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Abstract
This paper investigates super-resolution to reduce the number of pixels to render and thus speed up Monte Carlo rendering
algorithms.While great progress has beenmade to super-resolution technologies, it is essentially an ill-posed problem and cannot
recover high-frequency details in renderings. To address this problem, we exploit high-resolution auxiliary features to guide
super-resolution of low-resolution renderings. These high-resolution auxiliary features can be quickly rendered by a rendering
engine and at the same time provide valuable high-frequency details to assist super-resolution. To this end, we develop a cross-
modality transformer network that consists of an auxiliary feature branch and a low-resolution rendering branch. These two
branches are designed to fuse high-resolution auxiliary features with the corresponding low-resolution rendering. Furthermore,
we design Residual Densely Connected Swin Transformer groups to learn to extract representative features to enable high-
quality super-resolution. Our experiments show that our auxiliary features-guided super-resolution method outperforms both
super-resolution methods and Monte Carlo denoising methods in producing high-quality renderings.

Keywords: super-resolution, fast-to-compute auxiliary features, transformer, Monte Carlo rendering

CCS Concepts: • Computing methodologies → Ray tracing

1. Introduction

Monte Carlo rendering algorithms are now widely used to gener-
ate photo realistic computer graphics images for applications such
as visual effects, video games, and computer animations. These
algorithms generate a pixel’s colour by integrating over all the
light paths arriving at a single point [CPC84]. To rendering a
high-quality image, a large number of rays need to be cast for
each pixel, which makes Monte Carol rendering a slow process
(see Figure 1).

A great amount of effort has been devoted to speeding up Monte
Carlo rendering. The core idea is to reduce the number of rays
for each pixel. For instance, numerous denoising algorithms are
now available to reconstruct a high-quality image from a render-
ing produced at a low sampling rate. Such Monte Carlo denois-
ing algorithms often use auxiliary features generated by a render-
ing algorithm to help denoise the noisy rendering result. The recent
deep neural network-based denoising algorithms can now generate
very high-quality images at a fairly low sampling rate [BVM*17,
CKS*17, KKR18, GLA*19].

Monte Carlo rendering can also be sped up by reducing the num-
ber of pixels to render. For example, pixels from the frames that have

already been rendered can be warped to generate frames in-between
existing frames to increase the frame rate [BDM*21] or to generate
future frames to reduce latency [GFL*21]. Another approach is to
only render one pixel for a block of neighbouring pixels to further
reduce the total number of pixels to render. This can be implemented
by first rendering a low-resolution image and then applying super-
resolution to increase its resolution [XNC*20, HLM*21]. As super-
resolution is a fundamentally ill-posed problem, it alone often can-
not recover high-frequency details from only the low-resolution ren-
dering. To address this problem, Hou et al. render a high-resolution
rendering with a low sampling rate and use that together with the
high-resolution auxiliary features to help super resolve the low-
resolution rendering rendered at a high sampling rate. While this
method produces a high-quality result, it needs to render the high-
resolution image at a low sampling rate, which still takes a consid-
erable amount of time [HLM*21].

Can we only use the fast-to-obtain high-resolution auxiliary fea-
tures without the high-resolution-low-sample rendering to effec-
tively assist super-resolution of the corresponding low-resolution
rendering? If so, we can further speed up Monte Carlo rendering.
We are encouraged by the recent work on neural frame synthesis
that showed fast-to-obtain auxiliary features of the target frames can
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Figure 1: Our method uses fast-to-compute high-resolution auxiliary features to support super-resolution of Monte Carlo rendering results.
Our method generates high-quality visual details than both off-the-shelf super-resolution methods and MSSPL, a dedicated super-resolution
method for Monte Carlo renderings that uses both more high-resolution auxiliary features and the corresponding high resolution low sample
rendering result.

greatly help interpolate or extrapolate the target frames [BDM*21,
GFL*21]. On the other hand, Hou et al. showed that using a wide
range of auxiliary features and the high-resolution-low-sample ren-
dering help super-resolution more than only using a subset of aux-
iliary features within their own deep neural network-based super-
resolution framework [HLM*21]. Therefore, if we only use a small
number of fast-to-compute auxiliary features, we need to have a bet-
ter super-resolution method.

This paper presents a Cross-modality Residual Densely Con-
nected Swin Transformer (XRDS) for super-resolution of a Monte
Carlo rendering guided by its auxiliary features. For the seek of
speed, we only use two auxiliary features: albedo and normal. To
effectively use these features, we design a super-resolution net-
work based on Swin Transformer that recently has been shown
powerful for a wide variety of computer vision tasks. Our trans-
former network has two branches, one for the low resolution ren-
dering and the other for the auxiliary features. Such two branches
are designed to perform cross-modality fusion to effectively use
auxiliary features to assist super-resolution of the low-resolution
rendering. While the auxiliary feature branch consists of convo-
lutional blocks, the branch for the low-resolution rendering con-
sists of a sequence of Residual Densely Connected Swin Trans-
former blocks to extract effective features. The features from the
two branches are combined together using a cross-modality fusion
module and are finally used to generate the high-resolution high-
quality rendering.

This paper contributes to Monte Carlo rendering as follows.
First, we present the first super-resolution approach to Monte Carlo
rendering that only uses fast-to-compute high-resolution auxiliary
features to enable high-quality upsampling of a low-resolution
rendering. Second, we design a dedicated Cross-modality Swin
Transformer-based super-resolution network that can learn to ef-
fectively combine high-resolution auxiliary features with the cor-
responding low-resolution rendering to generate the final high-
resolution high-quality image. Third, our experiments show that our
method outperforms super-resolution and denoisingmethods in pro-
ducing high-quality renderings.

2. Related Work

This section briefly discusses relevant work to our paper, including
Monte Carlo denoising, super-resolution and vision transformers.

Monte Carlo denoising. Monte Carlo rendering algorithms need
numerous samples per pixel to generate a high-quality render-
ing [CPC84, Kaj86]. With insufficient samples, the rendering re-
sults suffer from noise. To address this problem, many Monte
Carlo denoising methods have been developed to re-construct high-
quality renderings from only a small number of samples. Tradi-
tional methods re-construct renderings in a similar way to general
image denoising methods by designing specific denoising kernels
based on image variance or geometric features or directly regress
the final result [DSHL10, JC95, LSK*07, LR90, McC99, RW94,
SIMP06, SD12, XP05]. Zwicker et al. provided a good survey
on this [ZJL*15]. Alternatively, adaptive sampling algorithms can
be used to reduce the overall sample numbers for the whole im-
age [BM98, ETH*09, Jen01, LWC12, MA06, MMMG16, ODR09,
RKZ11, WABG06, WRC88].

Recently, deep neural network-based denoising methods have
shown impressive performance. Thesemethods learn to re-construct
high-quality renderings from small number of samples. In their
seminal work, Kalantari et al. estimated optimal filter parameters
using a multi-layer perceptron neural network [KBS15]. Bako et al.
estimated spatially adaptive kernels for denoising in a convolu-
tional manner [BVM*17]. Vogels et al. extended the concept of
kernel prediction methods to temporal denoising [VRM*18]. With
asymmetric loss functions, their method could produce high-quality
results for a sequence of frames. Chaitanya et al. developed a recur-
rent autoencoder to denoise a sequence of frames while maintaining
temporal stability [CKS*17]. Xu et al. developed an adversarial
approach to Monte Carlo rendering denoising that can greatly
reduce artifacts such as blurs and unfaithful details from denoising
results [XZW*19]. Gharbi et al. developed a kernel splatting
network that re-constructs the final image by splatting samples
to pixels according to the estimated splatting kernels [GLA*19].
Munkberg et al. proposed to filter auxiliary layers of individual
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samples [MH20]. Their method works well on outliers and com-
plex visibility. Hasselgren et al. proposed a neural spatial-temporal
sampling method for Monte Carlo video denoising [HMS*20].
Their method first estimates the sampling map from the temporal
reprojection and auxiliary features and then denoises the resulting
image generated using the sampling map to produce high-quality
results. Zheng et al. proposed an ensemble denoising technique that
learns to combine multiple denoiser together [ZZXY21]. Yu et al.
designed a transformer-based neural network for Monte Carlo
denoising [YNL*21]. Their network consists multi-scale feature
extractor and a self-attention module and achieved promising
results. Unlike these denoising methods, our method explores an
orthogonal approach that speeds up Monte Carlo rendering by
reducing the number of pixels to render via super-resolution.

Super-resolution. Super-resolution is a classic problem in com-
puter vision. It aims to re-construct a high-resolution image
from the low-resolution input. Recently, the state of the art of
super-resolution research has been advanced significantly due to
the use of deep neural networks [DLHT14, AKS18, HSU19,
HWG18, KKLML16, LSK*17, LTT*19, LWLS19, XMS19,
ZZZ18, ZWLQ19]. Specifically, in their seminal work, Dong et al.
trained a three-layer fully convolutional neural network for single
image super-resolution [DLHT14]. Since that, a large variety of
super-resolution deep neural networks have been invented by lever-
aging carefully designed network architectures, including residual
blocks (RBs) [HZRS16], densely connected blocks [HLVDMW17,
ZTK*18], channel attention blocks [HSS18, ZLL*18], transform-
ers [LCS*21] and others.

Super-resolution has recently been explored to speed up render-
ing. Xiao et al. designed a super-resolution network that takes both
the low-resolution rendering and the corresponding low-resolution
auxiliary features as input and outputs a high-resolution frame.
They leveraged neighbouring frames to further improve super-
resolution quality [XNC*20]. While their method was designed for
a rasterization-based renderering engine, in principal, it can be ap-
plied to Monte Carlo rendering. Thomas et al. combined super-
resolution and Monte Carlo denoising for videos. Their network
takes a low-resolution rendering as well as a warped previous frame
as input and produces a high-resolution frame [TLP*22]. How-
ever, super-resolution is essentially an ill-posed problem and can-
not fully recover missing high-frequency visual details from only
the low-resolution input. To address this problem, Hou et al. devel-
oped a super-resolution approach based onmultiple-resolution sam-
pling. Their method first renders a low-resolution image at a high-
sampling rate and a high-resolution image at a low sampling rate.
Their method then exploits the high-resolution noisy image to re-
cover high frequency visual details [HLM*21]. While their method
generates high-quality renderings, it needs to render the high resolu-
tion noisy image and auxiliary features, which takes a considerable
amount of time. Different from the above methods, our method ob-
tains high-frequency information from only fast-to-compute high-
resolution auxiliary features as inspired by recent interpolation and
extrapolation methods that use fast-to-compute auxiliary features
of the target frames to help generate the target frames [GFL*21,
BDM*21].

Vision transformer. Transformer was initially designed for natu-
ral language process tasks [VSP*17]. Due to its self-attention mech-

anism, it can efficiently capture the long-term information from
the input. Recently, transformer networks have attracted consid-
erable attention in the computer vision community and achieved
great success in various computer vision tasks, including image
recognition [LLC*21], object detection [CMS*20], semantic seg-
mentation [ZLZ*21] and image restoration [LCS*21]. Dosovit-
skiy et al. developed the first transformer network for image recog-
nition [DBK*20]. They split the input image into image patches and
then feed these image patches as tokens to the transformer network.
Chen et al. presented an image processing transformer for various
restoration problems and demonstrated that pre-training on large
datasets could greatly improve the capability of a transformer net-
work for low-level computer vision tasks [CWG*21]. Liang et al.
developed SwinIR for image restoration. Their network adapted
the Swin Transformer [LLC*21] as their backbone and achieved
promising results [LCS*21]. However, transformer for the Monte-
Carlo denoising is less explored. Inspired by the success of these
vision transformer networks, we are the first to design a dedicated
cross-modality transformer network for super-resolution of Monte
Carlo renderings that can effectively leverage fast-to-compute high-
resolution auxiliary features to recover high-frequency visual details
when upsampling a low-resolution rendering.

3. Our Method

This paper proposes a super-resolution method guided by the fast-
to-compute auxiliary features to speed up the Monte Carlo render-
ing. Our method takes a low resolution rendering ILR and its high-
resolution fast-to-compute auxiliary features A as input, and outputs
the corresponding high-quality high-resolution result ISR. The high-
resolution auxiliary features provide the essential high-frequency
information for the super-resolution.

Different from the previous work [HLM*21], which leverages a
wide range of auxiliary features, our method only employs the aux-
iliary features that can be computed very fast [BDM*21], includ-
ing albedo and normal. On the one hand, although our method does
not leverage the shading layers, albedo and normal could provide a
lot of high-frequency information, e.g. the texture of the material,
which is essential for super-resolution. As we will show, it can help
improve the super-resolution results. On the other hand, albedo and
normal can be computed fast [BDM*21]. It not only reduces the
rendering time but also enables us to render these high-resolution
layers at a relatively higher sampling rate, which typically contains
fewer artifacts, such as aliasing.

We design a cross-modality transformer network to effectively
fuse two categories of visual input, namely, the low-resolution ren-
dering and its corresponding high-resolution auxiliary features, to
recover visual details. Figure 2 shows the architecture of our net-
work. It contains two parallel branches, one for the low-resolution
rendering and the other for the corresponding high-resolution aux-
iliary features.

Auxiliary feature branch. The auxiliary feature branch takes
auxiliary features as inputs, which provide essential high frequency
visual details. As discussed above, we select albedo and normal,
which are relatively fast to acquire. Since this branch processes
high-resolution input, we design a shallow architecture for the sake

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 2: The architecture of our network. Our network takes a low-resolution rendering and its corresponding fast-to-compute high-
resolution auxiliary features as input and predicts the final high-resolution-high-quality image.

of memory and speed. As shown in Figure 2, we employ a convo-
lutional layer and N = 3 RB [HZRS16] in a sequence to get the
features {Hi}N−1

i=0

H0 = f Aconv (A),

Hi = f iRB(Hi−1), i = 1, . . . ,N − 1,
(1)

where fconv (·) indicates the convolution operation. fRB(·) indicates
the operation of a RB. In our experiments, we set the channels as 32
for the auxiliary feature branch.

We then obtain the downsampled features {Di}N−1
i=0 with a group of

deshuffle layers [HLM*21], which is able to downscale the feature
while keeping the high-frequency information.

Di = f i+1
DSF (Hi), i = 0, . . . ,N − 1 (2)

where fDSF (·) indicates the deshuffle layer.
Low-resolution rendering branch. Following the recent works

on image super-resolution [ZLL*18, ZZZ18, LCS*21], we first
adopt a 3× 3 convolutional layer with 64 channels to get the shal-
low feature from the low resolution rendering ILR.

F0 = f LRconv (ILR) (3)

We feed the resulting feature F0 to a sequence of cross-modality
Residual Densely Connected Swin Transformer groups (XDG).

Fi = f iXDG(Fi−1,Di−1), i = 1, . . . ,N (4)

where fXDG(·) indicates the XDG module. N indicates the number
of XDG. We choose N = 3 in our experiments. XDG is designed
to fuse the auxiliary features Di−1 and the low-resolution rendering
features Fi−1. It consists of a cross-modality module (XM) and a
sequence of Residual Densely Connected Swin Transformer blocks
(RDST). Specifically, XM is designed to fuse the local information
from the low-resolution rendering and the high-frequency informa-
tion from the auxiliary features, while the RDST sequence learns
more dedicated representations for super-resolution from them.

Cross-modality module (XM). Inspired by the success of
Swin Transformer [LLC*21, LCS*21] and Transformer De-
coder [GLDZ22], we design XMbased on Swin Transformer, which
can efficientlymodel the long-range dependency. Figure 3 shows the

Figure 3: The cross-modality module. It takes feature F from the
low-resolution rendering branch and D from the auxiliary feature
branch, and outputs the fused feature X.

architecture of XM. It takes features F from the low-resolution ren-
dering branch and featuresD from the auxiliary feature branch as in-
put and outputs the fused feature X . It consists of Layer Norm layers
(LN), a Window-based Multi-head Self-Attention layer (W-MSA),
a Window-based Multi-head Cross Attention layer (W-MCA) and
a Multi-Layer Perception layer (MLP). The key idea behind XM is
to combine the features F from the low-resolution rendering branch
with the features D from the high-resolution auxiliary branch us-
ing cross-attention, creating a more comprehensive representation
for super-resolution. The process starts by extracting intermediate
features Fmid from F , which serve as the ‘query’ Q. From D, which
holds high-resolution information, the ‘key’ K and ‘value’V are ex-
tracted. Then, the cross-attention is calculated following [VSP*17]
and combined with Fmid to generate Fcross. Finally, an MLP layer is
used to integrate the features from the low-resolution branch and the
cross-attention.

Residual Densely Connected Swin Transformer block
(RDST). As shown in Figure 2, we feed the fused feature X from
XM to a sequence of B = 5 Residual Densely Connected Swin
Transformer blocks (RDST),

Fb
i−1 = fRDST

(
Fb−1
i−1

)
, (5)

where fRDST indicates the RDST block. We also use a short skip
connection to combine the shallow feature Xi−1 with the deep

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 4: The Residual Densely Connected Swin Transformer
block (RDST). Red lines indicate the window partitions.

feature FB
i−1

Fi = FB
i−1 + Xi−1. (6)

We design RDST by combining the ideas of the Residual
Densely Connected Network (RDN) [ZTK*18] and Swin Trans-
former [LLC*21].We are specifically inspired by SwinIR [LCS*21]
that explores Swin Transformers for image restoration tasks. It re-
places traditional convolutional layers with Swin layers in RBs, al-
lowing for the learning of more descriptive features and delivering
impressive results. Taking inspiration from RDN [ZTK*18], we in-
troduce RDST, where the convolution layers in densely connected
blocks are replaced with Swin layers. As shown in Figure 4, RDST
consists of a sequence of Densely Connected Swin Transformer
blocks and a local feature fusion block. For the Densely Connected
Swin Transformer blocks, we shift the windows. We also use a local
skip connection to fuse the features from the shallow layer.

Upscale. We adopt the pixel shuffle layer [SCH*16] to upscale
the dense feature FDF to a high-resolution feature. We also use a
3× 3 convolutional layer with three channels to predict the final
high resolution image ISR.

ISR = fconv ( fUP(FDF )), (7)

where fUP indicates the operation of the pixel shuffle layer.

Training details. We adopt the robust loss to handle the predic-
tion with a high dynamic range image [HLM*21].

�r = 1

M

∑

p∈IHR

|I pHR − I pSR|
β + ∣∣I pHR − I pSR

∣∣ , (8)

where IHR indicates the ground truth image.M indicates the number
of pixels. β indicates the robust factor, which is set to 0.1.

We implement our network in PyTorch. We train our super-
resolution network on examples of size 256 × 256. We select
Adam [KB14] with β1 = 0.9, β2 = 0.999 as the optimizer. The
learning rate is set to 0.0001. We train the network for 400 epochs
with amini-batch size of 16 for our 4× super-resolutionmodels, and
we fine-tune our other models using the 4× pre-trained weights. It
takes about 1week to train a singlemodel using 4NvidiaA40GPUs.

Table 1: Comparison with super-resolution methods with different upsam-
pling scales on the BCR dataset [HLM*21].

×2 ×4 ×8

Methods PSNR RelMSE PSNR RelMSE PSNR RelMSE

Bicubic 30.57 0.0141 25.39 0.0858 22.36 0.2473
EDSR 32.01 0.0079 30.70 0.0119 27.97 0.0241
RCAN 32.03 0.0084 30.73 0.0117 27.92 0.0253
SwinIR 31.05 0.0118 30.78 0.0152 28.04 0.0364
MSSPL 38.40 0.0015 34.27 0.0039 31.08 0.0079
Ours 42.48 0.0007 37.45 0.0021 31.94 0.0076

We adopt the BCR dataset [HLM*21] as the training dataset. BCR
dataset contains 2449 images from 1463 scenes rendered by Blender
Cycles. Following MSSPL [HLM*21], we use 2126 images from
1283 scenes for training, 193 images from 76 scenes for validation
and 130 images from 104 scenes for testing.

4. Experiments

We evaluate our network by quantitatively and qualitatively compar-
ing them with state-of-the-art image super-resolution methods and
the Monte Carlo denoising methods on the BCR dataset [HLM*21]
and the Gharbi dataset [GLA*19]. We also conduct the ablation
study to examine our method. Following Hou et al. [HLM*21], we
adopt Relative Mean Square Error (RelMSE) and PSNR to evaluate
our methods in the scene linear colour space and the sRGB space,
respectively. Please refer to the supplementary material for an inter-
active demo that provides more results.

4.1. Comparison with super-resolution methods

We compare our method with state-of-the-art super-resolution
methods, including EDSR [LSK*17], RCAN [ZLL*18], and
SwinIR [LCS*21], a recent transformer-based approach, as
well as the multiple sampling-based super-resolution method
MSSPL [HLM*21]. We obtained the results of compared methods
either from the authors [HLM*21] or from finetuning the official
models [LSK*17, ZLL*18, LCS*21] on the BCR dataset.

As shown in Table 1, our method outperforms super-resolution
methods. This improvement can be largely attributed to the use of
high-resolution auxiliary features to capture high-frequency visual
details. For this experiment, we use the ground truth auxiliary fea-
tures as they are fast to acquire. We also vary the number of samples
used to generate these features in order to examine their effect on
our method. As shown in Figure 5, while having more samples to
generate these auxiliary features benefits our method, the features
generated with only one sample per pixel allow our method to out-
perform the standard super-resolution methods.

MSSPL takes both the low-resolution rendering and the high-
resolution noisy rendering as well as a wide variety of high
resolution auxiliary features as input [HLM*21]. In this test,
the high-resolution rendering and features are rendered with one
sample per pixel. As shown in Figure 5 and Table 1, our method,

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 5: The effects of the sample rates used to generate fast-to-
compute auxiliary features on the performance of our method. Agt
indicates the ground truth auxiliary features (4000spp).

Table 2: Comparison of runtime cost and peak memory with super-
resolution methods to produce a 1024× 1024 image on an Nvidia Titan XP.

Scale EDSR RCAN SwinIR MSSPL Ours

Runtime (ms) ×4 503.96 280.51 1149.25 125.24 1009.08
Peak memory (MB) ×4 2493.9 672.1 806.0 739.70 941.3
Peak memory (MB) ×8 2375.6 621.3 659.0 1010.1 803.8
Peak memory (MB) ×16 2359.7 615.4 608.4 1008.0 783.4

when only using albedo and normal as auxiliary features obtained
with one sample per pixel, can achieve 35.16 dB which is higher
than MSSPL (34.27 dB) for the ×4 task, even though our method
takes much less input information from the high-resolution input.

Speed and memory. Table 2 reports the speeds and the peak
memory of the above methods. As our method is based on the trans-
former, our method is slower than CNN-based methods, includ-
ing EDSR [LSK*17], RCAN [ZLL*18] and MSSPL [HLM*21].
This is consistent with many other works that transformer tends to
be slower than CNN [DBK*20, TCD*21, LCS*21]. Compared to
transformer-basedmethod SwinIR, our method is slightly faster.We
also compare the peak memory to produce a 1024 × 1024 image in
Table 2. Ourmethod uses less peakmemory than EDSR andMSSPL
but more memory than RCAN and SwinIR.

4.2. Comparison with denoising methods

We compare our methods to the state-of-the-art Monte Carlo de-
noising methods, including Sen [SD12], Rousselle [RKZ11],
Kalantari [KBS15], Bitterli [BRM*16], KPCN[BVM*17],
Gharbi [GLA*19], MSSPL [HLM*21], AdvMC [XZW*19]
and MCSA [YNL*21]. Tables 3 and 4 report results on the
BCR dataset [HLM*21] and the Gharbi dataset [GLA*19],
respectively. We obtain the results of the comparing meth-
ods either from their authors [HLM*21] or from their project
websites [GLA*19]. MSSPL [HLM*21] was trained on the
BCR dataset. For KPCN [BVM*17], AdvMC [XZW*19] and
MCSA [YNL*21], we finetuned their official models on the BCR
dataset using their official training scripts. For our model, We
trained a distinct model for each scale and sampling count.

As most denoising methods do not take high-resolution auxiliary
features as input, we followMSSPL [HLM*21] to compute the aver-
age spp for our method andMSSPL as appavg = sppLR/s2 + sppHR,
where s indicates the scale. sppLR and sppHR indicate the sampling

Table 3: Comparison on the BCR dataset [HLM*21]. (4 - 1) indicates
that our method takes a 4-spp low-resolution rendering and 1-spp fast-
to-compute auxiliary feature as input. MSSPL also takes the 1-spp high-
resolution rendering as input, including the diffusion and specular layers.
Our method takes less shading information compared to MSSPL [HLM*21].

2 spp 4 spp 8 spp

Method PSNR RelMSE PSNR RelMSE PSNR RelMSE

Input 18.12 0.2953 21.51 0.1400 24.75 0.0646
KPCN 25.87 0.0390 27.31 0.0299 28.11 0.0276
KPCN-ft 31.03 0.0078 33.69 0.0043 35.83 0.0026
Bitterli 26.67 0.0293 27.22 0.0252 27.45 0.0226
Gharbi 30.73 0.0068 31.61 0.0057 32.29 0.0050
MSSPL×2 33.27 0.0044 35.15 0.0027 36.74 0.0019
MSSPL×4 33.94 0.0039 35.21 0.0028 36.31 0.0022
MSSPL×8 31.37 0.0075 32.35 0.0057 33.14 0.0049
AdvMC-ft 30.33 - 32.30 - 33.69 -
MCSA-ft 32.68 0.0049 34.81 0.0031 36.61 0.0021

Ours×1 (1 - 1) (2 - 2) (4 - 4)
31.04 0.0078 34.67 0.0030 36.62 0.0020

Ours×2 (4 - 1) (8 - 2) (16 - 4)
34.12 0.0035 35.49 0.0026 37.09 0.0018

Ours×4 (16 - 1) (32 - 2) (64 - 4)
34.08 0.0046 35.06 0.0034 35.77 0.0029

Ours×8 (64 - 1) (128 - 2) (250 - 4)
31.10 0.0095 31.36 0.0093 31.62 0.0093

rates for the low- and high-resolution inputs, respectively. In our
case, we take the sampling rates for the auxiliary features as sppHR.
We would like to note that this measurement of spp is unfair to our
method, as our method only uses high-resolution albedo and normal
features which takes much less time than rendering all the shading
layers to obtain the high-resolution rendering as done inMSSPL(see
Figure 6).

As shown in Table 3, our method generates better results than the
state-of-the-art methods on the BCR dataset [HLM*21]. Ours ×2
model wins 0.18, 0.28 and 0.35 dB in terms of PSNR on 2 spp, 4
sppp and 8 spp, respectively.

We also conduct our experiments on×16 scale. On the one hand,
with×16, our method produces worse results than MSSPL because
MSSPL uses the high-resolution RGB image as input that is not
available to our method. While the high-resolution RGB input to
MSSPL is rendered at a low sampling rate, it still provides useful
information. As shown in the existing literature on Monte Carlo
denoising, even the rendering result at 1 spp can be denoised to a
reasonable quality. At such a high upsampling rate of ×16, super-
resolution is very difficult. On the other hand, in practice, given a
target overall spp rate, our method can select an optimal combina-
tion of (spp rate, super-resolution scale) that outperforms MSSPL
and other methods, as shown in Table 3. In practice, ×16 will not
be used for rendering by either MSSPL or our method to achieve an
overall target spp as it produces the worst results among alternative
combinations of spp rate and super-resolution scale.

Figure 7 shows the visual comparisons. Our results are more visu-
ally plausible. Briefly, instead of working in the pixel colour space

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 6: Visual comparison with super-resolution methods on the BCR dataset [HLM*21].

Table 4: Comparison on the Gharbi dataset [GLA*19]. We directly test our
models pre-trained on the BCR dataset without finetuning.

4 spp 8 spp 16 spp

Method PSNR RelMSE PSNR RelMSE PSNR RelMSE

Input 19.58 17.5358 21.91 7.5682 24.17 11.2189
Sen 28.23 1.0484 28.00 0.5744 27.64 0.3396
Rousselle 30.01 1.9407 32.32 1.9660 34.36 1.9446
Kalantari 31.33 1.5573 33.00 1.6635 34.43 1.8021
Bitterli 28.98 1.1024 30.92 0.9297 32.40 0.9640
KPCN 29.75 1.0616 30.56 7.0774 31.00 20.2309
KPCN-ft 29.86 0.5004 31.66 0.8616 33.39 0.2981
Gharbi 33.11 0.0486 34.45 0.0385 35.36 0.0318
MSSPL×2 34.02 1.5025 35.30 1.4902 36.43 1.4748
MSSPL×4 33.94 5.5586 35.22 5.6781 35.97 5.7436
MSSPL×8 31.56 3.7228 32.60 4.2300 33.22 4.5045

Ours×1 (2 - 2) (4 - 4) (8 - 8)
27.41 0.3438 30.39 0.3092 32.88 0.3062

Ours×2 (8 - 2) (16 - 4) (32 - 8)
34.29 2.2587 35.47 1.5480 36.37 1.5417

Ours×4 (32 - 2) (64 - 4) (128 - 8)
34.26 20.7861 35.12 29.0364 35.52 28.1264

Ours×8 (128 - 2) (16 - 8) (32 - 16)
31.57 1.3474 31.26 1.1718 31.51 1.0940

that can potentially cause the colour fidelity problem, our method
fuses the low-resolution RGB and high-resolution feature maps in
the feature space and learns to fuse them into correct colours, thus
alleviating the colour ambiguities/artifacts at fine details. For exam-
ple, in Figure 7, the wall of our results is less noisy and more accu-
rate than the results from other methods that are either blurred or in-
consistent with the ground truth. In the second example, our method
produces high-frequency geometric details in the wine basket area
that well differentiates the mesh colour and the background colour.

Table 4 reports the comparison on the Gharbi dataset [GLA*19].
Following MSSPL [GLA*19], we directly test our models pre-
trained on the BCR dataset without fine-tuning as the training set of
theGharbi dataset is not available. Our×2model wins 0.27 and 0.17
dB in terms of PSNR on 4 and 8 spp, respectively. When the spp is
16, our PSNR is slightly lower than MSSPL [HLM*21]. We would
like point out ourmethod takes less high-resolution information than
MSSPL. Our input high-resolution auxiliary features only include
the albedo and normal, while MSSPL also takes all the shading lay-
ers as inputs. When the high-resolution input is rendered at a high
spp, the shading layers can contribute a lot of high-frequency infor-
mation. Similar to the findings in MSSPL [HLM*21], our results
on RelMSE are heavily affected by a small number of pixels with
abnormal large errors. Excluding these abnormal pixels can greatly
improve our scores on RelMSE. As shown in Figure 8, our method

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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8 of 14 Q. Hou and F. Liu / Auxiliary Features-Guided Super Resolution for Monte Carlo Rendering

Figure 7: Visual comparison with denoising methods on the BCR dataset [HLM*21].

Figure 8: Visual comparison with denoising methods on the Gharbi dataset [GLA*19].

produces high-quality results with much fewer artifacts when com-
pared to the ground truth.

4.3. Discussions

Auxiliary features sampling rates. As discussed above and shown
in Figure 5, using more samples to generate the auxiliary features
help our method generate better super-resolution results. However,
even using one sample per pixel to generate the auxiliary features

can already enable our method to significantly outperform standard
super-resolution methods. Moreover, when we use 16 samples to
generate these features, our results are already very close to the re-
sults that use the features generated using 4000 samples per pixel
denoted as Agt in the figure.

Input layers of auxiliary features. We examine how our method
works with different auxiliary feature layers. The upsampling scale
is set to 4×. We use 4000 spp for ILR and A. As shown in Table 5,
both albedo and normal can improve the results significantly, as they

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Table 5: The effects of input fat-to-compute auxiliary feature layers on the
BCR dataset [HLM*21].

Auxiliary Layer None Normal Albedo Normal + Albedo

PSNR 30.49 34.85 36.42 37.45
RelMSE 0.0141 0.0042 0.0030 0.0021

Table 6: Ablation study w.r.t. MSSPL [HLM*21] on the BCR
dataset [HLM*21]. We compare their performance using fast-to-compute
auxiliary features layers (‘Fast’) and full auxiliary feature layers (‘Full’).

2 spp 4 spp 8 spp

Method Buffer PSNR RelMSE PSNR RelMSE PSNR RelMSE

MSSPL Full (16 - 1) (32 - 2) (64 - 4)
33.94 0.0039 35.21 0.0028 36.31 0.0022

MSSPL Fast (16 - 1) (32 - 2) (64 - 4)
32.32 0.0079 33.42 0.0060 33.96 0.0050

Ours Full (16 - 1) (32 - 2) (64 - 4)
34.84 0.0033 36.01 0.0024 37.22 0.0018

Ours Fast (16 - 1) (32 - 2) (64 - 4)
34.08 0.0046 35.06 0.0034 35.77 0.0029

can provide the essential high-frequency visual details for super-
resolution. The performance of our network can be further improved
if we take both of them as inputs. These findings are consistent with
previous denoising methods [BVM*17, GLA*19] where intermedi-
ate layers can improve the final results.

Ablation study w.r.t. MSSPL [HLM*21]. We evaluated the per-
formance of both our method and MSSPL [HLM*21] using fast-to-
compute auxiliary features as well as full auxiliary features. In the
experiments, the upsampling scale is set to×4. As shown in Table 6,
both our network and MSSPL benefit from using the full auxiliary
features due to the richer high-resolution information they provide.
However, our method with fast-to-compute layers still outperforms
MSSPLwith full auxiliary layers, which demonstrates the effective-
ness of our network architecture.

Network effectiveness. We examine how our network ar-
chitecture works by comparing to AdvMC [XZW*19] and
MCSA [YNL*21]. Specifically, we feed high-resolution 1-spp RGB
and 1-spp auxiliary buffers to AdvMC and MCSA and fine tune
them on the BCR dataset. In this experiment, our method takes 4-
spp low-resolution RGB (×2, effectively the same sampling rate
as 1 spp at the high resolution) and 1-spp high-resolution auxil-
iary buffers. Table 7 shows our method outperforms these methods,
which demonstrates the effectiveness of our transformer-based net-
work architecture.

Network architecture components. We examine the effect of
the network architecture. The upsampling scale is set to 4×. In this
test, we remove XM modules and replace our RDST with the state-
of-the-art blocks, including RDB from RRN [ZTK*18] and RSTB
from SwinIR [LCS*21]. As shown in Table 8, our RDST can greatly
improve the results. These improvements can be attributed to the
strong generalization capability of RDST. Besides, XMmodules can
further improve the results.

Table 7: The effects of network architectures on the BCR
dataset [HLM*21]. AdvMC-ft [XZW*19] and MCSA [YNL*21] take
1-spp RGB and 1-spp auxiliary buffers as inputs. Our method takes 4-spp
low-resolution RGB (×2, effectively the same sampling rate as 1 spp at the
high resolution ) and 1-spp high-resolution auxiliary buffers).

Method AdvMC-ft MCSA Ours

PSNR 27.96 30.01 34.12
LPIPS 0.320 0.202 0.090

Table 8: The effects of network architecture components on the BCR
dataset [HLM*21]. We compare the proposed RDST with RDB [ZTK*18]
and RSTB [LCS*21].

Network RDB RSTB RDST RDST + XM

PSNR 35.56 36.63 37.27 37.45
RelMSE 0.0034 0.0098 0.0022 0.0021

Table 9: The effects of the number of RDST blocks on the BCR
dataset [HLM*21]. We measured the flops and macs for a single 1024×
1024 image [RRRH20].

RDST Num PSNR RelMSE Flops(T) Macs(G) Params(M)

5 34.08 0.0046 1.45 723.68 9.36
3 33.47 0.0056 1.04 519.13 6.21
1 32.60 0.0091 0.63 314.59 3.06

Table 10: The effects of the number of XDG blocks on the BCR
dataset [HLM*21]. We measured the flops and macs for a single 1024×
1024 image [RRRH20].

XDG Num PSNR RelMSE Flops(T) Macs(G) Params(M)

3 34.08 0.0046 1.45 723.68 9.36
2 33.19 0.0066 1.02 507.86 6.42
1 32.30 0.1193 0.59 292.04 3.49

Number of RDST blocks. We examine how our network archi-
tecture works with different RDST blocks in each XDG block on the
BCR dataset [HLM*21]. In this test, the upsampling scale is set to
×4. To check the impact of RDST, we set the XDG number as 3, and
we investigated our results across different RDST numbers of each
XDGblock, including 1, 3 and 5. Besides, we alsomeasure the flops,
macs and parameters for a single 1024 × 1024 image [RRRH20].
As shown in Table 9, decreasing the number of RDST blocks accel-
erates the network but compromises performance.

Number of XDG blocks. Similar to RDST, we investigate our
results across different XDG numbers, including 1, 2 and 3. The up-
sampling scale is set to ×4 and the number of RDST of each XDG
block is set to 5. As the results reported in Table 10, reducing the
number of XDG blocks accelerates the network but also compro-
mises performance.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Table 11: Comparison on the perceptual quality on the BCR
dataset [HLM*21]. We utilize the LPIPS [ZIE*18] metric as a mea-
sure of perceptual quality.

2 spp 4 spp 8 spp

Method PSNR LPIPS PSNR LPIPS PSNR LPIPS

AdvMC-ft 30.33 0.209 32.30 0.155 33.69 0.126
MCSA-ft 32.68 0.108 34.81 0.080 36.61 0.068
Ours 34.12 0.090 35.49 0.070 37.09 0.057

Our robust loss versus SMAPE loss [Mea86]. Our robust loss is
used based on our observations that there are a very small number of
pixels with abnormally large intensity values in our dataset, mostly
due to the firefly artifacts. These pixels will often incur very large
errors during training and thus compromise the performance of our
model. We use the robust loss to reduce these undesirable impacts
of these pixels as this robust loss will limit the maximal loss value
to 1 no matter how large the pixel error is. We compared these two
loss functions. In our experiments, the upsampling factor is set to
4, and we set the sampling rate to (16 - 1). Models trained with the
SMAPE loss showed slightly worse results: 33.96 versus 34.12 in
PSNR, and 0.0046 versus 0.0035 in RelMSE.

Super-resolution scale. We investigate our results across mul-
tiple scales, including ×1, ×2, ×4 and ×8. Among them, scales
×1 and ×8 exhibit weaker performance compared to ×2 and ×4.
When comparing scales ×4 and ×2, ×4 takes less peak memory
and is faster than ×2, but ×2 leads to better quality. To make a fair
comparison, we maintain a consistent average sampling rate across
different scales. Consequently, the low-resolution input of our ×1
model is rendered at a much lower average sampling rate than that
of our ×2 model. This makes the resulting input RGB image to our
model very noisy for ×1 and thus comprises the final quality of
Ours ×1, as reported in the 2-spp column of Table 3. In the 4-spp
column of the same table, the difference between Ours×1 and Ours
×2 is less significant as in this setting, the average sampling rate of
Ours×1 is reasonably higher and provides more information for our
model to synthesize higher-quality results.

In addition, we used the same training pipeline for our ×1 model
as we did for other scales, keeping the number of epochs consistent
across all scales. However, due to the high memory requirement to
train the ×1 model, we have to set a smaller mini-batch size. This
would also potentially impact the performance, but we believe that
this is not as significant as the first reason we discussed above.

Perceptual quality. We examine the perceptual quality of our
results using the LPIPSmetric [ZIE*18]. Tables 7 and 11 present the
results for AdvMC [XZW*19], MCSA [YNL*21] and our method.
Our approach outperforms the others in terms of both PSNR and
LPIPS, thereby demonstrating its ability to generate images with
high perceptual quality.

5. Limitations and Future Work

The fusion for the high-reflection parts is challenging. Our method
produces high-frequency visual details by two means: (1) train a

Figure 9: Failure example. The performance of our method is com-
promised in the area where the albedo and normal could not provide
high-frequency details.

neural network to learn to recover high-frequency information from
low-resolution input and (2) use high-frequency information from
the high-resolution albedo and normal maps. Our neural network
can learn to produce visual details for many examples. However,
super-resolution from a low-resolution input alone is necessarily an
ill-posed problem. In the high-reflection parts of the scene, such as
the example shown in Figure 9, when the high-resolution normal
and albedomap cannot, by its nature, provide high-frequency details
in those regions, our method may fail.

Compared to CNN-based methods, our method is slow. How-
ever, compared to another transformer-based method [YNL*21],
our method uses less peak memory (0.89 vs. 30.56Gb) and is faster
(1.0 vs. 2.5 s) when producing a 1024× 1024 image using anNvidia
A40. Research on fast transformers has been advancing quickly re-
cently. Patro et al. [PA23] offer an extensive review of efficient vi-
sion transformers. Through the advancement of effective token mix-
ing strategies and efficient MLP layers, vision transformers can be
significantly accelerated [LWZ*22, GHW*22, YPL*22]. For exam-
ple, both CMT [GHW*22] and WaveViT [YPL*22] outperform Ef-
ficientNet [TL19] while maintaining a lower computational com-
plexity. Moreover, several transformer hardware accelerators have
been introduced to expedite transformer networks, such as Swift-
Tron [MDC*23]. We believe that our method can benefit from the
quick advance of research on transformer.

In this paper, we specifically explored albedo and normal as
quick-to-compute auxiliary features. However, we acknowledge
that other auxiliary features, such as a whitted ray-traced layer,
could offer valuable high-frequency information and be generated
fast. Incorporating such a layer can potentially improve the perfor-
mance of our method. Unfortunately, the BCR dataset does not con-
tain such layers. We plan to explore this in our future research.

6. Conclusion

This paper explored high-resolution fast-to-compute auxiliary
features to guide super-resolution of Monte Carlo renderings.
We developed a dedicated cross-modality transformer network
to fuse high-resolution fast-to-compute auxiliary features with
the corresponding low-resolution rendering. We designed a
transformer-based cross-modality module to fuse the features from
two modalities. We also developed a Residual Densely Connected
Swin Transformer block to learn more representative features.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Experimental results indicate that our proposed method surpasses
existing state-of-the-art super-resolution and denoising techniques
in producing high-quality images.
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