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Fluid dynamics and energetics in ideal gas mixtures
John D. Ramshawa)

Lawrence Livermore National Laboratory, University of California, P.O. Box 808, L-097, Livermore,
California 94551

~Received 4 August 2001; accepted 31 January 2002!

The generalization of fluid dynamics from pure to multicomponent fluids~fluid mixtures composed
of different components or species! requires the introduction of new concepts, some of which are
rather subtle and are less widely appreciated than they deserve to be. The purpose of this paper is
to provide a simple didactic introduction to some of these concepts based on a detailed analysis of
the equations governing the flow of ideal gas mixtures. The treatment is based entirely on a
continuum description and makes no explicit use of the kinetic theory of gases. We include a
straightforward and physically transparent derivation of the additional heat flux arising from the
relative motion of the different species, and show why this flux involves species enthalpies rather
than energies. Some of the concepts are reminiscent of those used in turbulence modeling, and these
analogies are briefly discussed. ©2002 American Association of Physics Teachers.

@DOI: 10.1119/1.1463737#

I. INTRODUCTION

Most fluids of practical interest are multicomponent mix-
tures containing several different components or chemical
species. For many purposes, fluid mixtures behave much like
pure fluids and can be described by very similar equations.
Mass, momentum, and energy are of course conserved in
mixtures as well as pure fluids, and the dynamics of fluid
mixtures is consequently described by fluid dynamical mass,
momentum, and energy transport equations similar in form
to those for a pure fluid. This similarity can be deceptive,
however, as pure fluids and mixtures also exhibit some es-
sential differences that are not obvious on casual inspection.
The purpose of this paper is to derive and discuss some of
these differences, including subtle differences in the defini-
tion and interpretation of various familiar quantities such as
the stress tensor, heat flux, and internal energy.

For simplicity and concreteness, we restrict our attention
to the special case of multicomponent ideal gas mixtures.
However, most of the basic ideas apply equally well to dense
fluid mixtures as well as multiphase mixtures, where similar
considerations lead to very similar results~although there are
differences in the details!. The main prerequisite assumed of
the reader is a general familiarity with the continuity, mo-
mentum, and energy equations for a pure fluid, such as that
provided by most introductory courses in fluid dynamics.
More complete and advanced treatments of multicomponent
fluid dynamics may be found in the books of Burgers1 and
Woods,2 which are based on the kinetic theory of gases and
phenomenological nonequilibrium thermodynamics, respec-
tively. The subject is sufficiently complex, however, that one
should not expect these and other treatments to be fully con-
sistent with each other or with the present treatment in all
respects.

II. SPECIES DENSITIES, CONCENTRATIONS,
AND FRACTIONS

The partial mass density of speciesi is denoted byr i and
is defined as the mass of speciesi per unit total volume. The
total mass density of the mixture isr5( i r i , and the mass
fraction of speciesi in the mixture isyi5r i /r. The molar
concentration~moles per unit total volume! of speciesi is

ci5r i /Mi , where Mi is the molecular weight~mass of a
single mole! of speciesi. The mass of a single molecule of
speciesi is mi5Mi /N0 , where Avogardro’s numberN0 is
the number of atoms or molecules in a mole. The number
density of speciesi is the number of atoms or molecules of
speciesi per unit total volume and is given byni5r i /mi

5N0ci . Thusni andci differ only by a constant factor, and
the choice of which to use is merely a matter of taste. The
total molar and number densities of the mixture are simply
c5( i ci andn5( i ni5N0c, respectively, and the mole frac-
tion of speciesi is xi5ci /c5ni /n. All of these quantities
~except of course the constantsMi , mi , and N0! are local
dependent variables which are functions of the positionr and
the timet.

It is also useful to define the volume fraction of speciesi
in the mixture, which we denote bya i . These volume frac-
tions are more common and familiar in the description of
multiphase mixtures, but they are also of fundamental impor-
tance in the multicomponent gas mixtures of present interest.
In this case, however, the constituent species are intimately
mixed together on the atomic or molecular level, so in order
to definea i we must first define the partial volume occupied
by speciesi in the mixture. To this end, we imagine that the
species contained within any small volumeV are separated
into subvolumesVi without changing their temperaturesTi
~which are equal in most cases, although they need not be1,3!
or the total pressurep. The number of molecules of speciesi
contained inV is niV, so the number density of speciesi
within its subvolume isniV/Vi . ~Similarly, the mass of spe-
cies i contained inV is r iV, so the mass density of pure
speciesi within its subvolume isr iV/Vi . These mass densi-
ties are important variables in multiphase mixtures, but they
do not play a significant role in the multicomponent gas mix-
tures of present interest.! Because we are dealing with ideal
gases, the pressure of speciesi within its subvolume then
becomes (niV/Vi)kTi , wherek is Boltzmann’s constant. By
equating these subvolume pressures to the total pressurep,
we obtainpVi5nikTiV, which determinesVi . For this defi-
nition of Vi to be sensible, however, we must verify that
( i Vi5V ~Amagat’s law!. This relation indeed follows from
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the fact thatp5( i pi , wherepi5nikTi is the partial pres-
sure of speciesi in the original unseparated mixture. The
volume fractions can then be defined asa i5Vi /V5pi /p
[zi . The volume fraction of speciesi in a multitemperature
multicomponent ideal gas mixture is therefore the same as its
pressure fractionzi . In the special case when all the species
temperaturesTi are equal,zi trivially reduces to the mole
fraction xi , so thata i5xi and the species volume fractions
become identical to their mole fractions.

III. SPECIES AND MIXTURE CONTINUITY
EQUATIONS

In the absence of chemical reactions or other mass ex-
change between species, the mass of each species is con-
served, so that each species obeys a continuity equation of
the same form as that for a pure fluid:

]r i

]t
1“"~r iui !50, ~1!

whereui is the mean velocity of speciesi. Equation~1! is not
restricted to ideal gas mixtures, but applies equally well to
dense fluid mixtures and multiphase mixtures. If we sum
over i, we obtain the total continuity equation for the mix-
ture:

]r

]t
1“"~ru!50, ~2!

whereu5( i yiui is the mass-weighted mean fluid velocity
of the mixture. Equation~1! is usually written in the form

]r i

]t
1“"~r iu!52“"Ji , ~3!

whereJi5r iwi and wi5ui2u. Clearly Ji is the mass flux
~mass flow per unit area per unit time! of speciesi relative to
u. The fluxesJi may be considered the fundamental variables
that carry information about the relative velocities of the dif-
ferent species.

IV. THE VOLUME-WEIGHTED MEAN VELOCITY

The volume-weighted mean fluid velocity is defined by
uv5( i a iui , which becomes( i ziui in the ideal gas mix-
tures of present interest. Bothu anduv are fundamental for
different purposes, and the distinction between them is an
essential difference between the flow of pure and multicom-
ponent fluids. Consider a small fixed surface with unit nor-
mal vectorn. The mass of speciesi crossing this surface per
unit area per unit time isr iui "n, so the total mass crossing
this surface per unit area per unit time isru"n. Thus there is
no net mass flow across a surface moving with velocityu.
Similarly, the volume of speciesi crossing such a surface per
unit area per unit time isa iui "n. The total volume crossing
such a surface per unit area per unit time is thereforeuv"n, so
there is no net volume flow across a surface moving with
velocity uv . Relations based on volume changes conse-
quently involveuv rather thanu, as will be seen in what
follows. A simple example is the familiar relation4

“"u5 lim
V→0

1

V

dV

dt
, ~4!

whereV is the volume of a small Lagrangian volume ele-
ment whose surface moves with the local mass-weighted
fluid velocity u. This relation remains valid in a multicom-
ponent fluid, but it no longer has the same interpretation
becauseV21dV/dt no longer has the significance of the in-
trinsic local relative expansion rate of the fluid. The reason is
that the surface ofV does not move with velocityuv , so
there is a net flow of volume across it which causesV to
change even in the absence of expansion or contraction of
the fluid itself. To obtain a proper measure of expansion or
contraction divorced from the effects of transport, it is nec-
essary to consider a small volume elementV8 with no net
volume flow across its surface; that is, a volume element
whose surface moves with velocityuv rather thanu. We then
have

“"uv5 lim
V8→0

1

V8

dV8

dt
, ~5!

which now represents the intrinsic local relative expansion
rate of the fluid mixture. The condition for incompressible
flow is that this expansion rate vanishes, so the incompress-
ibility condition in a multicomponent fluid takes the form
“"uv50 rather than“"u50. In a pure fluiduv5u, and the
incompressibility condition then reduces to its usual familiar
form “"u50.

Even thoughu and uv are both important, it is inconve-
nient to retain both of them in the description. Becauseu is
directly related to mass and momentum conservation, it is
customary to eliminateuv in terms of u. This elimination
may be done by means of the easily verified identity

uv5u1(
i

~a i /r i !Ji . ~6!

V. SPECIES AND MIXTURE MOMENTUM
EQUATIONS

We are concerned with ideal gases, in which the effects of
intermolecular collisions are negligible by definition. This
implies that viscous stresses can be neglected, and for sim-
plicity we shall also neglect external forces such as gravity.
If intermolecular collisions were completely absent, the mol-
ecules of each species in an ideal gas mixture would be com-
pletely unaware of the presence of the other species, so that
the momentum equation for each species would have exactly
the same form as that for a pure inviscid~zero viscosity!
ideal gas. To make things more realistic, however, we shall
include the effects of collisions between molecules ofdiffer-
ent species, while still neglecting intermolecular collisions
between molecules of thesamespecies. Strictly speaking this
assumption is somewhat inconsistent, but it will allow us to
focus more clearly on the effects of interest without extrane-
ous complications. The momentum equation for speciesi
will then still have the same form as that for a pure inviscid
ideal gas, but with additional terms representing the forces
exerted on speciesi by each of the other species:

]~r iui !

]t
1“"~r iuiui !52“pi1(

j Þ i
Fi j , ~7!

whereFi j 52Fj i is the force per unit volume of speciesj on
speciesi. If we sum overi, we obtain the total momentum
equation for the mixture:
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]~ru!

]t
1“"(

i
r iuiui52“p, ~8!

which may be rewritten in the form

]~ru!

]t
1“"~ruu!5“"s, ~9!

where

s52pU1R ~10!

is the total stress tensor,U is the unit tensor, and

R52(
i

r iwiwi ~11!

is an additional stress arising from the relative motion of the
different species. This additional stress is a purely multicom-
ponent phenomenon and vanishes in a pure fluid.

The occurrence and physical interpretation ofR become
clearer when one reflects upon the significance of the partial
pressurespi . As discussed above, we are neglecting intermo-
lecular collisions between molecules of the same species,
and yetpi still appears in the equations. Thus the pressure in
ideal gases does not arise from or represent the effects of
intermolecular forces or collisions, which is why the ideal
gas lawp5nkT involves no cross sections or other colli-
sional parameters. The pressure in the interior of an ideal
gas, away from the walls, is therefore not a real physical
force per unit area as we are accustomed to thinking~al-
though it is formally equivalent to such a force!. In reality,
the pressure in an ideal gas is merely an additional momen-
tum flux arising from the fact that the velocities of the atoms
or molecules at a given point are not all the same, but are
statistically distributed about their mean value at that point.4

When this distribution is locally Maxwellian, the gas has a
well-defined local temperature to which the local pressure is
simply related by the ideal gas law. Even if the velocity
distribution were not Maxwellian, however, it would still im-
ply an additional momentum flux appearing as a pressure in
the mean momentum equation. This additional momentum
flux is indeed the way pressure arises and is defined in the
kinetic theory of gases.

Thus the partial pressurepi in Eq. ~7! is simply the mean
additional flux of speciesi momentum resulting from devia-
tions of the molecular velocities of speciesi from their mean
value ui . Each of the partial pressures therefore represents
the effects of velocity deviations relative to a different mean
velocity ui . Similarly, s represents the mean additional mo-
mentum flux resulting from deviations of the molecular ve-
locities of all species from the mass-weighted mean velocity
u. The additional stressR simply allows for the difference
between the velocitiesui relative to which thepi are defined,
and the velocityu relative to whichs is defined. Note thatR
is inherently dynamical in nature, whereas the partial pres-
surespi are purely thermal quantities that are simply related
to the species temperaturesTi . Note also thatR has nothing
whatever to do with viscous effects, which are completely
neglected in the present discussion.

Equations~2! and ~9! may be combined to convert the
momentum equation into the equivalent nonconservative
form

rS ]u

]t
1u"“uD5“"s. ~12!

The kinetic energy per unit mass associated withu is simply
1
2uuu2, a transport equation for which can readily be derived
from Eq. ~12!. The result is

rF ]

]t S 1

2
uuu2D1u"“S 1

2
uuu2D G5u•~“"s!, ~13!

which can in turn be expressed in the equivalent conservative
form

]

]t S 1

2
ruuu2D1“"S 1

2
ruuu2uD5u•~“"s!. ~14!

VI. SPECIES AND MIXTURE ENERGY EQUATIONS

In accordance with the assumptions made for the species
momentum equations, the energy equation for speciesi has
the same form as that for a pure inviscid ideal gas with zero
thermal conductivity, but with additional terms representing
the exchange of energy between the different species:

]~r iEi !

]t
1“"~r iEiui !52“"~piui !1(

j Þ i
Qi j , ~15!

where Ei5
1
2uui u21ei is the total energy per unit mass of

speciesi, ei is the thermal internal energy per unit mass of
speciesi, andQi j 52Qji is the rate per unit volume at which
energy is transferred from speciesj to speciesi. The total
energy per unit volume of the mixture is given byrE
5( i r iEi , an evolution equation for which may be derived
by summing Eq.~15! over all species to obtain

]~rE!

]t
1“"(

i
r iEiui52“"~puv!. ~16!

We see that the work term in Eq.~16! involvesuv rather than
u, as might have been anticipated from the fact that work is
based on volume changes. Equation~16! can be rewritten as

]~rE!

]t
1“"~rEu!52“"~puv!2“"(

i
EiJi

52“"~puv!1“"~R"u!2“"Jq

2“"(
i

eiJi , ~17!

where

Jq5(
i

1

2
uwi u2Ji . ~18!

We see that additional heat fluxesJq and( i eiJi have arisen
due to the conversion fromui to u in the convection term. If
we now use Eq.~6! to eliminateuv in favor of u, we obtain

]~rE!

]t
1“"~rEu!5“"~s"u!2“"Jq

2“"(
i

~ei1pi /r i !Ji

5“"~s"u!2“"Jq2“"Jh , ~19!

where

Jh5(
i

hiJi . ~20!
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andhi5ei1pi /r i is the specific thermal enthalpy of species
i. Thus we see that the conversion fromuv to u in the work
term has the effect of bringing in an additional factor of
pi /r i which combines withei to result in the appearance of
hi rather thanei in Jh . The fluxJh is sometimes referred to
as ‘‘enthalpy diffusion’’ when the species mass fluxesJi are
diffusional in character. The quantitiesJh andJq both repre-
sent additional energy fluxes due to the relative motion be-
tween species. These fluxes are inherently multicomponent
quantities which are unrelated to ordinary thermal heat con-
duction and vanish in a pure fluid.

For consistency with the velocityu determined by the
momentum equation, the kinetic energy per unit volume of
the mixture must be considered to be1

2ruuu2, which differs

from ( i
1
2r i uui u2. Because of this difference, the internal en-

ergy per unit volumere[rE2 1
2ruuu2 is not purely thermal

in nature, but also contains the relative kinetic energy of the
species velocities in a frame moving withu. We readily find
that e5e1q, wherere5( i r iei is the thermal part of the

internal energy density andrq5( i
1
2r i uwi u252 1

2R:U is the
nonthermal part. A transport equation fore can be obtained
by subtracting Eq.~14! from Eq. ~19!, which gives

]~re!

]t
1“"~reu!5s:“u2“"Jh2“"Jq ~21!

in which the additional energy fluxesJh andJq still appear. It
is also instructive to derive an evolution equation for the
nonthermal internal energy per unit massq, which is readily
found to be

]~rq!

]t
1“"~rqu!5R:“u2(

i
wi "“pi2F2“"Jq ,

~22!

where F52( i j wi "Fi j . By subtracting Eq.~22! from Eq.
~21!, we obtain a similar evolution equation fore:

]~re!

]t
1“"~reu!52p“"u1(

i
wi "“pi1F2“"Jh .

~23!

The terms( i wi "“pi and F appear with opposite signs in
Eqs.~22! and ~23!, so they evidently represent an exchange
of energy between nonthermal and thermal internal energy.
The former term represents reversible work done by the par-
tial pressure of each species on itself, whileF represents
work done on each species by the other species via the forces
Fi j . This term is nonzero because even though the forces of
speciesi andj on each other are equal and opposite, the work
done by these forces is nevertheless not equal and opposite
due to the fact that the species move with different velocities.

It is of interest to specialize to the common case in which
the forces between species are purely frictional in nature, so
that Fi j takes the form3

Fi j 5a i j ~uj2ui !5a i j ~wj2wi ! ~24!

anda i j 5a j i . We then find

F5
1

2 (
i j

a i j uwj2wi u25
1

2 (
i j

a i j uuj2ui u2.0, ~25!

so thatF represents a sink term in the nonthermal internal
energy equation and an equal and opposite source term in the

thermal internal energy equation. In this case,F therefore
represents the rate at which the nonthermal internal energyq
is irreversibly dissipated into thermal internal energye by the
frictional drag forces between species.

VII. SIMPLIFICATIONS DUE TO SMALL
RELATIVE VELOCITIES

The above relations contain a number of unfamiliar terms
because they are valid in the general case where the differ-
ences between the species velocities are not necessarily
small. Most of these terms become negligible when the spe-
cies velocitiesui differ only slightly fromu, that is, when the
wi are small. This occurs, in particular, when the frictional
force coefficientsa i j are large. The individual species mo-
mentum equations then reduce to the Stefan–Maxwell equa-
tions of multicomponent diffusion theory, and the species
mass fluxesJi become diffusional in character.3

When thewi are small, terms of orderuwi u2 may be ne-
glected and the equations then simplify considerably. In par-
ticular, the stress tensors then simply reduces to2pU, so
that “"s reduces to2“p and the momentum and kinetic
energy equations~9! and ~14! reduce to their usual inviscid
forms. Moreover,q then becomes negligible compared toe,
so that there is no longer any distinction betweene and e.
Equations~21! and ~23! correspondingly become identical,
becauseJq also becomes negligible compared toJh , while
the termsF and( i wi "“pi can be neglected because they are
both of second order inwi . @The fact that the latter term is of
orderuwi u2 can be verified by eliminating“pi using Eq.~7!.#
Note, however, that the fluxJh is linear in the wi and there-
fore cannot be neglected. This flux represents an absolutely
essential contribution to the total heat flux, and failure to
include it can result in serious errors in the temperature and
pressure.

VIII. ANALOGIES TO TURBULENCE MODELING

This final section is addressed to readers conversant with
turbulence and turbulence modeling,5 who will note that sev-
eral of the concepts discussed above have close turbulent
analogs. In particular, the additional stressR is analogous to
a Reynolds stress and arises in much the same way. It is an
additional momentum flux resulting from the averaged ef-
fects of internal nonthermal velocity variations which do not
contribute to the mass-weighted mean velocity fieldu. Simi-
larly, the excess kinetic energy per unit mass associated with
these internal velocities isq, which is analogous to the tur-
bulent kinetic energy per unit mass. Consequently, the rela-
tion betweenq andR is formally the same as that in turbu-
lence. And just as in turbulence, the evolution equation forq
contains a source termR:“u and a sink termF, which rep-
resents the rate at whichq is dissipated to thermal energy and
which appears as an equal but opposite source term in the
thermal internal energy equation. All of these features are
quite general, and simply arise from the fact that in contrast
to ordinary single-component laminar fluid dynamics, we
now have two kinds of internal energy: the usual thermal
internal energye, and a nonthermal dynamical internal en-
ergy q which represents the kinetic energy of internal veloc-
ity deviations or fluctuations that do not contribute to and
hence are not contained inu. This circumstance then gives
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rise to various coupling terms and mechanisms by whichq
ande exchange energy with each other and with the kinetic
energy of the mean flow.

In the present context, however, it should be noted that it
is not necessary, and would in fact be undesirable, to simul-
taneously solve the transport equations for bothq ande. The
reason is thatq is already known as a simple algebraic func-
tion of the species velocitiesui , which are determined by the
species momentum equations or their diffusional approxima-
tion. It is therefore merely necessary to solve the transport
equation~21! for the total internal energy per unit masse,
which is simpler in form than Eq.~23! for e, whereupone
can be obtained frome simply by subtracting outq. More-
over, Eq.~21! looks very much like the usual thermal inter-
nal energy equation in a single-component fluid, which can
therefore be used in the present context simply by including
R in s and inserting theJh andJq terms, provided that we
also reinterpret the internal energy ase1q as discussed
above.
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Aeliophile. This linear version of Hero’s engine was made by the firm of James W. Queen of Philadelphia, who described it in their 1881 catalogue as
‘‘Hero’s Engine. With straight jet, mounted, with lamp, on a neat car.’’ They sold it for $8.00. In use, steam generated by boiling water in the spherical brass
container was shot horizontally to propel the car using the rocket principle. This example is at Amherst College; a similar one is at Williston Academya few
miles to the southwest.~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College!
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