. After the first section in which we present the general differential geometric framework asso-
ciated with non-uniformly defective states, we introduce in Section 2 the concept of a lattice connection, the
torsion of which relates to the dislocation density tensor. In Section 3, we discuss the concept of a lattice canon-
ical connection available for non-uniformly defective crystal states which are also reductive. In Section 4, we
introduce the concept of a canonically reductive state and show how the curvature of the corresponding lattice
canonical connection relates to the derivatives of the torsion of the lattice connection. We conclude the paper
by discussing two different examples of continuous lattices, one which is canonically reductive and one which
is not.

The work reported in this paper is an extension and a continuation of our research presented in [5, 6].

2. Geometric framework

As was stated in the introduction, we postulate that a kinematic state of a continuous distribution of defects in
a solid is defined by a lattice,2 that is, n linearly independent smooth vector fields l = {l1, . . . , ln} defined on
an open subset U ⊂ Rn, where, in most applications, n = 2, 3.3 We postulate that the vector fields l1, . . . , ln
generate a finite-dimensional4 (complete) Lie subalgebra L of the algebra of all smooth vector fields on U . We
call this algebra the lattice algebra of the continuous lattice l. This, in turn, implies the existence of an abstract
Lie group G acting smoothly on the body U on the left and such that its (left) Lie algebra g is isomorphic to the
lattice algebra L (see [7]). Let a smooth mapping

φ : G × U → U (1)

represent the said action of G on U satisfying a condition that

φ(g1g2, p) = φ(g1, φ(g2, p)) (2)

for every p ∈ U and every pair g1, g2 ∈ G, where g1g2 denotes a group multiplication in G. We postulate that
the action φ is transitive on U implying that the orbit map

φp = φ(·, p) : G → U , p ∈ U , (3)

is onto and that its tangent map

dφp : TG → TU , (4)

where TG and TU denote the corresponding tangent spaces, establishes an isomorphism between the (right) Lie
algebra5 of G and the lattice algebra L (see [8]).

Select a point, say, p0 ∈ U . The isotropy group of the action φ at p0

G0 = {g ∈ G : φ(g, p0) = p0} (5)

is a closed subgroup of the group G. It depends, in general, on the choice of a point p0 ∈ U . However, owing
to the transitivity of the action φ, the isotropy groups at different points are conjugate to each other, thus,
isomorphic.

Given an isotropy group G0 at a point p0 ∈ U , one can show that the underlying space U is a homogeneous
space, that is, it is diffeomorphically equivalent to the left quotient G\G0. This equivalence is established by a
map 8 : G\G0 → U such that

8(gG0) = φ(g, p0), (6)

where gG0 = {gh : h ∈ G0} denotes a (left) coset of the isotropy group G0 generated by an element g ∈ G. Not
only the quotient G\G0 is diffeomorphic to the space U , but the group G acts on it on the left mimicking the
corresponding left action of φ on U . Namely,

φ(g1, 8(g2G0)) = φ(g1(φ(g2, p0)) = φ(g1g2, p0) = 8((g1g2)G0). (7)

Moreover, looking at this construction from a different angle, we observe that the left action φ of G on the space
U defines a principal G0-bundle over U with the group G as its total space, the isotropy group G0 as its structure
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group, and the projection π : G → U such that π(g) = φ(g, p0). Indeed, the projection π is a differentiable
mapping and the isotropy group G0 acts freely on G on the right preserving individual fibers, i.e., given h ∈ G0

π(gh) = φ(gh, p0) = φ(g, φ(h, p0)) = φ(g, p0) = π(g) (8)

for every g ∈ G and every h ∈ G0. Note that the fibers of the principal bundle π : G → U are the cosets of the
quotient G\G0.

In addition, it can be shown [9] (see also [10]) that the bundle π : G → U is isomorphic to a subbundle
of the bundle of linear frames on U . To this end, given g ∈ G, consider a mapping φg : U → U such
that φg(p) = φ(g, p) for every p ∈ U . When g is an element of the isotropy group G0 at p0 the tangent
map dp0

φg : Tp0
U → Tp0

U is a linear automorphism. Selecting a frame at p0, that is a linear isomorphism
u0 : Rn → Tp0

U assigning coordinates to a vector in Tp0
U , we are able to construct a group homomorphism

λ : G0 → GL(n, R) such that

λ(h) = u−1
0 ◦ dp0

φh ◦ u0, (9)

for any h ∈ G0. The mapping λ is known as a linear isotropy representation of G0 in the general linear group of
Rn (see, e.g., [9]). Consequently, the collection of mappings

L(U , G0) = {dp0
φg ◦ u0 : Rn → U : g ∈ G} (10)

is a reduction of the bundle of linear frames of U to the linear isotropy group λ(G0) ⊂ GL(n, R). The mapping
f : G → L(U , G0) assigning to g ∈ G a linear frame dp0

φg ◦ u0 is a principal bundle isomorphism over the
identity map on U ⊂ Rn. In particular, for any g ∈ G and h ∈ G0

f (gh) = dp0
φgh ◦ u0 = dp0

φg ◦ u0 ◦ λ(h) = f (g)λ(h). (11)

Example 1. To illustrate how the geometric structures introduced so far appear in a concrete situation let us
consider, using the standard cartesian coordinate system in R2, a two-dimensional lattice

l = {l1, l2} = {e1, −xe2} (12)

where the vectors e1, e2 denote the corresponding unit basis. As the bracket l3 = [l1, l2] = −e2 and as [l1, l3] =
[l2, l3] = 0 the given lattice generates a three-dimensional Lie algebra L = span{l1, l2, l3}. Elementary calcu-
lations show that the action of the corresponding three-parameter Lie group G on U = {(x, y) ∈ R2 : x 6= 0} is
given by the mapping φ : G × U → U such that

φ((a, b, c), (x, y)) = (x + a, y − (x + a)b − c), (13)

where a triple (a, b, c) represents a group element and where (x, y) ∈ U. Enforcing the requirement that the
group G acts on the left, we obtain the group multiplication in G as

(a, b, c)(a, b, c) = (a + a, b + b, c + c − ab), (14)

for any two elements (a, b, c), (a, b, c) ∈ G.
A one-parameter isotropy group of the action φ at a point p0 = (x0, y0) ∈ U is

G0 = {(0, b, −x0b) : b ∈ R}. (15)

It is easy to see that the projection π((a, b, c)) = φ((a, b, c), (x0, y0)) is such that π(G0) = (x0, y0). Finally, the
linear isotropy representation (in the standard frame) is given by

λ(h) =

(
1 0

−b 1

)
(16)

for every h ∈ G0. Note that the image

λ(G0) =

{(
1 0

−b 1

)
: b ∈ R

}
(17)

is indeed a subgroup of GL(2, R).
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3. Lattice connection

The fact that one can associate a specific homogeneous space with a continuous lattice allows us to identify a
set of (measurable) geometric characteristics which may be used to describe defectiveness of a kinematic state
of a continuum. Namely, given a lattice l on U ⊂ Rn and the corresponding Lie group G acting on U , there
exist (subject to some additional assumptions) two linear connections, the torsions and the curvatures of which
may be interpreted as characterizing the defectiveness of a kinematic state.

First, given a lattice l = {l1, . . . , ln}, the linearly independent vector fields li, i = 1, . . . , n, define on U a
long-distant parallelism and a flat linear connection, called a lattice connection, associated with it. Its Christoffel
symbols 0i

jk , i, j, k = 1, . . . , n, are

0i
jk = −(lm

j )−1 ∂li
m

∂xk

, (18)

where the matrices li
m, i, m = 1, . . . , n, represent coordinates of the vectors defining the lattice in the standard

coordinate system x1, . . . , xn on U (see, e.g., [11]). Although the curvature of a lattice connection vanishes its
torsion

T i
jk = 0i

[ jk] (19)

does not, in general, and it is often accepted (see Remark 1) as representing the defectiveness of a given lattice
l. Note that the components of a torsion of the lattice connection can also be given in terms of the Lie brackets
of the algebra L as

[lj, lk] = T i
jkli, (20)

where the summation convention over repeated indices is enforced.

Remark 1. The archetypical object associated with a defectiveness of a lattice in dimension n = 3 (see [1]) is
the dislocation density tensor Sij defined in terms of the dual lattice {η1, η2, η3} such that li · ηj = δij, where δij

denotes the usual Kronecker delta. That is, the components Sij of the dislocation density tensor are such that

n(p)Sij(p) = ∇ ∧ ηi(p) · ηj(p), i, j = 1, 2, 3, p ∈ M , (21)

where n(p) denotes the lattice volume element (the determinant of the dual lattice) and where the objects bi =
∇ ∧ ηi(p) are known in the material science literature as the Burgers vectors representing a distortion of a
lattice cased by a presence of defects [12, 13]. It can be shown [14] that the dislocation density tensor Sij and

the torsion T i
jk are related by

T i
jk = εrjkSir, (22)

where εrjk is the alternating tensor.

When investigating possible dislocated states and the lattices representing them one may consider the
following three scenarios.

(A) First, if the torsion of a (flat) lattice connection 0i
jk vanishes the connection is trivial and the lattice vector

fields li, i = 1, . . . , n, defining the corresponding long-distance parallelism commute. The lattice l is
holonomic and the lattice Lie algebra L is abelian. Physically, the kinematic state the lattice l represents
is homogeneous, that is, no defects are present and, in dimension three, the dislocation density tensor Sij

vanishes identically. The group G the algebra L induces can be identify, without loss of generality, with
Rn acting on U by translations as there exists always, at least locally, a coordinate system, say, x1, . . . , xn

on U such that l = { ∂
∂x1

, . . . , ∂
∂xn

}. In other words, the kinematic state the lattice l represents is invariant

under translations.
(B) Second, assume that the torsion of a lattice connection does not vanish but its value is base point indepen-

dent. This implies that the components of the torsion tensor T i
jk are simply the Lie algebra constants of

the lattice algebra L and (in dimension three) the dislocation density tensor is constant. The Lie group G,
still viewed as Rn, acts on U in a non-trivial way. We say that such a kinematic state is uniformly defec-
tive which means that open neighborhoods of different material points are diffeomorphically equivalent.
As such diffeomorphisms are viewed as elastic deformations [2], being uniformly defective means being
locally elastically related.
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Example 2. Consider, using a cartesian coordinate system in R3, a lattice

l = {l1, l2, l3} = {e1, e2, xe1 + ye2 + e3} (23)

defined on U = {(x, y, z) ∈ R3 : x > 0, y > 0}. As [l1, l3] = l1, [l2, l3] = l2, and [l1, l2] = 0 the only non-
zero torsion coefficients are T1

13 = T2
23 = 1. The corresponding Burgers vectors are b1 = e2, b2 = −e1,

and b3 = 0, and the dislocation density tensor

Sij =

(
0 1 0

−1 0 0
0 0 0

)
. (24)

(C) Finally, suppose that a lattice l is such that some components of the torsion T i
jk of the lattice connection 0i

jk

are non-trivial functions of position.6 The fact that the torsion tensor is material-point-dependent implies
that the lattice algebra L is of a finite dimension,7 say m, higher than the dimension of the base space U ,
and the kinematic state l represents is said to be non-uniformly defective. The lattice algebra L induces an
m-parameter connected Lie group G acting on U in such a way that the isotropy group G0 is non-trivial
and of dimension m − n ≥ 1. As the isotropy group is a Lie subgroup of the Lie group G its (left) Lie
algebra g0 is a Lie subalgebra of the (left) Lie algebra g. Viewing g as a vector space of all left-invariant
vector fields on G, it can always be represented as a simple sum of the isotropy algebra g0 and a vector
space complement V ( g. In other words,

g = g0 ⊕ V, (25)

for some vector subspace V of the algebra g viewed as a vector space. Note that V is not uniquely defined
and that, in general, it is not a Lie subalgebra of g.

In the next section, we look closer at possible characteristics of non-uniformly defective states.

4. Lattice canonical connection

Consider a lattice l = {l1, . . . , ln} representing a non-uniformly defective kinematic state of a solid U . As we
pointed out earlier, this means that its lattice algebra L is of dimension higher than the dimension of U and that
the corresponding Lie group G acting on U on the left has a non-trivial isotropy group G0, or its conjugate, at
any and all points of U . This also means that the left Lie algebra g of G can be represented as g = g0 ⊕ V for
some n-dimensional vector space V ⊂ g of left-invariant vector fields on G. As the choice of a subspace V is
not unique, we further assume that one can select a space V such that the decomposition g0 ⊕V is reductive [9],
that is,

[g0, V] ⊆ V. (26)

We should point out here that although given a subalgebra g0 ( g there is always a vector space V ⊆ g such that
g = g0 ⊕V, not every such decomposition is reductive. In fact, given g there may not exist a vector complement
V making the decomposition g = g0 ⊕ V reductive [15].

Every vector space complement V forms a horizontal distribution on the principal bundle π : G → U in
the sense that it depends smoothly on G and the tangent map dπ : TG → TU is surjective with the subalgebra
g0 as its kernel. However, only if the decomposition g0 ⊕ V is reductive, V defines a horizontal distribution of a
left-invariant principal bundle connection on π : G → U . Indeed, as we showed in [6], the fact that [g0, V] ⊆ V
implies that V is invariant under the right action of the isotropy group (see also [16]). Such a left-invariant
principal bundle connection is called a canonical connection on the homogeneous space U ∼= G\G0.8

As the bundles π : G → U and L(U , G0) are isomorphic, the canonical connection associated with the
distribution g0 ⊕ V induces a linear connection on U , called a linear canonical connection [9, 16].

Theorem 1. Let l be continuous lattice defined on a body manifold U. Assume that the corresponding homoge-
nous space G\G0 admits a reductive decomposition g = g0 ⊕ V for some vector complement V ⊂ g, where G0

is an isotropy group of the left action of G on U evaluated at p0 ∈ U. Then, relative to the choice of the frame
u0 : Rn → Tp0

U, the torsion and curvature of the corresponding (left-invariant) linear canonical connection
are given at p0 by:
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(a) T̂(X , Y ) = −[X , Y ]V;
(b) R̂(X , Y )Z = −[[X , Y ]g0

, Z];

for any left-invariant vector field X , Y , Z ∈ V, where [·, ·]V and [·, ·]g0
denote V and g0 components, respectively,

of the Lie algebra bracket in g. In addition, both tensors are left-invariant, thus covariantly constant.

Remark 2. It seems appropriate now to make a few comments regarding the existence of a linear canonical
connection induced by a lattice l.

First, we would like to point out that although the concept of a linear canonical connection was introduced
in the context of a non-uniformly defective continuous lattice, it existence is also guaranteed when the lattice
is uniformly defective. That is, when a lattice l represents a uniformly defective kinematic state, its lattice Lie
algebra L is of the same dimension as the body U and the corresponding isotropy group is trivial. This implies
that any horizontal distribution V is identical to the left Lie algebra of the group G. The linear canonical
connection is unique and equal to the lattice connection, thus providing no addition geometric characteristics
of the lattice l.

However, when a lattice frame l represents truly non-uniformly defective state, the existence of a linear
canonical connection cannot be guaranteed a priori. Indeed, as we pointed out earlier, given a continuous
lattice and the corresponding lattice algebra L, the induced homogenous space G/G0 may or may not be
reductive. If it is not reductive, the concept of a linear canonical connection is not well defined. However, even
if it is reductive the choice of the corresponding vector complement V may not be unique as there may exist a
number of different vector subspaces V of g such that the [g0, V] ⊆ V, thus inducing different linear canonical
connections. Although all such connections characterize in some ways the underlying defective crystal structure
not all seem to provide useful geometric characteristics of it, the issue which we discuss in the remainder of this
paper.

Example 3. Let us revisit once again Example 1. Using (14) defining the group multiplication in G, we obtain
that the left Lie algebra

g = span{v1, v2, v3} = span{g1, g2 − ag3, g3} (27)

and that the left-invariant vector field generating the isotropy algebra g0 is

v0 = g2 − (x0 + a)g3. (28)

Selecting the space V = span{v1, v3}, we obtain a reductive decomposition g = g0 ⊕ V as [v1, v0] = −v3 ∈ V
and [v3, v0] = 0. However, the corresponding linear canonical connection is trivial as due to the fact that V is
an abelian subalgebra of g both curvature and torsion vanish. We discuss other choices of V in the next section.

5. Curvature of a non-uniformly defective state

Given a continuous lattice l representing a non-uniformly defective state, as signified by a non-constant torsion
T i

jk of its lattice connection, it is only natural to determine whether there exists any relation between this char-

acteristic of a lattice and the form of the torsion and curvature tensors of the corresponding linear canonical
connection (Theorem 1), if it exists. To this end, given a lattice l, defined by the vector fields li, i = 1, . . . , n, let
w1, . . . , wn denote right-invariant vector fields on G such that

dgφp0
(wi) = li, i = 1, . . . , n. (29)

As the tangent mapping dgφp0
(4) is of maximum rank and as the vector fields l1, . . . , ln are linearly indepen-

dent, the right-invariant vector fields w1, . . . , wn always exist and are linearly independent. Let v1, . . . , vn be the
equivalent set of left-invariant vector fields on G, that is, a set of the elements of the algebra g such that

vi = di(wi), i = 1, . . . , n, (30)

where i is the inverse map on the group G. It is easy to show [8] that

[vi, vj] = −[wi, wj], [vi, wj] = 0, i, j = 1, . . . , n. (31)

Define a canonical vector space Vc = span{v1, . . . , vn}. It is clear that Vc is a vector subspace of the Lie algebra
g and that g = g0 ⊕ Vc as the isotropy subalgebra g0 is the kernel of the projection dπ : TG → TU . Assume
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that the lattice l is such that the decomposition g = g0 ⊕ Vc is reductive, a property which cannot be guaranteed
in general. We shall call the corresponding linear connection on L(G0, u) the lattice canonical connection9 of a
continuous lattice l.

The coefficients of the torsion tensor of the lattice canonical connection (in the frame v1, . . . , vn) are the
smooth functions −T̂ i

jk : U → R, i, j, k = 1, . . . , n, such that

T̂ i
jkvi = [vj, vk]Vc

, (32)

where [·, ·]Vc
denotes a Vc component of the Lie bracket of the algebra g and where the minus sign is selected

for convenience. Respectively, the coefficients of the curvature tensor of the lattice canonical connection are the
smooth functions −R̂i

jkl : U → R such that

R̂i
jklvi = [[vj, vk]g0

, vl], (33)

where [·, ·]g0
is a g0 component of the Lie bracket in g.

Theorem 1 and the relation (31) allow us to show the relation between the torsion T̂ i
jk and T i

jk .

Corollary 1. Assume that the continuous lattice l = {l1, . . . , ln} admits a lattice canonical connection corre-
sponding to a reductive decomposition g0 ⊕Vc. Then, the torsion coefficients of the lattice canonical connection
in the equivalent frame vi, i = 1, . . . , n are identical to the torsion coefficients of the lattice connection 0i

jk (18),

that is,
T̂ i

jk = −T i
jk(p0). (34)

Furthermore, consider the Jacoby identity of the Lie algebra g applied to the canonical (left-invariant) vector
fields vi ∈ Vc (30), namely

[[vj, vk], vl] + [[vk , vl], vj] + [[vl, vj], vk] = 0, j, k, l = 1, . . . , n. (35)

Invoking the reductive decomposition g = g0 ⊕ Vc and the definition of a torsion and a curvature of a linear
canonical connection (32) and (33), we obtain that, for example,

[[vj, vk], vl] = [[vj, vk]V, vl] + [[vj, vk]g0
, vl]

= [T̂ i
jkvi, vl] + R̂m

jklvm

= T̂ i
jk[vi, vl] + R̂m

jklvm

= T̂ i
jk[vi, vl]V + T̂ i

jk[vi, vl]g0
+ R̂m

jklvm

= T̂ i
jkT̂

p

ilvp + T̂ i
jk[vi, vl]g0

+ R̂m
jklvm. (36)

The other two terms of the Jacoby identity can be represented the same way. Adding all three terms and realizing
that the sum of all g0-terms vanishes, we obtain a set of n equations for the coefficient of the Vc-part of the
identity:

T̂ i
jkT̂m

il + T̂ r
klT̂

m
rj + T̂

p

lj T̂
m
pk + R̂m

jkl + R̂m
klj + R̂m

ljk = 0, m = 1, . . . , n. (37)

Subsequently, Corollary 1 implies that

R̂m
jkl + R̂m

klj + R̂m
ljk = −[T i

jkTm
il + T r

klT
m
rj + T

p

ljT
m
pk](p0). (38)

Looking back at the lattice l = {l1, . . . , ln} and the Jacoby identity of the algebra L we have

[[lj, lk], ll] + [[lk , ll], lj] + [[ll, lj], lk] (39)

= [Ta
jkla, ll] + [Tb

kllb, lj] + [T c
ljlc, lk]

= Ta
jk,lla + Ta

jk[la, ll] + Tb
kl,jlb + Tb

kl[lb, lj] + T c
lj,klc + T c

lj[lc, lk]

= Ta
jk,lla + Ta

jkTd
alld + Tb

kl,jlb + Tb
klT

e
bjle + T c

lj,klc + T c
ljT

f

cklf = 0

where a comma denotes a directional derivative in the direction of a specific vector field. Comparing this with
(38), we are finally able to show how the curvature of a lattice canonical connection (33) relates to the derivatives
of the torsion tensor T i

jk of the lattice connection (18).
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Corollary 2. Suppose a continuous lattice l = {l1, . . . , ln} admits a lattice canonical connection corresponding
to a reductive (canonical) decomposition g0 ⊕ Vc. Then, the curvature coefficients of the lattice canonical
connection in the frame vi, i = 1, . . . , n, are “almost” identical to the directional derivatives of the torsion
coefficients of the lattice connection (18) as

R̂m
jkl + R̂m

klj + R̂m
ljk = [Tm

jk,l + Tm
kl,j + Tm

lj,k](p0). (40)

Realize that although the vanishing of the directional derivatives of the torsion T i
jk forces the curvature R̂i

jkl

to vanish by construction, the reverse is not necessarily true. Indeed, when the canonical decomposition g0 ⊕Vc

is a semi-direct product of Lie subalgebras, the curvature of the canonical linear connection vanishes as Vc is
an ideal in g, despite the fact that the coefficients T i

jk may still be position dependent.

Example 4. Consider a defective kinematic state of U = {(x, y, z) ∈ R3 : xy 6= 0} defined by a lattice l given
by three linearly independent smooth vector fields li : U → R3, i = 1, 2, 3, such that

l1 = e1, l2 = e2 − ye1, l3 = xe1 + ye2 + e3, (41)

where we use the standard Cartesian coordinate system in R3 and where the vectors ei, i = 1, 2, 3, denote the
corresponding standard basis. The vector fields li, i = 1, 2, 3, form a four-dimensional lattice algebra L. Indeed,
calculating Lie brackets of the given vector fields we obtain that

[l1, l2] = 0, [l1, l3] = l1, [l2, l3] = e2 = l4, (42)

whereas
[l1, l4] = 0, [l2, l4] = l1, [l3, l4] = −l4. (43)

This also shows that the only non-vanishing components of the torsion of the lattice connection induced by the
frame {l1, l2, l3} are

T1
13 = T2

23 = 1, T1
23 = y. (44)

Each generator lj, j = 1, . . . , 4, of the lattice algebra L induces a one-parameter group of (smooth) transfor-
mations of U superposition of which provides a (left) action (1) of a four-parameter group G = {(a, b, c, d) :
a, b, c, d ∈ R} such that

φ((a, b, c, d), (x, y, z)) =
(
(x + a − yb)ed, (y + b + c)ed, z + d

)
, (45)

where the group multiplication in G takes the form

gg =
(

a + ae−d − b(b + c), b + b, (b + c)e−d + c − b, d + d
)

(46)

for any pair g, g ∈ G.
Selecting a point p0 = (x0, y0, z0) ∈ U, the isotropy group of the action φ at p0 is a one-parameter subgroup

G0 of G such that
G0 = {(y0b, b, −b, 0) : b ∈ R}. (47)

Viewing the group multiplication in G as the action of a group on itself, we can determine the left- and the right-
invariant vector fields on G by considering two tangent maps: deLg : TeG → TgG and deRg : TeG → TgG,
where Lg and Rg represent the left and the right translation of G by an element g ∈ G, respectively. Thus, the
multiplication rule in G implies that

deLg =




1 −b −b −a
0 1 0 0
0 0 1 −(b + c)
0 0 0 1


 (48)

and

deRg =




e−d −(b + c) 0 0
0 1 0 0

0 e−d − 1 e−d 0
0 0 0 1


 , (49)
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where e = (0, 0, 0, 0) is a unit element. This shows that the space of all left-invariant vector fields on G is
spanned by

v1 =g1, v2 = −bg1 + g2, (50)

v3 = − bg1 + g3, v4 = −ag1 − (b + c)g3 + g4,

whereas the space of all right-invariant vector fields on G is spanned by

w1 =e−dg1, w2 = −(b + c)g1 + g2 + (e−d − 1)g3, (51)

w3 =e−dg3, w4 = g4,

where g1, . . . , g4 denote the standard basis on G. It is easy to check that they are isomorphic Lie algebras
and that they are isomorphic to the lattice algebra L. Moreover, one can show that the basis {v1, v2, v3, v4} is
equivalent (via the inverse map in G) to the right-invariant basis {w1, w2, w3, w4}.

Consider the orbit map φp0
: G → U. Its tangent map dgφp0

: TgG → Tφp0
(g)U establishes an isomorphism

between the right Lie algebra of G and the lattice algebra L. Indeed, given the group action (45)

dgφp0
=




ed −y0ed 0 (x0 + a − y0b)ed

0 ed ed (y0 + b + c)ed

0 0 0 1


 . (52)

Thus,

dgφp0




e−d −(b + c) 0 0
0 1 0 0

0 e−d − 1 e−d 0
0 0 0 1


 =

(
1 −y 0 x
0 1 1 y
0 0 0 1

)
, (53)

where (x, y, z) = φ(g, p0) =
(
(x0 + a − y0b)ed, (y0 + b + c)ed, z0 + d

)
.

This shows that the vector space Vc = span{v1, v2, v4} is indeed a canonical vector complement to the
isotropy Lie subalgebra g0 = span{v0} = span{(y0, 1, −1, 0)} in g. Moreover, the decomposition g0 ⊕ Vc is
reductive as

[v0, v1] = 0, [v0, v2] = −v1, [v0, v4] = −y0v1. (54)

Hence, the lattice canonical connection exists. Relabeling the spanning set of Vc and calculating the relevant
Lie brackets we obtain that the torsion T̂ i

jk has only three non-zero components

T̂1
13 = T̂2

23 = −1 and T̂1
23 = −y0, (55)

whereas the most curvature coefficients R̂i
jkl vanish except

R̂1
232 = −1 and R̂1

233 = −y0. (56)

Example 5. In our final example, we revisit (Example 1) the lattice

l = {l1, l2} = {e1, −xe2} . (57)

The left Lie algebra g of the group G induced by l is spanned by

v1 = g1, v2 = g2 − ag3, v3 = g3, (58)

whereas its right algebra is generated by

w1 = g1 − bg3, w2 = g2, w3 = g3. (59)

Knowing that the tangent to the orbit map at a point p0 ∈ U evaluated at the identity of G is

deφp0
=

(
1 0 0
0 x0 −1

)
, (60)
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it should be easy to see that the corresponding canonical vector space Vc = span{v1, v2} and that g = g0 ⊕ Vc

where the isotropy algebra g0 = span{v0} = span{g2 − (a + x0)g3}. Unfortunately, it should also be easy to see
that such a decomposition is not reductive as

[v1, v0] = −g3 /∈ Vc. (61)

Notes

1. A curvature is often associated with a presence of disclinations [4].

2. In other publications on this topic, we use also the term lattice frame.

3. Our presentation is mathematically correct in any finite dimension n.

4. Note that not every lattice l defines a finite-dimensional Lie algebra L. For example, a tree trunk dislocation, defined on R2 −

{0} by unit vector fields ∂
∂r

, 1
r

∂
∂θ

associated with the polar coordinate system r, θ , induces, as it is easy to check, an infinite-

dimensional Lie algebra of vector fields (Epstein, M. Private communication, 2021).

5. The left and right Lie algebras of any Lie group G are isomorphic. The isomorphism is established by the inverse map i : G → G,

i.e., i(g) = g−1, where g ∈ G.

6. Looking back at the lattice l from Example 1, we can easily show that the only non-zero torsion coefficient is T2
12 = 1

x . Viewing

this lattice as immersed in R3, that is, considering a lattice

l = {l1, l2, l3} = {e1, −xe2, e3} , (62)

one can show that the only non-vanishing component of the dislocation density tensor is S23 = − 1
x .

7. As we pointed out earlier, not every lattice l induces a finite-dimensional Lie algebra L. Thus, by assuming that it does we restrict

the choice of the kinematic states we are able to analyze using this approach.

8. Note that the assumption that the homogeneous space admits a reductive decomposition is essential for the existence of a canon-

ical connection as there are non-reductive homogeneous spaces which do not admit any invariant affine connection (Bryant,

R. Private communication, 2021.). On the other hand, every reductive homogeneous space admits a (left-invariant) canonical

connection [16].

9. This approach was first proposed in [5].
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