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Topological Anomaly Detection in Dynamic
Multilayer Blockchain Networks

Ofori-Boateng, D.1�, Segovia Dominguez, I.2, Akcora, C.3, Kantarcioglu, M.,
and Gel, Y.R.2

1 Portland State University, USA; dorcas.oforiboateng@pdx.edu
2 University of Texas at Dallas, USA
3 University of Manitoba, Canada

Abstract. Motivated by the recent surge of criminal activities with
cross-cryptocurrency trades, we introduce a new topological perspective
to structural anomaly detection in dynamic multilayer networks. We
postulate that anomalies in the underlying blockchain transaction graph
that are composed of multiple layers are likely to also be manifested in
anomalous patterns of the network shape properties. As such, we invoke
the machinery of clique persistent homology on graphs to systematically
and efficiently track evolution of the network shape and, as a result,
to detect changes in the underlying network topology and geometry.
We develop a new persistence summary for multilayer networks, called
stacked persistence diagram, and prove its stability under input data
perturbations. We validate our new topological anomaly detection frame-
work in application to dynamic multilayer networks from the Ethereum
Blockchain and the Ripple Credit Network, and demonstrate that our
stacked PD approach substantially outperforms state-of-art techniques.

Keywords: Anomaly Detection · Dynamic Multilayer Network · Blockch-
ain Transaction · Topological Data Analysis · Clique Persistent Homology.

1 Introduction

Due to the recent spike in popularity of crypto assets, detecting anomalies in time
evolving blockchain transaction networks has gained a new momentum. Here
anomaly detection in dynamic graphs can be broadly defined as the problem of
identifying instances within a sequence of graph observations where changes occur
in the underlying structure of the graph. Indeed, these anomalies have significant
implications, ranging from emergence of new ransomware (e.g., collecting ransom
via cryptocurrencies) to financial manipulation. For example, in blockchain
transaction networks, e.g., Ethereum, more frequent than expected appearance
of particular subgraphs may indicate newly emerging malware or price pump-
and-dump trading [70]. Similarly, as recently shown by [68], the flow of coins on
the Bitcoin graph provides important insights into money laundering schemes.
As criminal, fraudulent, and illicit activities on blockchains continue to rise, with
already stolen $1.4B only in 2020, cryptocurrency criminals increasingly employ
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cross-cryptocurrency trades to hide their identity [53]. As such, [72] have recently
shown that the analysis of links across multiple blockchain transaction graphs
is critical for identifying emerging criminal and illicit activities on blockchain.
However, while there exists a plethora of methods for network anomaly detection
in single layer networks [57,30,56], there is yet no single method designed to
detect anomalies in dynamic multilayer networks.

Why TDA? Motivated by the problem of tracking financial crime on blockchains,
we develop a state-of-the-art methodology for anomaly detection on multilayer
networks using Topological Data Analysis (TDA). Since crime on blockchains
such as money laundering tends to involve multiple parties who possibly move
funds across multiple cryptocurrency ledgers, one of our primary goals is to
identify anomalous patterns in higher order graph connectivity. We postulate
that anomalous higher order patterns can be detected using geometric and
topological inference on graphs, that is, via a systematic analysis of the graph
shape. To explore latent graph shape, we invoke the TDA machinery of the clique
persistent homology (PH). PH allows to systematically infer qualitative and
quantitative multi-lens geometric and topological structures from data directly
and, hence, to enhance our understanding on the hidden role of geometry and
topology in the system organization [13,18,67]. As a result, it may be intuitive
to hypothesize that there shall be an intrinsic linkage between changes in the
underlying graph structure and changes in the network shape which are then
reflected in the extracted network topological characteristics. However, to the best
of our knowledge, this paper is the first attempt to introduce TDA to anomaly
detection in dynamic multilayer networks.

Why Ethereum and Ripple? Using the Blockchain global events timeline [69],
we validate our methodology in application to anomaly detection in two multilayer
blockchain network types, Ethereum and Ripple. While cryptocurrencies have
already been adopted in payments, the recent surge in financial blockchain activity
is largely due to platforms, such as Ethereum, which have brought algorithmic
trading of digital assets by using Smart Contracts (i.e. short software code on
the blockchain) in what is called Decentralized Finance [21]. Assets include
cryptocurrencies and crypto tokens as well. Hence, a given address (i.e. a node)
may participate in transactions of multiple digital assets. Looking at an individual
asset transaction network alone (i.e. a single layer of the transaction graph) may
provide a limited view. As a result, we need to consider multiple layers (e.g., a
layer for each crypto token) and their interactions to detect anomalies. Resulting
multilayer networks and participant activities are temporal, nuanced in the traded
assets (e.g., coins, or fiat currencies), rich in network patterns and encode a
new wave of financial heart-beat. The Ripple Credit Network transactions also
comprise cross-border remittance transfers and even fiat currency trades, allowing
trading Ether, Bitcoin and other currencies on its system.

Our contributions, both in application and theory, are as follows:

1 To the best of our knowledge, this is the first paper on anomaly detection in
dynamic multilayer networks.
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2 Our new methodology is based on the notion of clique persistent homology. To
quantify topology of multilayer graphs, we introduce a multidimensional multi-
set object, called the stacked persistence diagram (SPD). We prove that SPD
is robust against minor input data perturbations w.r.t. bottleneck distance.

3 In the absence of the state-of-the-art anomaly detection methods for dynamic
multilayer networks, we benchmark our topological anomaly detection (TAD)
tool against a multiple testing framework, based on the strongest state-of-
the-art (SOTA) methods for anomaly detection in single layer networks. To
control for family wise error rate (FWER) in the multiple testing framework,
we use Bonferroni correction. We show that TAD substantially outperforms all
competitors based on SOTA single layer solutions and the additional technique
based on graph embedding.

4 We demonstrate utility of TAD on Ethereum and Ripple blockchains, where dig-
ital assets worth billions of US Dollars are traded daily. We provide Blockchain
benchmark data for anomaly detection on multilayer networks which is the
first benchmark multilayer network dataset with ground-truth events, thereby
further bridging AI with crypto-finance.

2 Related Work

Graph-Based Anomaly Detection: Over recent years, there has been an
increase in application of anomaly detection techniques for single layer graphs
in interdisciplinary studies [73,28]. For example, [41] employed a graph-based
measure (DELTACON) to assess connectivity between two graph structures with
homogeneous node/edge attribution, and identified anomalous nodes/edges in
the sequence of dynamic networks based on similarity deviations. With DELTACON,
an event is flagged as anomalous if its similarity score lies below a threshold.
In turn, [66] devised a likelihood maximization tool that extracts a ”feature”
vector from individual networks, and uses dissimilarity between successive net-
works snapshots to classify anomalous or normal/regular events. Procedure of
[77] segments network snapshots into separate clusters, infers local and global
structure from individual nodes and their distribution via community detection
and chronological ordering of the results in an effort to single-out potential
anomalies. An online algorithm for detecting abrupt edge weight and structural
changes in dynamic graphs has been recently introduced by [71], but the method
requires a pre-training data set to identify tuning parameters. In turn, [48,61,7]
discuss detection of malicious nodes in multiplex/multilayer networks. Finally,
[25] proposed a score test for change point detection in multilayer networks that
follow a multilayer weighted stochastic block model (SBM). However, the SBM
assumption is infeasible for financial networks. To our knowledge (see also the
reviews by [30,56]), there is no existing anomaly detection method designed for
dynamic multilayer networks.

Blockchain: Blockchain graphs have been extracted and analyzed for price
prediction [34,2,42], measurement studies [65,43] and e-crime detection [20,3].
Graph anomalies have been tracked to locate coins used in illegal activities,
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such as money laundering and blackmailing [55]. These findings are known as
taint analysis [24]. Typically, a set of features are extracted from the blockchain
graph and used in Machine Learning (ML) tasks. Here we bypass such a feature
engineering step in learning on Blockchain networks. Ethereum structure has
been analyzed by [31,43], while anomalies in Ethereum token prices have been
evaluated using TDA tools [46]. In turn, Ripple has been assessed for its privacy
aspects [51] and for health of the credit network [50]. However, multilayer analysis
of blockchains have not been studied before.
TDA: Multiple recent papers show utility of TDA for developing early warn-
ing signals for crashes in the cryptocurrency market [33], cryptocurrency price
analytics [46], and ransomware detection on blockchain transaction graphs [3].
While TDA (as any other tool) cannot be viewed as a universal solution, TDA
allows us to assess graph properties which are invariant under continuous de-
formations; hence it is likely to be one of the most robust tools for blockchain
data analytics [75]. TDA has been employed for visual detection of change points
in single layer graphs [36]. In the multilayer network context, TDA has been
used primarily for centrality ranking [62], including analysis of connectivity in
the multiplex banking networks [22], and clustering [74]. Application of TDA to
anomaly detection in multilayer networks is yet an unexplored area.
Multilayer Network Benchmark Data: Multilayer networks receive an in-
creasing attention in the last few years, due to their flexibility of modeling
interconnected systems [4]. There also exist several data repositories with multi-
layer graphs, e.g. [29,5], but neither of them have publicly available benchmark
data on multilayer graphs with ground truth for anomaly detection.

3 The Mechanism of Persistent Homology

Topology is the study of shapes. TDA and, in particular, persistent homology
(PH) provides systematic mathematical means to extract the intrinsic shape
properties of the observed data X (in our case X is a multilayer graph but X
can be a point cloud in Euclidean or any finite metric space) that are invariant
under continuous transformations. The key postulate is that X are sampled from
some metric space M whose properties are lost due to sampling. The goal of
PH is then to reconstruct the unknown topological and geometric structure of
M, based on systematic shape analysis of X . In this paper, we introduce the
PH concepts to analysis of dynamic multilayer networks, starting by providing
background on PH on graphs.

Definition 1. Let G = (V,E, ω) be a (weighted) graph, with vertex set V , edge
set E = {e1, e2, . . .} ⊆ V × V , edge weights ω = ω(e) : E → Z+ for all e ∈ E.

At the initial stages of PH, we select a certain threshold ν∗ > 0, and then
we generate a subgraph G∗ = (V,E∗, ω∗), such that E∗ = {e | ω(e) ≤ ν∗}, and
ω∗(e) = ω(e), for all e ∈ E∗. Then the observed graph G∗ is equipped with a
basic combinatorial object known as an abstract simplicial complex. Formally,
a simplicial complex is defined as a collection C of finite subsets of V (G) such
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that if σ ∈ C then τ ∈ C for all τ ⊆ σ. The basic unit of simplicial complexes is
called the simplex, and if |σ| = m + 1 then σ is called an m-simplex. Specific
to our analysis, we use a simplicial complex type called the clique complex to
systematically and efficiently extract topological features from the observed G. A
clique complex C(G∗) is a simplicial complex with a simplex for every clique (i.e.,
a set of vertices of G∗ such that any two points in the clique are adjacent) in G∗.
Furthermore, a k-clique community is formed whenever two k-cliques share k − 1
vertices (k ∈ Z+). With a range of thresholds ν1 < . . . < νn, we can obtain a
hierarchically nested sequence of graphs G1 ⊆ . . . ⊆ Gn for any graph G, where
each individual subgraph will generate its own clique complex. Subsequently, the
procedure which generates complexes from the nested sequence G1 ⊆ . . . ⊆ Gn
is known as the network filtration, and the resultant complex generated by G is
called a filtered complex [78]. Particular to cliques, we construct clique complexes
and then obtain the clique filtration C(G1) ⊆ . . . ⊆ C(Gn).

The mechanism of clique persistent homology involves tracking clique com-
plexes over the filtration and quantifying lifespan of topological features/shapes
such as loops, holes, and voids that appear and disappear at various thresholds
ν∗ [79,60]. We say that a topological feature is born at the i-th filtration step if
it appears in C(Gi), and the topological feature dies at the j-th filtration step, if
it disappears at C(Gj). Hence, the lifespan of a topological feature is νj − νi. The
primary objective of TDA will then be to assess which topological features/shapes
persist (i.e. have longer lifespan) over the clique filtration and, hence, are likelier
to contain important structural information on the graph, and which topological
features have shorter lifespan. The latter features are typically referred to as
topological noise.

One of the most widely used topological summaries is the persistence diagram
(PD) [13,78]. The PD is a collection of points (vi, vj) ∈ R2 with each point
corresponding to a topological feature, and the x- and y-coordinates representing
birth and death times for the topological feature. Similarity between any two
PDs, Da and Db, can be computed using the Wasserstein (Wr) or the Bottleneck
distances (W∞):

Wr(Da, Db) =
(
inf
η

∑
x∈Da

‖x− η(x)‖r∞
)1/r

, W∞(Da, Db) = inf
η

sup
x∈Da

‖x−η(x)‖∞.

Here r ≥ 1, η ranges over all bijections from Da ∪ ∆ to Db ∪ ∆, counting
multiplicities, with ∆ = {(x, x)|x ∈ R} and ||z||∞ = maxi |zi| [40,67]. We
evaluate both distances in the methodological development of the TAD.

4 Persistence Methodology for Network Anomaly
Detection

We now introduce the new topological method (TAD) for anomaly detection on
multilayer graphs and support its design with relevant theoretical guarantees.
Table 1 details all notations we introduced, and we use the terms graph and
network interchangeably.
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Table 1: Description of Symbols Used

Symbol Description

X point cloud
M metric space
G; V, E graph; node and edge lists
ω(e) weight of edge e
C simplicial complex
σ simplex
C() clique complex
Da persistence diagram a
Wr, W∞ Wasserstein and Bottleneck

distances
L, T number of layers and time

intervals

Gl graph of a single layer l

ωl+ geodesic edge weight
D() distance between

two persistence diagrams

Gl
+

t geodesically densified graph
of layer l at time t

dGH Gromov-Hausdorff distance
F persistence module
di() interleaving distance
kmax maximum clique size

Definition 2 (Multilayer network). A multilayer network, G = (G1, . . . ,GL),
is a graph structure that consists of L non-overlapping graph layers, where each
layer is modeled with a (weighted) graph Gi = (Vi, Ei, ωi), with i = 1, . . . , L.

Problem Statement: Let {Gt}Tt=1 = {(G1t , . . . ,GLt )}Tt=1 be a T sequence of
multilayer networks observed over time t, with 1 ≤ t ≤ T < ∞. The objective
is to locate a time point t∗ < T , such that an event within the time range
[t∗ −m, t∗ +m], for 0 ≤ m < t∗ causes the structure and shape of Gt∗ to differ
from the structural properties of the earlier observed networks G1, . . . ,Gt∗−1.
With this search, we include anomalies which cause: 1 the network system to
experience a brief shock at t∗, and 2 a permanent change in the network system
until the next t∗ +m.

Main Idea: Conceptually, TAD method is designed to associate anomalies in
the sequence of multilayer networks to anomalies identified from the time series
of their topological summaries. In addition, we introduce our new idea of a
specialized persistence diagram for multilayer networks known as the stacked
persistence diagram (SPD).

Definition 3 (Stacked Persistence Diagram (SPD)). For a multilayer net-
work G = (G1, . . . ,GL), we define the associated PD of G as DG =(DG1

⊕
. . .
⊕
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DGL), i.e. DG is created as a direct sum of all PDs DGl associated with each
single intra-/inter-layer network Gl ⊆ G, for 1 ≤ l ≤ L.

Why Do We Stack PDs and Why Not to Average PDs? As our primary
focus here is on anomaly detection in multilayer graphs, our goal is to simultane-
ously capture joint dynamics of topological properties exhibited by each graph
layer within the interconnected system. As such, currently existing methods based
on averaging PDs and their vectorizations [52,8] which are developed for analysis
of a single, possibly time-varying object, are not feasible in our context. That
is, averaging PDs of the two distinct layers may be viewed as averaging PDs,
extracted from apples and oranges. In turn, our idea is to jointly track dynamic
topological properties which are demonstrated by apple and orange trees over
the same time period, and the SPD structure is motivated by the notion of direct
sums of multiple vector spaces which serve as mathematical formalization of very
different objects.

Fig. 1: An example of the formation of the SPD for a multilayer network. The
multilayer network has 3 layers with PDs that have unequal topological features
(3 in the first, 2 in the second, and 3 in the third). Although the first and third
layer PDs contain information about 3-dimensional topological features, they
have unequally-positioned points. Essentially, the SPD for the multilayer network
will contain information about 7 classes of topological features.

Geodesic Densification of Blockchain Graphs: Dynamic networks such
as Blockchain transaction graphs tend to be sparse, because a node (i.e. an
address) can be inexpensively created without proving identity, which allows
users to hide their transactions behind new addresses for privacy and security
purposes. Furthermore, blockchain communities (e.g. Bitcoin) encourage one-time-
use addresses (i.e. creating a new address every time a transaction is created).
As a result, a sparse and constantly evolving network structure emerges, making
it difficult to rely on conventional network connectivity (i.e. adjacency matrix).
To address this limitation, we replace the (weighted) adjacency matrix of the
single layer graph Gl of G with the (weighted) geodesic distance (GD) matrix [9]

which redefines the edge weights ωl as ωl
+

=
∑
e∈E(Puv)

ω(e), where Puv is the
shortest path length between vertex pair u, v. This densification reconnects node
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pairs that have a common path. Paths encode useful information because nodes
(i.e. addresses) may merge their coins into a single address to sell them to leave
the Blockchain (and thus pay less transaction fees).

The proposed TAD framework operates according to the following order:

{Gt}Tt=1
T−step−−−−−→ {D(DGt−1

, DGt
)}Tt=2

AD−step−−−−−−→ {t∗1, . . .},

where D(DGt−1
, DGt

) is any suitable distance metric between two persistence
diagrams DGt−1

and DGt
. Note that this distance can either be the Bottleneck

or the r-th Wasserstein distance.

T – step: At this step, we implement the clique PH to convert the sequence
of multilayer networks {Gt}Tt=1 into a sequence of SPDs. This involves the

transformation of all the (weighted) adjacency matrices of Glt into Gl+t , followed
by the filtration of persistent topological features by using clique PH.

AD – step: While TAD method can be integrated with any user-preferred outlier
or change point detection algorithm for univariate time series, we adopt the
recently proposed seasonal extreme studentized deviate test S-ESD [63,37]. For
an observed time series, S-ESD filters out the seasonal component, piecewise
approximates the long-term trend component (in order to decrease the instances
of false positives) and then incorporates robust statistical learning to identify the
location of anomalies. S-ESD is our choice due to its sensitivity to both global
anomalies irrespective of seasonal trends and intra-seasonal local anomalies. We
provide pseudocode for TAD below, and discuss its computational complexity as
well.

Algorithm 1: Topological anomaly detection in multilayer networks
(TAD)

Input : Sequence of L-multilayer graphs {Gt}Tt=1 = {Gt1, . . . ,GtL}Tt=1.
Output :Anomalous events {t1∗, . . .}.

1 for t ← 1 : T do
2 for l ← 1 : L do

3 Compute GD matrix Gtl
+

for Gtl

4 Generate the PD DGl+t for Gtl
+

5 end
6 Obtain SPD DGt by chronologically stacking PDs from DG1+t to DGL+

t

7 end
8 for t ← 2: T do
9 With suitable distance metric (D), obtain similarity between DGt−1 and DGt

10 end
11 With S-ESD, detect anomalies (t1

∗, . . .) from the series
{
D(DG1 ,DG2), . . . ,

12 D(DGT−1 ,DGT )
}
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Computational Complexity for TAD procedure

Algorithm 1 details the computation of PDs based on finding and merging clique
communities. The available clique implementation of [60] (which we utilize here)
is highly efficient and has a complexity of O(κϕ−1(κ)) for persistent homology
computation, where κ is the number of edges and ϕ−1(·) is the extremely slow-
growing inverse of the Ackermann function [35]. It works jointly with one of the
many clique percolation algorithms [32]. To compute the Wasserstein distance
metric, we use the efficient polynomial time algorithm [54].

4.1 Theoretical Properties of the Stacked Persistence Diagram

As shown by [16], the conventional PD of an object (i.e. a single layer graph
or point cloud) is stable under minor data perturbations. Noting that SPD is
derived from the direct sum of the persistence modules corresponding to each
layer in G and using the Isometry theorem for individual persistence modules [17],
we derive similar theoretical guarantees for SPD.

Theorem 4 (Stability of SPD). Let GX = {G1X , . . . ,GLX} and GY = {G1Y , . . . ,
GLY } be two multilayer networks generated from the same space of L-multilayer
networks. Then

W∞(DGX
, DGY

) ≤ max
1≤l≤L

(
dGH

(
{GlX , ωGl

X
}, {GlY , ωGl

Y
}
))

where W∞ is the Bottleneck distance and dGH is the Gromov-Hausdorff distance.

Proof for Theorem 4 is in the Appendix. Theorem 4 implies that the proposed new
SPD DG (see Definition 3) for any multilayer network G is robust with respect
to W∞ under minor input data perturbations. As a result, Theorem 4 provides
theoretical foundations to our TAD idea. Hence, under the null hypothesis of no
anomaly, we expect to observe similar SPDs over dynamic multilayer networks
DGt

, while a noticeable difference between two adjacent SPDs is likely to be a
sign of anomaly. Note that stability of SPD in terms of W1 requires vectorization
of SPD and Lipschitz continuity of the associated vectorization. While such
vectorization approaches are highly successful for image and graph learning
(see, e.g., [1,38,76]), our preliminary studies show lack of sensitivity of such
vectorization techniques in conjunction with network anomaly detection.

5 Experiments on Blockchain Networks

5.1 Experimental Setup

Baseline Algorithms: We compare performance of TAD method against the fol-
lowing strong state-of-the-art (SOTA) algorithms for anomaly detection on single
layer networks: 1 DeltaCon by [41] (which we label DC) for weighted/unweighted
networks, 2 Scan Statistics algorithm by [19] (which we label gSeg) for un-
weighted networks, 3 Edge monitoring method with Euclidean distance by
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[66] (which we label EMEu) for weighted networks, and 4 Edge monitoring
method with Kullback-Leibler divergence by [66] (which we label EMKL) for
weighted networks. Finally, we also considered an embedding-based algorithm
for anomaly detection. That is, we tracked Frobenius norms among embeddings
of multilayer blockchain graphs at each time snapshot, delivered by the one of
the most widely used algorithms for multilayer graph embedding, MANE of [45].
This 5 -th approach is denoted by Graph-Em. We provide a brief description of
the mechanism for each method in the Appendix. For all competing methods, we
use the default parameters reported in the literature. Wherever applicable, we
set a standard level of significance α of 0.05.

Since all competing methods are designed for single layer networks, we imple-
ment them (individually) w.r.t. each l layer in all the multilayer graphs {Gt}Tt=1

and then combine the detected results, while correcting for the multiple hypothesis
testing framework. In the Appendix, we provide two types of multiple hypotheses
that specifies how we retain anomalies for the sequence of multilayer graphs and
these include: 1 keep all anomalies identified from at least one {Glt}Tt=1, 2 keep
all anomalies that are commonly identified from all {Glt}Tt=1. We provide results
for choice (1), and defer the results for (2) to the Appendix. Additionally, we
construct a single layer version of TAD (which we call S-TAD) and apply this to
the same single layers. To be precise, our improvised S-TAD will extract PDs
from each l-layer, and without creating SPDs, apply the chosen distance metric
to consecutive PDs to obtain a time series of topological summaries for the
sequence {Glt}Tt=1. Therefore, our evaluation will investigate the performance of
TAD method against the performance of the chosen techniques (DC, gSeg EMEu,
EMKL, Graph-Em), and S-TAD when the (un)weighted multilayer networks are
viewed as a multiple hypothesis.

Fig. 2: Anomalous events detected by TAD for the multilayer Ethereum network.
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Topological Distances in TAD We have experimented with various topological
metrics, particularly, W∞ bottleneck and W1 Wasserstein distances. While our
preliminary results do not indicate that W1 yields substantial gains over W∞ (i.e.
70% of the true anomalous events are detected regardless of the distance choice),
W1 tends to be slightly more sensitive than W∞. As such, we proceed with W1

as the primary choice and consider W1(DGt−1 , DGt), between consecutive SPDs
DGt−1 and DGt for 2 ≤ t ≤ T . We apply the TAD technique to two input data
types: weighted and unweighted multilayer networks. Edge weight is defined as a
number of transactions between nodes.
Reproducibility and replicability The anonymized codes and data sets for
this project are available at https://github.com/tdagraphs.

5.2 Ethereum Token Networks

Data set: The Ethereum blockchain was created in 2015 to implement Smart
Contracts, which are Turing complete software codes that execute user defined
tasks. Among many possible tasks, contracts are used to create and sell digital
assets on the blockchain. The assets can be categorized into two categories:
1 Tokens whose prices can fluctuate; ERC20 or ERC721 [65], 2 Stablecoins

whose prices are pegged to an asset such as USD [49] (these are also ERC20
tokens). Token networks are particularly valuable because each token naturally
represents a network layer with the same nodes (addresses of investors) appearing
in the networks (layers) of multiple tokens. For our experiments, we extract token
networks from the publicly available Ethereum blockchain, and use the normalized
number of transactions between nodes as the edge weights. By principle, a token
network is a directed, weighted multigraph where an edge denotes the transferred
token value. Although address creation is cheap and easy, most blockchain users
use the same address over a long period. Furthermore, the same address may
trade multiple tokens. As a result, the address appears in networks of all the
tokens it has traded. From our data set timeline, we only include tokens reported
by the EtherScan.io online explorer to have more than $100M in market value.
Eventually, the data set contains 6 tokens, and on average, each token has a
history of 297 days (minimum and maximum of 151 and 576 days, respectively).
Note that each token has a different creation date, hence token networks have
non-identical lifetime intervals.
Ground Truth: As ground truth, we adopt and curate Blockchain events from
Wikipedia [69], which lists and explains major events since 2008. In total, there
are 72 events that have shaped blockchain networks — some of them in adverse
(see the supplementary material for the complete list). However, token networks
cannot detect events before 2015 because Ethereum and its tokens did exist
before then. Hence, our experiments focused on at most 32 (out of the 72) the
token transaction events.
Results: Table 2 presents summary statistics for the weighted token multilayer
network analysis against the three single-layer SOTA solutions (i.e. DC, EMEu,
EMKL) and our topological S-TAD method. We find that TAD delivers lower FP
values. In addition, we notice that TAD achieves a significantly higher accuracy

https://github.com/tdagraphs
EtherScan.io
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Table 2: Anomaly detection performance for the weighted Ethereum blockchain
and Ripple currency networks.

Ethereum Ripple

S-TAD DC EMEu EMKL TAD S-TAD DC EMEu EMKL TAD

TP 15 52 3 5 10 95 105 10 10 16
FP 28 69 3 5 2 260 283 40 32 9
TN 99 30 132 130 135 872 837 1152 1161 1187
FN 10 1 14 12 5 35 37 60 59 50
Acc. 0.750 0.539 0.888 0.888 0.954 0.766 0.746 0.921 0.928 0.953

(> 7% of what EMEu/EMKL report). This is evidenced by the detected points
in Figure 2. From Figure 3 we notice again that the TAD yields substantially
higher Precision (66% more than what DC gets) and F1 (> 23% of what DC
gets) values, implying that TAD tends to be substantially more efficient in locating
relevant anomalies within the multilayer graph sequence than its competitors.
In addition, we find that the performance results of the Graph-Em method in
Table 3 and Figure 4 are substantially worse than the ones delivered by our
proposed TAD. This phenomenon can be explained by higher data aggregation
typically performed by graph embedding tools which results in lower sensitivity to
anomalous changes in the graph structure. Altogether, these results indicate that
TAD tends to be the most preferred tool for identifying anomalies in the multilayer
network setting. Table 3 presents experimental results for the anomalous event
detection in the unweighted multilayer Ethereum blockchain networks. We find
that TAD delivers the highest detection accuracy (0.954, which is about 20%
greater than what gSeg yields). In addition, we notice that TAD attains the lowest
FP value (about 10% of what gSeg obtains) and the highest TN value (about
27% more than what gSeg gets). In turn, Figure 4 suggests that TAD yields the
highest precision (93% greater than DC) and the highest F1 score (23% more
than DC). These findings suggest that the new TAD method tends to be the most
accurate approach for flagging relevant anomalous events.

Fig. 3: Precision and F1 scores for the weighted Ethereum blockchain and Ripple
currency networks.



Topological Anomaly Detection 13

Table 3: Anomaly detection performance for the unweighted Ethereum blockchain
networks.

Ethereum Ripple

S-TAD DC gSeg Graph-Em TAD S-TAD DC gSeg Graph-Em TAD

TP 17 52 14 3 10 80 105 17 0 11
FP 28 69 21 11 2 241 283 56 1 23
TN 97 30 106 126 135 900 837 1130 1195 1173
FN 10 1 11 12 5 41 37 59 66 55
Acc. 0.750 0.539 0.789 0.849 0.954 0.777 0.746 0.909 0.947 0.938

5.3 Ripple Currency Networks

Data set: The Ripple Credit Network was created to facilitate remittance across
countries, but the network has transitioned to a blockchain-like structure where
network approved entities (e.g., banks) issue currencies in I-Owe-You notes, and
addresses can trade these currencies in blocks (which are called ledgers). On the
Ripple network any real life asset, such as Chinese Renminbi or US Dollar, can be
issued by certain participants only but traded by all addresses (nodes). In terms
of regulatory issues by governments and price movements, Ripple is a part of the
Blockchain ecology and the networks are impacted by the global events such as
government regulations and trade volume increases [50]. We use the official Data
API (https://xrpl.org/data-api.html) and extract the five most issued fiat
currencies on the Ripple network: JPY, USD, EUR, CCK, CNY. We construct
a multilayer network from the payment transactions of the five currencies that
covers a timeline of Oct-2016 to Mar-2020. Similar to the Ethereum token analysis,
we use the normalized number of transactions between nodes as the edge weights.

Ground Truth: As ground-truth, we use the same events described in the
Ethereum token network experiments. However, since the Ripple data set has a
longer temporal span of observations than the Ethereum token networks, there
are a total of 66 Blockchain events.

Results: Summaries from Table 2 indicate that TAD attains the highest event
detection accuracy (0.953). Furthermore, we find that TAD yields the lowest FP
value, which is actually 22.5% of the value by EMEu and about 28% of the
value by EMKL. Figure 3 displays detection results for the anomalous events
in the multilayer Ripple payment networks. We find that TAD yields the highest
precision (more than double what DC/S-TAD get) and is close to the top F1 score.
Differing from Ethereum experiment, the best F1 performance is delivered by
DC, closely followed by S-TAD and then TAD. Table 3 suggests that TAD delivers
the highest detection accuracy (0.938, which is about 3% greater than what
gSeg yields) for the unweighted Ripple currency network. In addition, we notice
that TAD attains the lowest FP value (about 41% of what gSeg obtains) and the
highest TN value (about 3% more than what gSeg gets). In turn, Figure 4 shows
that TAD yields the highest precision (about 18% greater than DC) but the lowest
F1 score (55% of what DC gets).

https://xrpl.org/data-api.html
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Fig. 4: Precision and F1 scores for the unweighted Ethereum blockchain and
Ripple currency networks.

Finally, note that in Ethereum we use 6 tokens, whereas Ripple experiments
are performed on 5 currencies. As Tables 3 and 2 suggest, the Ethereum results
appear to be better than those of Ripple. That is, detection accuracy substantially
improves with a higher number of layers. However, for both cases TAD either
outperforms or on par with baseline techniques. The key intuition behind these
results is that TAD allows for simultaneous evaluation of subtle changes in multiple
homological features both within network layers and across network layers in
sparse dynamic environments of blockchain transaction graphs. As such, SPD
appears to be more sensitive to subtle changes in the multilayer network structure
than competing non-TDA tools.

6 Conclusion

We have proposed the first topological anomaly detection (TAD) framework for
dynamic multilayer networks. We have derived stability guarantees of the new
topological summary for multilayer graphs, i.e., stacked persistence diagram,
which is the key tool behind TAD and validated utility of TAD on two blockchain
transaction graphs. Our studies have indicated that TAD yields a highly com-
petitive performance in detecting anomalous events on Ethereum and Ripple
blockchains. In the future we plan to advance TAD to anomaly detection in
attributed dynamic networks and analysis of evolving communities.
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Appendix

Theoretical proof of Theorem 1

To prove Theorem 4.3, we invoke the following arguments. First, we note a
relationship between conventional PD of a single layer network and its associated
persistence module. Then the results on isometry of PDs and persistent modules
allow us to shift our focus from stability of PDs to stability of the associated
persistent modules. Second, as no two layers in the multilayer network G share
edges, the persistence module associated with SPD is then a direct sum of
persistence modules associated with PDs of single layer networks. Finally, armed
with the results of [15,17] on stability of persistence modules and accounting for
the direct sum representation of SPD, we arrive to stability of SPD.

Now we state the key mathematical definitions and results which are required
for our derivations.

Theorem 5. (Stability of PD, Theorem 3.1 in [15]) For any finite metric
spaces {X,wX} and {Y,wY },

W∞(DX , DY ) ≤ dGH
(
{X,wX}, {Y,wY }

)
,

where dGH is the Gromov-Hausdorff distance [15].

Note that weight functions ωX and ωY correspond to pairwise node distances
within networks X and Y respectively.

Definition 6 (Persistence module). A persistence module F = {Fa, fab} is
an indexed family of vector spaces (Fa | a ∈ R) together with the double-indexed
family of linear maps (fa

b : Fa → Fb | a ≤ b) which satisfy the composition law
fa
c = fa

b ◦ fbc whenever a ≤ b ≤ c and where fa
a is the identity map of Fa [17].

A persistence module F = {Fa, fab} is q-tame if rank (fa
b) < ∞ for any

a < a+ q < b [16].

Definition 7 (Interleaving distance). For δ ≥ 0, the two modules F =
{Fa, fab} and M = {Ma,ma

b} are δ-interleaved if for all a ∈ R there ex-
ists the collection of linear maps Φ : Fa →Ma+δ and Θ : Ma → Fa+δ such that
all diagrams that can be composed out of the maps Φa, Θa, and the linear maps
of F and M commute [14,11,10].
Hence, the interleaving distance di between F and M is defined as

di(F,M) = inf(δ | F and M are δ − interleaved),

where inf represents the infimum.
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Theorem 8. (Isometry Theorem, Theorem 4.11 in [17]) Let F and G be
q-tame persistence modules. Then

di(F,G) = W∞(DF , DG).

Proposition 1 (Proposition 4.5 in [17]) Let U1, U2, V1 and V2 be persis-
tence modules. Then

di(U1 ⊕ U2,V1 ⊕ V2) ≤ max
(
di(U1,U2), di(V1,V2)

)
.

Generally, let (Us | s ∈ S) and (Vs | s ∈ S) be families of persistence modules
indexed by the same set S, and let

U =
⊕
s∈S

Us and V =
⊕
s∈S

Vs.

Then
di(U,V) ≤ sup

s∈S

(
di(Us,Vs) | s ∈ S

)
,

where ⊕ denotes a direct sum.

Proof of Theorem 1 Let GX = (VX , ωX) and GY = (VY , ωY ) be two single
layer networks equipped with clique filtrations FX and FY respectively.

Armed with FX and FY , we generate the family of persistence modules FX
and FY , respectively [16,17]. As discussed by [12,23], FX and FY induce the
corresponding PDs DGX and DGY . Hence, the topological persistence patterns
for GX and GY are

GX → FX → FX → DGX and GY → FY → FY → DGY .

By assumptions, FX and FY are q-tame. Hence, in view of the Isometry theorem
(Theorem 4.11 of [17]), we can invoke interleaving distance di to assess relationship
between di and W∞. Under a Vietoris-Rips filtration (of which clique filtration
is a subcase), the Stability of PDs theorem (Theorem 3.1 of [15]) implies that

W∞(DGX , DGY ) ≤ dGH
(
{GX , ωGX}, {GY , wGY }

)
, (1)

where dGH is the Gromov-Hausdorff distance. By (GX , ωGX ) we mean the induced
finite metric space (VX , ωX) where the distances between the finite vertex set is
induced by the edge weight function ωX . Similar reference is implied for (GY , ωGY ).
In turn, the Isometry theorem implies

di(FX ,FY ) = W∞(DGX , DGY ).

Hence, in view of (1), we obtain

di(FX ,FY ) ≤ dGH
(
{GX , ωGX}, {GY , wGY }

)
. (2)
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Now consider two multilayer networks GX = {G1X , . . . ,GLX} and GY =
{G1Y , . . . ,GLY }, with ωGX

= {ωG1
X
, . . . , ωGL

X
} and ωGY

= {ωG1
Y
, . . . , ωGL

Y
} as the

weight functions. Clearly, {GX , ωGX
} and {GY , ωGY

} are metric spaces. From
the definition of SPD (Definition 3 under “Persistence Methodology for Network
Anomaly Detection”), GX and GY induce SPDs

DGX
= (DG1

X
, . . . , DGL

X
) and DGY

= (DG1
Y
. . . , DGL

Y
)

respectively, and based on (1) and (2) above, for l ∈ {1, . . . , L}

W∞(DGl
X
, DGl

Y
) ≤ dGH

(
{GlX , ωGl

X
}, {GlY , ωGl

Y
}
)
,

which implies that

di(FXl ,FY l) ≤ dGH
(
{GlX , ωGl

X
}, {GlY , ωGl

Y
}
)
. (3)

By SPD construction, no edges are shared between any GiX and GjX , i 6= j.
Hence, the persistence module of GX corresponding to DX is the direct sum of
all FXl :

FX =
⊕

1≤l≤L

FXl . (4)

According to Proposition 1 above (i.e. Proposition 4.5 in [17]),

di(FX,FY) ≤ max
1≤l≤L

(
di(FXl ,FY l)

)
, (5)

and by assumptions, each FiX and FjY is q-tame, i 6= j. Combining (3) and (5)
results in

di(FX,FY) ≤ max
1≤l≤L

(
dGH

(
{GlX , ωGl

X
}, {GlY , ωGl

Y
}
))
.

Finally, by invoking the Isometry theorem and accounting for the direct sum
representation (4), we obtain

W∞(DGX
, DGY

) ≤ max
1≤l≤L

(
dGH

(
{GlX , ωGl

X
}, {GlY , ωGl

Y
}
))
,

which concludes the proof.

Experimental Set-up: Computational complexity and sampling of
cliques

The process of tracking clique communities for high values of k is computationally
prohibitive, mainly because the clique decision problem is NP-complete and
common algorithms require that all the maximal cliques be found first [39,58].
The aforementioned computational complexity makes it unlikely to apply clique-
based methods on the entirety of our large-scale and dense blockchain networks
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(the Ethereum and Ripple networks have an average of 442788/1192722 and
71337/922084 nodes/edges, respectively).

To maintain reasonable computation time, we take a subgraph of each network
by adopting the maximum weight subgraph approximation method of [64], which
restricts the subgraph size to the nodes of the p most active edges. Sampling
helps us with efficient computation in certain token networks with large sizes.
At the same time, sampling nodes has minimal impact on results since most
daily token networks have <100 nodes. For instance, even for the most traded
tokens such as Tronix and Bat, top 150 nodes in daily networks form 75% and
80% of all edges, respectively. The filtered node approach effectively removes
20− 25% of edges in calculations, which reduces computation costs. Hence, with
the Ethereum blockchain and Ripple currency networks we only work with 100
and 90 nodes respectively. To mitigate computation efficiency constraints, we set
the maximum clique size to kmax = 20 for the Ethereum network and kmax = 4
for Ripple data set, and compute clique community PDs from k = 1 to k = kmax
for each network. In addition, an event at time t in the ground truth is marked as
detected when a predicted anomaly occurs in t− 2 ≤ t ≤ t+ 2; note that trading
patterns are variable and may not change the same day as published events in
news.

Description of State-Of-The-Art methods

We select the following state-of-the-art methods for network anomaly detection
based on their superior performance proven in most recent experimental studies
and their theoretical guarantees [71,6,47]. The DeltaCon (DC) of [41] measures
the similarity between edgelist pairs, and classifies the events with similarity scores
below a specified threshold as anomalous. The two edge monitoring algorithms
(EMEu and EMKL) of [66] account for temporal dependencies by tracking the
evolution of the network as a Markov process, thereby focusing on comparison of
the probability distribution of edges. The MANE by [45] calculates the relative
difference between pre and post multilayer graph embeddings (i.e., relative
difference with Frobenius norm). In turn, gSeg of [19] is a nonparametric graph-
based method that uses two-sample tests based on scan statistics. Among these
benchmark methods, the DC and the gSeg are suited for unweighted graph
data, while the DC, EMEu and EMKL are applicable for weighted graphs. Since
blockchain edges carry transaction amounts, it is natural to use weighted graph
based anomaly detection approaches.

Structure of Multiple Hypotheses Testing

Let Al = {tl1, tl2, . . . tlτl}, 1 ≤ τl ≤ T , be a set of anomalous events identified in

the T sequence of l-single layer graphs Gl ∈ G, 1 ≤ l ≤ L. Then we can test for

H0 : A1 = . . . = AL = ∅ vs

Ha : ∃ l such that Al 6= ∅, l ∈ {1, . . . , L}. (6)
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The general practice for all statistical hypotheses testing is to control the
rate of false positives at a probability known as the level of significance (α).
However, the multiple testing approach is significantly prone to varying kinds of
false positives rates [44], and the usual kind is the familywise error rate (FWER)
[26], which is defined as:

FWER = P (V ≥ 1) = 1− (1− αc)L,

where V is the number of false positives in all L hypotheses, P is probability, L
is the number of hypotheses, and αc is the level of significance that determines
the rejection of single hypothesis from the multiple set [26,59].

We employ a stronger control over FWER by testing H0 in (6) against an
alternative

H0 : A1 = . . . = AL = ∅ vs

Ha : ∃ t ∈ A1 ∩ . . . ∩ AL, 1 ≤ t ≤ T. (7)

To ensure reliability of conclusions in the multiple testing framework, it is
essential to control FWER and to require FWER ≤ α [26]. One of the most
widely used control procedures is the Bonferroni correction method [27]. Under
the Bonferroni correction, we reject the single null hypothesis H0 : Al = ∅ if and
only if FWER ≤ αc where αc = (α/L).

Fig. 5: Anomalous events detected by TAD for the multilayer Ripple currency
network.

Results for the stronger controlled FWER

At this stage, we test the following multiple hypotheses for the 4 single layer
SOTA methds (DC, gSeg, EMEu, EMKL) and our improvised S-TAD method
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against the TAD:

H0 : A1 = . . . = AL = ∅ vs

Ha : ∃ t ∈ A1 ∩ . . . ∩ AL, 1 ≤ t ≤ T. (8)

The performance of all methods (S-TAD, DC, gSeg, EMEu, EMKL, TAD) is
summarized as true positive (TP), false positive (FP), true negative (TN), false
negative (FN), accuracy (Acc.), precision (Prec.) and F1 score values (F1).
Results (Ethereum blockchain): From Tables 4 and 5, we find that TAD

delivers the highest detection accuracy (0.954, which is about 5% greater than
what all the other methods deliver) for both the unweighted and weighted
networks.

Table 4: Anomaly detection performance for the weighted Ethereum blockchains
using strong control of FWER.

S-TAD DC EMEu EMKL TAD

TP 0 0 0 0 10
FP 0 0 0 0 2
TN 138 138 138 138 135
FN 14 14 14 14 5
Acc. 0.908 0.908 0.908 0.908 0.954
Prec. 0.000 0.000 0.000 0.000 0.833
F1 0.000 0.000 0.000 0.000 0.741

By comparing the remaining summaries (TP, FP, TN, FN, Prec., F1) to the
case we assessed earlier,

we find that with the strong FWER setup, there is no common anomalous
event located in the sequence of six layer networks (i.e. the setup of the the six
hypotheses makes it harder to locate a common event).

Table 5: Anomaly detection performance for the unweighted Ethereum blockchains
using strong control of FWER

S-TAD DC gSeg TAD

TP 0 0 0 10
FP 0 0 0 2
TN 138 138 138 135
FN 14 14 14 5
Acc. 0.908 0.908 0.908 0.954
Prec. 0.000 0.000 0.000 0.833
F1 0.000 0.000 0.000 0.741
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Table 6: Anomaly detection performance for the weighted Ripple currency net-
works using strong control of FWER.

S-TAD DC EMEu EMKL TAD

TP 0 0 0 0 16
FP 0 0 0 0 9
TN 1198 1198 1198 1198 1187
FN 64 64 64 64 50
Acc. 0.949 0.949 0.949 0.949 0.953
Prec. 0.000 0.000 0.000 0.000 0.640
F1 0.000 0.000 0.000 0.000 0.352

Results (Ripple currency): Looking at the summaries in Tables 6 and 7, we
find that the TAD has the highest accuracy (0.953, which is closely matched by
the other methods) for the weighted networks. With the unweighted networks,
however, the performance of the other methods (0.949) is slightly higher than
the accuracy for TAD (0.938). Similar to the Ethereum blockchain results, we
notice that the ability of the competing techniques and our S-TAD are strongly
disadvantaged when the multiple hypotheses is setup to strongly control FWER
(because no unique anomalous event is identified).

Table 7: Anomaly detection performance for the unweighted Ripple currency
networks using strong control of FWER

S-TAD DC gSeg TAD

TP 0 0 0 11
FP 0 0 0 23
TN 1198 1198 1198 1173
FN 64 64 64 55
Acc. 0.949 0.949 0.949 0.938
Prec. 0.000 0.000 0.000 0.324
F1 0.000 0.000 0.000 0.220

One-day Example

TAD computes PDs on geodesic densifications of bloackchain graphs, tracking
k-clique community persistences based pair-nodes connections. Figure 6 shows a
real example on one-day graph of CCK currency, i.e. Ripple currency network.
A weighted graph, with twenty connected nodes, is presented in Figure 6a. We
compute the geodesic distance between each pair of nodes, i.e. the shortest path
length between each node-pair, see Figure 6b. Finally, significant topological
summaries are found through the clique community persistence procedure, see
Figure 6c, using community sizes from k = 1 to k = 4. Hence, our methodology
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preserves not only direct k-cliques communities present in the network, but also
communities from indirect connections.

(a) (b) (c)

Fig. 6: Processing one-day unilayer graph from Ripple network. (a) One-day
graph of CCK currency, twenty connected nodes. (b) Corresponding Geodesic
densification. (c) Clique Community Persistence Diagram.
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