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Fluid dynamics and energetics in ideal gas mixtures

John D. Ramshaw?®
Lawrence Livermore National Laboratory, University of California, P.O. Box 808, L-097, Livermore,
California 94551

(Received 4 August 2001; accepted 31 January R002

The generalization of fluid dynamics from pure to multicomponent fl(fidéd mixtures composed

of different components or specjegquires the introduction of new concepts, some of which are
rather subtle and are less widely appreciated than they deserve to be. The purpose of this paper is
to provide a simple didactic introduction to some of these concepts based on a detailed analysis of
the equations governing the flow of ideal gas mixtures. The treatment is based entirely on a
continuum description and makes no explicit use of the kinetic theory of gases. We include a
straightforward and physically transparent derivation of the additional heat flux arising from the
relative motion of the different species, and show why this flux involves species enthalpies rather
than energies. Some of the concepts are reminiscent of those used in turbulence modeling, and these
analogies are briefly discussed. #02 American Association of Physics Teachers.
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[. INTRODUCTION c;=p;/M;, whereM; is the molecular weightmass of a

: o . . single molg of species. The mass of a single molecule of
Most fluids of practical interest are multicomponent mix- oo . .
goeciesi is m;=M; /Ny, where Avogardro’s numbeX, is

tures containing several different components or chemica :

species. For many purposes, fluid mixtures behave much Iilzge number of atoms or molecules in a mole. The number
pure fluids and can be described by very similar equation<J€nSity of speciesis the number of atoms or molecules of
Mass, momentum, and energy are of course conserved #Peciesi per unit total volume and is given by, =p;/m,
mixtures as well as pure fluids, and the dynamics of fluid=NoC;i. Thusn; andc; differ only by a constant factor, and
mixtures is consequently described by fluid dynamical masghe choice of which to use is merely a matter of taste. The
momentum, and energy transport equations similar in forntotal molar and number densities of the mixture are simply
to those for a pure fluid. This similarity can be deceptive,c==, c; andn=X3, n;=Ngc, respectively, and the mole frac-
however, as pure fluids and mixtures also exhibit some esjon of species is x;=c;/c=n;/n. All of these quantities
sential dlfferences_that are not obvpus on ca_sual '”SpeCt'OQexcept of course the constarl, m;, andN,) are local
The purpose of th'.s' paper is to derl\_/e and d'S(.:USS SOME | ependent variables which are functions of the positiand
these differences, including subtle differences in the definiyq timet.

tion and interpretation of various familiar quantities such as It is also useful to define the volume fraction of spedies

the stress tensor, heat flux, and internal energy. . . .
For simplicity and concreteness, we restrict our attentio n the mixture, which we denote b’y' T.hese vqumg fr'ac
ions are more common and familiar in the description of

to the special case of multicomponent ideal gas mixtures,

However, most of the basic ideas apply equally well to densgnultiphase mixtures, but they are also of fundamental impor-

fluid mixtures as well as multiphase mixtures, where similart@nC€ in the multicomponent gas mixtures of present interest.

considerations lead to very similar resufdthough there are In'this case, however, the qonstituent species are intimately
differences in the detailsThe main prerequisite assumed of Mix€d together on the atomic or molecular level, so in order
the reader is a general familiarity with the continuity, mo- t0 definee; we must first define the partial volume occupied
mentum, and energy equations for a pure fluid, such as th&y species in the mixture. To this end, we imagine that the
provided by most introductory courses in fluid dynamics.species contained within any small volureare separated
More complete and advanced treatments of multicomponerihto subvolumesV; without changing their temperaturds

fluid dynamics may be found in the books of Burdeasid  (which are equal in most cases, although they need rioh be
Woods? which are based on the kinetic theory of gases anar the total pressurp. The number of molecules of species
phenomenological nonequilibrium thermodynamics, respeccontained inV is n,V, so the number density of species

tively. The subject is sufficiently complex, however, that oneyithin its subvolume is1,V/V; . (Similarly, the mass of spe-
should not expect these and other treatments to be fully co iesi contained inV is p;V, so the mass density of pure

sistent with each other or with the present treatment in al P : .
P specied within its subvolume ip;V/V,; . These mass densi-

respects. : : . ; : ;
ties are important variables in multiphase mixtures, but they

Il. SPECIES DENSITIES, CONCENTRATIONS, do not play a sigl_wificant role in the multicomp(_)nent_ga_s mix-
AND FRACTIONS tures of present mtereSiBecaL_Jse_ we are dealing with ideal
gases, the pressure of speciewithin its subvolume then
The partial mass density of species denoted by, and ~ becomes;V/V;)kT;, wherek is Boltzmann’s constant. By
is defined as the mass of spediger unit total volume. The ~equating these subvolume pressures to the total pregsure
total mass density of the mixture js=3; p;, and the mass we obtainpV;=n;kT;V, which determine¥; . For this defi-
fraction of species in the mixture isy;=p;/p. The molar  nition of V; to be sensible, however, we must verify that
concentration(moles per unit total volumeof speciesi is  2;V;=V (Amagat’s law. This relation indeed follows from
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the fact thatp=2; p;, wherep;=n;kT; is the partial pres- whereV is the volume of a small Lagrangian volume ele-
sure of species in the original unseparated mixture. The ment whose surface moves with the local mass-weighted
volume fractions can then be defined as=V;/V=p;/p  fluid velocity u. This relation remains valid in a multicom-
=z,. The volume fraction of speciésn a multitemperature ponent fluid, but it no longer has the same interpretation
multicomponent ideal gas mixture is therefore the same as itgecause/~ 'dV/dt no longer has the significance of the in-
pressure fractiow; . In the special case when all the SpeciestrinSiC local relative expansion rate of the fluid. The reason is
temperaturedT; are equalz trivially reduces to the mole that the surface oV does not move with velocity, , so
fraction x;, so thate;=x; and the species volume fractions there is a net flow of volume across it which causeso
become identical to their mole fractions. change even in the absence of expansion or contraction of
the fluid itself. To obtain a proper measure of expansion or
contraction divorced from the effects of transport, it is nec-
Ill. SPECIES AND MIXTURE CONTINUITY essary to consider a small volume elem¥&ntwith no net
EQUATIONS volume flow across its surface; that is, a volume element

In the absence of chemical reactions or other mass e)(ﬁgose surface moves with velocity, rather tharu. We then

change between species, the mass of each species is ¢ we
served, so that each species obeys a continuity equation of 1dVv
the same form as that for a pure fluid: V-u,= lim VTR ()
8’) V' =0
a—t'+V-(piui)=0, (1) which now represents the intrinsic local relative expansion

rate of the fluid mixture. The condition for incompressible
whereu; is the mean velocity of specieésEquation(1) is not  flow is that this expansion rate vanishes, so the incompress-
restricted to ideal gas mixtures, but applies equally well tability condition in a multicomponent fluid takes the form
dense fluid mixtures and multiphase mixtures. If we sumV-u,=0 rather tharV-u=0. In a pure fluidu,=u, and the
over i, we obtain the total continuity equation for the mix- incompressibility condition then reduces to its usual familiar
ture: form V-u=0.

p Even thoughu andu, are both important, it is inconve-

— +V-+(pu)=0, (2)  nient to retain both of them in the description. Because

It directly related to mass and momentum conservation, it is
whereu=Z3; y;u; is the mass-weighted mean fluid velocity customary to eliminates, in terms ofu. This elimination
of the mixture. Equatioril) is usually written in the form ~ may be done by means of the easily verified identity

%+V-(piu)=—V°Ji, ©) uU=U+Z (ailpi)d;. (6)

where J;= p;w; andw;=u;—u. Clearly J; is the mass flux
(mass flow per unit area per unit tionef specieg relative to V. SPECIES AND MIXTURE MOMENTUM
u. The fluxesJ; may be considered the fundamental variablesEQUATIONS

that carry information about the relative velocities of the dif-

ferent species. We are concerned with ideal gases, in which the effects of

intermolecular collisions are negligible by definition. This
implies that viscous stresses can be neglected, and for sim-
IV. THE VOLUME-WEIGHTED MEAN VELOCITY plicity we shall also neglect external forces such as gravity.
) ) o ) If intermolecular collisions were completely absent, the mol-

The volume-weighted mean fluid velocity is defined by ecules of each species in an ideal gas mixture would be com-
u, =X a;u;, which becomes¥; ziu; in the ideal gas mix- pletely unaware of the presence of the other species, so that
tures of present interest. Bothandu, are fundamental for the momentum equation for each species would have exactly
different purposes, and the distinction between them is athe same form as that for a pure invisdizero viscosity
essential difference between the flow of pure and multicomideal gas. To make things more realistic, however, we shall
ponent fluids. Consider a small fixed surface with unit nor-include the effects of collisions between moleculesliffier-
mal vectorn. The mass of speciescrossing this surface per ent species, while still neglecting intermolecular collisions
unit area per unit time i;u;*n, so the total mass crossing between molecules of tteamespecies. Strictly speaking this
this surface per unit area per unit timepis-n. Thus there is assumption is somewhat inconsistent, but it will allow us to
no net mass flow across a surface moving with veloaity focus more clearly on the effects of interest without extrane-
Similarly, the volume of specidscrossing such a surface per ous complications. The momentum equation for species
unit area per unit time is;u;-n. The total volume crossing Will then still have the same form as that for a pure inviscid
such a surface per unit area per unit time is therefigre, so ideal gas, but W.Ith additional terms representing the forces
there is no net volume flow across a surface moving witfEXerted on specieisby each of the other species:
velocity u, . Relations based on volume changes conse-  j(p;u;)

quently involveu, rather thanu, as will be seen in what p +Ve(piuiu) = - Vpi+ 2 Fy, ()
follows. A simple example is the familiar relatibn 17
1dv whereF;; = — Fj; is the force per unit volume of specigsn
V-u=lim—= —, (4) species. If we sum overi, we obtain the total momentum
vooV dt equation for the mixture:
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d(pu) The kinetic energy per unit mass associated wiik simply

p +V-2 piuiu=—Vp, (8 Yul|?, a transport equation for which can readily be derived
I .
from Eq.(12). The result is
which may be rewritten in the form 1 1
07(pU) p[ﬁ §|U|2 +U'V<§|U|2) =U‘(V'0'), (13)
i +V-(puu)=V-o, 9
which can in turn be expressed in the equivalent conservative
where form
o=—pU+R (10 ( ) 1 )
—(=plul?2|+ V- =plulPu|=u-(V-0). 14
is the total stress tensdy, is the unit tensor, and ot 2p| | 2p| | ( ) 19
R= _Z PiW;W; (1) VI. SPECIES AND MIXTURE ENERGY EQUATIONS
|

is an additional stress arising from the relative motion of the In accordance with the assumptions made for the species

different species. This additional stress is a purel multicommomentum equations, the energy equation for spacies
P : ; X purely the same form as that for a pure inviscid ideal gas with zero
ponent phenomenon and vanishes in a pure fluid.

The occurrence and physical interpretationRobecome thermal conductivity, but with additional terms representing

clearer when one reflects upon the significance of the partie}Pe exchange of energy between the different species:
pressurep; . As discussed above, we are neglecting intermo-  d(p;E;j)

lecular collisions between molecules of the same species, T—i_v'(piEiui):_V'(piui)_FjE# Qij (19
and yetp; still appears in the equations. Thus the pressure in ) )

ideal gases does not arise from or represent the effects dfhere E;=73/u;|>+e; is the total energy per unit mass of
intermolecular forces or collisions, which is why the ideal species, g; is the thermal internal energy per unit mass of
gas lawp=nkT involves no cross sections or other colli- species, andQ;; = — Q;; is the rate per unit volume at which
sional parameters. The pressure in the interior of an ideagnergy is transferred from specipgo species. The total
gas, away from the walls, is therefore not a real physicaknergy per unit volume of the mixture is given E
force per unit area as we are accustomed to thinkidg =3, p,E;, an evolution equation for which may be derived

though it is formally equivalent to such a fojcén reality, by summing Eq(15) over all species to obtain

the pressure in an ideal gas is merely an additional momen-

tum flux arising from the fact that the velocities of the atoms I(pE) +V'E piEiu;=—V-(pu,) (16)
- 1= v/
|

or molecules at a given point are not all the same, but are ot

statistically distributed about their mean value at that pbint. hat th K . invol her th
When this distribution is locally Maxwellian, the gas has a Ve Se€ that the work term in E(L6) involvesu, rather than

well-defined local temperature to which the local pressure i%* as might have been anticipated from the fact that work is
simply related by the ideal gas law. Even if the velocity P@sed on volume changes. Equatia) can be rewritten as
distribution were not Maxwellian, however, it would still im- J(pE)
ply an additional momentum flux appearing as a pressure in it
the mean momentum equation. This additional momentum
flux is indeed the way pressure arises and is defined in the =—V-(pu,)+V-(R-u)—V-J
kinetic theory of gases. a

Thus the partial pressugg in Eq. (7) is simply the mean —V°E e 17
additional flux of species momentum resulting from devia- — 1T
tions of the molecular velocities of specieffom their mean
valueu; . Each of the partial pressures therefore represent?
the effects of velocity deviations relative to a different mean 1 )
velocity u; . Similarly, o represents the mean additional mo- Jg=2 §|Wi| Ji. (18
mentum flux resulting from deviations of the molecular ve- '
locities of all species from the mass-weighted mean velocityVe see that additional heat flux@gand=; e;J; have arisen
u. The additional stresR simply allows for the difference due to the conversion from, to u in the convection term. If
between the velocities; relative to which thep; are defined, we now use Eq(6) to eliminateu, in favor of u, we obtain
and the velocity relative to whiche is defined. Note thaR
is inherently dynamical in naturg,_ whereas thg partial pres- I(pE) +V+(pEU)=V-(o+U)— V-]
suresp; are purely thermal quantities that are simply related at
to the species temperatur€s. Note also thaR has nothing
whatever to do with viscous effects, which are completely —V.E (ej+pilpi)di
neglected in the present discussion. [

Equations(2) and (9) may be combined to convert the
momentum equation into the equivalent nonconservative
form where

+V-(pEu)=—V-(pu,) - V- EJ;

here

=V-(0u)— V-3~ V-Jp, (19

&—u-l-u-Vu) =V-.o. (12 thz hJ;. (20)

Pl ot

510 Am. J. Phys., Vol. 70, No. 5, May 2002 John D. Ramshaw 510



andh;=e;+p;/p; is the specific thermal enthalpy of species thermal internal energy equation. In this cadetherefore

i. Thus we see that the conversion framto u in the work ~ represents the rate at which the nonthermal internal ergergy

term has the effect of bringing in an additional factor of is irreversibly dissipated into thermal internal eneedyy the

p: / p; which combines withe; to result in the appearance of frictional drag forces between species.

h; rather tharg; in J,,. The fluxJ, is sometimes referred to

as “e_nthalpy diffusion” when the s_p_ecies mass fluxesare VIl. SIMPLIEICATIONS DUE TO SMALL

d|ffu5|one'1ll in character. The quantitidg andJ, poth repre-  pEL ATIVE VELOCITIES

sent additional energy fluxes due to the relative motion be-

tween species. These fluxes are inherently multicomponent The above relations contain a number of unfamiliar terms

quantities which are unrelated to ordinary thermal heat conbecause they are valid in the general case where the differ-

duction and vanish in a pure fluid. ences between the species velocities are not necessarily
For consistency with the velocity determined by the small. Most of these terms become negligible when the spe-

momentum equation, the kinetic energy per unit volume ofcjes velocitiea; differ only slightly fromu, that is, when the

the mixture must be considered to belu|®, which differs w; are small. This occurs, in particular, when the frictional

from =, 3p;|uj|2. Because of this difference, the internal en-force coefficientse;; are large. The individual species mo-

ergy per unit volumepe=pE— %p|u|2 is not purely thermal mentum equations then reduce to the Stefan—Maxwell equa-

in nature, but also contains the relative kinetic energy of thdions of multicomponent diffusion theory, and the species

species velocities in a frame moving with We readily find ~ mass fluxes); become diffusional in charactr.

that e=e+q, wherepe=2; p;e; is the thermal part of the When thew; are small, terms of ordgw;|?> may be ne-

internal energy density andq=S; 1p;|w;|2= — 1R: U is the glected and the equations then simplify considerably. In par-

nonthermal part. A transport equation feican be obtained ticular, the stress tensar then simply reduces te-pU, so

by subtracting Eq(14) from Eg. (19), which gives that V-o reduces to—Vp and the momentum and kinetic
' energy equation$9) and(14) reduce to their usual inviscid
d(pe) ) forms. Moreoverg then becomes negligible comparedeo
ot +Ve(peu)=0:Vu—-V-J,=V-J, (2D 5o that there is no longer any distinction betweeand e.

Equations(21) and (23) correspondingly become identical,
in which the additional energy ﬂuxejﬁ anqu still appear. It because]q also becomes neg||g|b|e Compared\]}o’ while
is also instrluctive to derive an eyolution e_qua}tion fo_r thethe termsd and=; w;-V p; can be neglected because they are
nonthermal internal energy per unit magswhich is readily 1 of second order iw, . [The fact that the latter term is of
found to be order|w;|? can be verified by eliminating p; using Eq.(7).]
a(pQq) Note, however, that the flu¥, is linear in thew; and there-
ot +V-(pqu)=R:Vu—Z Wi-Vpi—®—V-Jg, fore cannot be neglected. This flux represents an absolutely
22) essential contribution to the total heat flux, and failure to
include it can result in serious errors in the temperature and
where ®=—3;;w;-F;; . By subtracting Eq(22) from Eq. pressure.
(21), we obtain a similar evolution equation fer

d(pe)
at

VIIl. ANALOGIES TO TURBULENCE MODELING

+V-(peu)=—pV-u+ >, w-Vp,+®—V-J,.
' (23) This final section is addressed to readers conversant with
turbulence and turbulence modelihigiho will note that sev-
The termsZ; w;-Vp; and ® appear with opposite signs in eral of the concepts discussed above have close turbulent
Egs.(22) and(23), so they evidently represent an exchangeanalogs. In particular, the additional stré&ss analogous to
of energy between nonthermal and thermal internal energy Reynolds stress and arises in much the same way. It is an
The former term represents reversible work done by the pamdditional momentum flux resulting from the averaged ef-
tial pressure of each species on itself, whilerepresents fects of internal nonthermal velocity variations which do not
work done on each species by the other species via the forcesntribute to the mass-weighted mean velocity fieldimi-
Fij . This term is nonzero because even though the forces dérly, the excess kinetic energy per unit mass associated with
specied andj on each other are equal and opposite, the workhese internal velocities ig, which is analogous to the tur-
done by these forces is nevertheless not equal and oppostlent kinetic energy per unit mass. Consequently, the rela-
due to the fact that the species move with different velocitiestion betweeng andR is formally the same as that in turbu-
It is of interest to specialize to the common case in whichlence. And just as in turbulence, the evolution equatiorgfor
the forces between species are purely frictional in nature, scontains a source terf:Vu and a sink termP, which rep-

thatF;; takes the form resents the rate at whichis dissipated to thermal energy and
which appears as an equal but opposite source term in the
Fij = aij (U — Ui) = @ (w; — w;) (24 thermal internal energy equation. All of these features are
anda;;=a;; . We then find quite general, and simply arise from the fact that in contrast

to ordinary single-component laminar fluid dynamics, we

, 1 ) now have two kinds of internal energy: the usual thermal

¢= 5% aij|wj—w;| :E; aij|ui=u|*>0, (25  internal energye, and a nonthermal dynamical internal en-

ergy g which represents the kinetic energy of internal veloc-

so that® represents a sink term in the nonthermal internality deviations or fluctuations that do not contribute to and
energy equation and an equal and opposite source term in tience are not contained in This circumstance then gives
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rise to various coupling terms and mechanisms by witjich ACKNOWLEDGMENTS
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