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Abstract 

Roots live in and have evolved in a high carbon dioxide (CO2) environment, yet relatively little 

research has been conducted on the impacts of soil dissolved inorganic carbon (DIC) on root 

metabolism. In this thesis, I explore the impacts of root-zone DIC on whole plant biomass 

accumulation, water use efficiency, and above-ground gas exchange. In addition, I explore the 

impacts of root-zone DIC on root processes: root PEP-Carboxylase activity, root respiration rate 

and root exudation of Krebs cycle organic acids.  

Root-zone DIC did not impact biomass accumulation, leaf gas exchange parameters or water use 

efficiency under the growth conditions examined. Root-zone DIC did increase root PEP-

Carboxylase activity, but decreased root respiration (both CO2 production and O2 consumption) 

and decreased organic acid exudation rates. Increase in measurement CO2 partial pressure was 

found to cause an instantaneous decrease in root CO2 production, and I provide evidence that 

changes in root metabolism (CO2 uptake by roots) are part of the cause of this phenomenon. A 

hypothesized relationship between root respiration rate and Krebs cycle organic acid exudation 

was not supported by my data. I conclude that root-zone DIC has important impacts on critical 

functions of root metabolism, and should be considered as an important abiotic factor much in the 

same way atmospheric CO2 is for leaves and whole plant biology. 
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Chapter I Introduction 

 

 

PLANT ROOTS AND THE RHIZOSPHERE 

 Roots began to evolve during the late Silurian period, at the time that plant life moved onto 

land (Kenrick 2002). The development of extensive root systems accelerated when plants moved 

into drier areas (Fitter 2002). Early roots were rhizoids, which are little more than protrusions of the 

plant epidermal layer, that grew off of prostrate stems. Roots as we know them did not exist until 

the development of the vascular system and the bipolar growth pattern, in which the shoot has one 

apical meristem, growing up, and the root has another, growing downward (Kenrick 2002). These 

developments allowed plants to grow larger, and differentiate into other growth habits. Root 

systems have been evolving throughout the history of land plants, for almost 400 million years, and 

are an integral part of plant physiological systems.  

 As the belowground organs of plants, roots perform two primary functions: roots obtain 

resources from the soil, such as water and nutrients, and they provide anchorage to the soil matrix 

(Fitter 2002). Other secondary functions of roots vary by species. Roots can provide storage 

(tubers), and act as means of propagation and dispersal (root buds and suckers) (Fitter 2002). 

Variation in root morphology is limited compared to what is seen in leaves, but roots do vary in 

diameter, color and texture, as well as in physiology, such as growth rate, longevity, transport 
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capacity, membrane composition, and association with symbiotic organisms (Fitter 2002, Kottke 

2002).  

The rhizosphere is the region of soil influenced by root activity (Neumann and Römheld 

2002). The soil in the rhizosphere is different from the surrounding bulk soil firstly because of 

rhizodeposition, which is the release of various forms of organic carbon from roots (Jones 2009). 

These carbon sources attract microbial populations (Lambers 2009). Additionally, roots and 

microbes associating in the rhizosphere alter soil structure by creating pores, soil aggregates, and 

altering the flow paths of water through the soil (Angers 1998, Bundt 2001).  

Soil Carbon Dioxide 

 Although much experimental research has focused on the role of atmospheric carbon 

dioxide (CO2) in influencing leaf physiology, little research has been conducted on roots, despite 

the fact that roots live in a relatively enriched CO2 environment, when compared to shoots and 

leaves. Root respiration and microbial respiration, including decomposition of organic material, are 

major contributors to the soil inorganic carbon pool. Soil respiration, which is the measure of CO2 

flux out of the soil from root and microbial respiration, is 10 times larger than the flux from fossil fuel 

combustion, when measured on the global scale (Andrews and Schlesinger 2001). However, soil 

limits the diffusion of CO2, resulting in far higher partial pressures below ground than in the 

atmosphere. Measurements of soil partial pressure of CO2 (PCO2) in forests are in the range of 0.1 

to 2% CO2 at depths of 15 to 70cm (1,000 to 20,000ppm). At depths of 1 to 2 meters, PCO2 can be 

as high as 5.4% (Andrews and Schesinger 2001, Karberg 2005, Norton 2001), whereas 

atmospheric PCO2 is currently estimated at approximately 0.038% and rising (Karberg 2005). 
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Understanding the dynamics of carbon dioxide in soil is further complicated by the fact that water 

and air in the soil environment come into equilibrium over time, and as a result, carbon dioxide 

dissolves and exists in different forms that are collectively known as dissolved inorganic carbon 

(DIC). DIC is the sum of dissolved CO2 gas (CO2(aq)), carbonic acid (H2CO3*), bicarbonate (HCO3-), 

and carbonate (CO32-). The relative distribution between these species at any given time is 

primarily driven by pH and temperature, as well as additional components of soil chemistry 

(Karberg 2005).  

Movement of rhizosphere CO2 into roots 

 There is evidence that either bicarbonate (HCO3-) or dissolved CO2 gas, or perhaps both, 

can move into root cells. For example, roots grown at 5,000ppm CO2 took up 9 times greater DIC 

than roots grown at 360ppm (Cramer and Richards 1999). Bicarbonate (more prominent at higher 

pH) requires a transporter (van der Westuhizen 1998), but CO2 gas could diffuse into a cell, 

although it may enter via aquaporins, as well. Aquaporins are protein channels spanning cellular 

membranes that regulate the movement of water, and some solutes, into cells (Maurel 2008). 

Recent research into the role of aquaporins in plants has revealed that carbon dioxide gas is also 

transported via aquaporins, and that various types of aquaporins are present in root tissues (Sade 

2010, Maurel 2008). This research reveals a likely pathway for rhizosphere CO2 to enter root cells. 

Inside of cells, CO2 would be subject to the same speciation into DIC forms as occurs in any 

aqueous medium. However, the enzyme carbonic anhydrase, which very rapidly interconverts 

between CO2 and HCO3-, has been found in root cell cytosol (Tetu 2007, Dimou 2009). In fact, root 

carbonic anhydrase and root PEP carboxylase (see discussion below) have been found together in 
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the same locations, which allows for the possibility that they are working in concert to transform 

cytosolic CO2 into organic molecules. 

Root carbon fixation 

 Considering that there are high carbon dioxide concentrations below ground in the vicinity 

of roots, and that leaves and stems above ground uptake CO2 for photosynthesis, it is unsurprising 

that roots also have mechanisms for fixing CO2, however this possibility is rarely considered in 

studies of whole plant physiology. There is considerable evidence that roots can take up 

rhizospheric carbon and incorporate it directly into organic molecules [Vuorinen 1992, Cramer et al 

1993, Johnson 1994,1996]. Numerous root carbon fixation studies have measured the distribution 

of labeled carbon (NaH14CO3, H13CO3-) supplied to the roots. There are several key findings of 

these studies worth presenting: 1) There is direct evidence of incorporation of rhizosphere carbon 

into plant tissues, as the labeled carbon exposed only to roots is later measured as organic acids, 

amino acids, sugars and proteins in whole plant tissues. Chang and Roberts (1992) estimated that 

40% of cytoplasmic bicarbonate had originated outside of the cell. 2) Inorganic carbon taken up by 

roots is preferentially made into organic acids and amino acids (Ting and Dugger, Johnson 1994). 

In addition, a few studies have reported that sugars and proteins had also been synthesized from 

root-derived carbon (Vuorinen 1992, Johnson 1996). Finally, Ford et al (2007) found 13C label from 

roots distributed throughout the plant when label was applied in a 4-6 week pulse experiment.  3) 

To date, all studies support the role of the Phosphoenolpyruvate carboxylase enzyme (PEP-C) as 

the key carboxylase in the root-mediated carbon fixation process (Ting and Dugger, Chang 1992, 

Edwards 1998). In a very early 14C study, the label was first found in oxaloacetate, the product of 
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PEP-C (Ting & Dugger 1967). Additional evidence of PEP-C’s role in root carbon fixation is 

provided by Johnson et al (1994), who measured elevated PEP-C activity and content in roots that 

also had assimilated more 14C label.  

 

MANY FUNCTIONS OF PHOSPHOENOLPYRUVATE CARBOXYLASE (PEP-C) 

 Phosphoenolpyruvate carboxylase is most well known for its role in C4 photosynthesis. 

However, forms of PEP-C are found in plant tissues besides leaves, including stems, fruit, and 

roots (Berveiller and Damesin 1998, Dong 1998). PEP-C catalyzes the formation of oxaloacetate 

(OAA-) from phosphoenolpyruvate (PEP) and HCO3- with Mg2+ as an obligate cofactor (Latzko & 

Kelly 1983) (Figure 17).  

Regulation of Cytosolic pH 

In addition to its well-characterized role in C4 photosynthesis, the ubiquitous PEP-C 

enzyme is hypothesized to have several non-photosynthetic roles in plants as well: 

 Controversially, PEP-C has been thought to regulate cytosolic pH, in combination with 

Malate Dehydrogenase (MDH) and Malic Enzyme (Guern 1983).  Britto & Kronzucker (2005) 

provide evidence that the pH stat model (above) is not consistent with observed activities of PEP-C. 

They argue that so many other metabolites appear to have some regulatory effect on the enzyme 

(PEPC activity is strongly allosterically modulated) it seems unlikely that it could also function in pH 

regulation. It is much more likely that the inverse is true; that pH impacts PEP-C activity in vivo, as 

it does other metabolic processes in the cell (Plaxton and Podesta 2006). Britto & Kronzucker also 
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suggest that the connection between malate pools and PEP-C activity has little to do with pH 

regulation, and more to do with the demand for anaplerotic carbon (2005). Chang and Roberts 

(1992) note that PEP-C activity in roots has been observed under contradictory metabolite 

conditions (that inhibitors and activators of PEP-C may vary in different circumstances). Despite 

the role of PEP-C in root metabolism, the regulation of root PEP-C in vivo is still not fully 

understood (Jeanneau 2002).  

Recapture of respired CO2 

There is evidence that PEP-Carboxylase recaptures respired CO2 moving from the roots 

through the xylem stream (Berveiller and Damesin 2008). Ford et al. (2007) found that rhizospheric 

carbon contributed to the root anaplerotic pathway, but that the stems of pine seedlings assimilated 

the carbon as well, suggesting that root carbon can move up through the plant. PEP-C likely 

recaptures respired CO2 intracellularly as well (Cramer 2002). The concentration of HCO3- in root 

cytosol was estimated by Chang and Roberts (1992) as roughly 11mM, with 6.8mM coming from 

respired CO2 (mitochondrial) and 4.2mM coming from sources outside of the cell. 

Anaplerosis 

The anaplerotic function involves PEP-C replenishing the organic acids of the Krebs Cycle 

(Figure 17). The various Krebs cycle intermediates most notably including malate, oxaloacetate, 

citrate, succinate, and α-ketoglutarate, are important for respiratory production of NADH, but also 

serve as starting points for other biosynthetic pathways, including amino acids and chlorophyll 

biosynthesis (Latzko & Kelly 1983). As these metabolites are siphoned off for these other purposes, 
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a deficit occurs in the Krebs cycle pool, particularly in the part of the cycle that occurs from α-

ketoglutarate to malate (Edwards 1998). Without PEP-C to replenish these organic acids, Krebs 

cycle activities would eventually stop (Plaxton and Podesta 2006). PEP-C’s contribution to the 

Krebs’ cycle has been shown to change, relative to the glycolytic input, depending on which amino 

acids are being synthesized by the cell (Edwards 1998). Edwards et al (1998) used 13C labeling, 

NMR and GC-MS techniques to estimate that PEP-C was the source of 62±5% of the malate in 

root tips in their study. 

 Krebs’ cycle replenishment by PEP-C suggests that its activity could have a direct effect 

on root respiration rates. Increased substrate pool for the Krebs cycle could lead to more cycling, 

leading to the production of more reducing power (NADH) and more ATP. Johnson et al. (1994) 

compared respiratory O2 consumption between normal and cluster roots (a specialist root type in 

some plant species which have higher PEP-C content) and found reduced consumption in these 

carbon-fixing roots. In their system, carbon from PEP-C was found preferentially in citrate in the 

roots, but in even higher amounts in the exudates (also citrate) outside of the roots. It seems likely 

that the TCA cycle was being ‘short-circuited’ under these conditions, resulting in less NADH, and 

decreased respiration rates.  I will return to this hypothesis below. 

 

FUNCTIONAL SIGNIFICANCE OF ROOT-DERIVED CARBON 

 Despite the many potential functions of root PEPC in vivo, there is some general 

agreement among root researchers as to the functional significance of root-derived carbon. Most 
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studies (and there are relatively few to date) suggest that anaplerosis (as discussed above), root 

exudation, and to a lesser extent, overall plant biomass are the main contributions that carbon fixed 

in roots makes to plant metabolism. Each of these will be discussed below. 

Whole Plant Effects 

 Contributions of root-derived carbon to overall plant biomass seem to vary considerably 

across species, and with growth conditions. Cramer and Richards (1999) note that these types of 

whole plant effects seem to be extremely dependent upon growth conditions. They found that they 

could stimulate plant biomass (in tomato) with root DIC if the plants were grown at high irradiances 

(1500µE). However at lower irradiance levels, root DIC only stimulated biomass if there was some 

co-occurring plant stress, such as salinity or high temperature. Notably, Bialczyk et al. (2007) 

developed a protocol synthesizing various root carbon fixation studies which enabled them to 

increase tomato yield by 20%. However, they very precisely controlled rhizosphere DIC 

concentrations (5mM bicarbonate), nitrogen species ratios (4:1 NO3-:NH4+), and media pH (pH 

=6.9), conditions which may be very different from edaphic conditions in many natural soils. 

Interestingly, under their ideal experimental conditions, the tomato fruits had higher concentrations 

of the Krebs cycle acids malate and citrate than the control fruits. 

 A few studies have investigated possible impacts of root carbon uptake on above-ground 

metabolic processes, such as photosynthetic rate, stomatal conductance, transpiration rate and 

water use efficiency. Effects on these gas exchange characteristics also seem to vary with growth 

conditions. Tomato plants grown with low light intensities and high RH (80%) had lower stomatal 

conductance, lower transpiration rates, and higher water use efficiency if grown with rhizosphere 



 

 

 

9 

DIC (5000ppm). Plants grown at 40% RH did not exhibit the same differences (Cramer and 

Richards 1999). These authors conclude that there is a commonality amongst the conditions that 

allow root DIC to benefit both biomass and water use efficiency: Salinity, high temperature and 

high irradiance would all likely cause some stomatal closure to control water loss, also causing a 

reduction in photosynthetic capacity due to lower CO2 conductance. Plants grown in high DIC were 

found to have 13-fold higher concentrations of carbon compounds moving up the xylem stream, 

perhaps allowing these plants to close their stomata more while maintaining the same 

photosynthetic rate (Cramer and Richard 1999). He et al. (2007, 2010) found similar results in 

lettuce, such that plants grown aeroponically at elevated root-zone CO2 and high irradiance 

(2100µE) had higher photosynthetic rates and lower stomatal conductance than control plants. In 

the field, abiotic conditions in which soil carbon could have impacts on above ground gas exchange 

or biomass may be rare and highly unpredictable. 

 There have been studies utilizing non-crop systems in which the impacts of root-derived 

carbon are primarily in root metabolic processes, as opposed to growth. A good illustration of this is 

presented by Vuorninen et al. (1992) who estimated that while root carbon fixation may be only 

roughly 1-2% of total plant carbon fixation, that amount may represent 25% of the carbon 

necessary to assimilate nitrogen, highlighting the potential important interaction between root 

carbon fixation and nitrogen assimilation.  Cramer et al. (1999) found that the rates of DIC 

assimilation were about 30% of the rates of respiration in the root, signifying that DIC uptake is 

important for the root carbon budget. In this way, contributions to individual metabolic processes 

appear to be proportionally greater than what a biomass measurement might reveal. The most 
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common example is the high percentage of root-derived carbon that is allocated to root organic 

acid exudation, for example, 20-30% in lupine (Johnson 1996). 

Root exudation 

Root-derived carbon is commonly found to contribute largely to root organic acid exudation. 

Organic acid exudation is generally considered to aid in nutrient acquisition by roots, or to protect 

roots from toxins, such as aluminum, in the soil (Cramer 2002). Although there is clear evidence 

that root DIC uptake and root organic acid exudation are both elevated in roots exposed to nutrient 

deficiency (iron or phosphorus), there remains some controversy as to why (Jones 2009).  It 

appears that successful phosphorus acquisition via organic acid exudation may require very high 

exudation rates, i.e. a burst, of exudation in concert with sudden acidification of the soil and 

exudation of other anti-microbial compounds, in order to obtain phosphorus before microbes 

consume the exudates (Lambers 2009, Shane 2004). This suite of behaviors seems to occur 

mostly in proteoid or cluster roots, a form of specialized root that occurs only in some species 

(Shane 2004). Organic acid exudation may also contribute to what is known as the rhizosphere 

“priming effect,” in which plants provide organic carbon to encourage colonization by mycorrhizae 

or to feed other microbial populations that in turn support plant growth in some way, such as in 

release of nutrients from decaying organic matter (Lambers 2009).   

Many root carbon fixation studies have focused on the relationship of root DIC uptake with 

nutrient deficiency and/or nutrient acquisition. (Johnson 1994, Cramer et al. 1993, DeNisi 2000, 

Ollat 2003, Roosta 2008, Plaxton and Podesta 2006). Generally, these studies have found either 

higher DIC uptake in plants grown under nutrient deficiency or have found higher PEP-C activity in 
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plants grown under nutrient deficiency. Lupine root carbon fixation was found to occur at higher 

rates in phosphorus deficient treatments, and PEP-C fixed carbon was found to contribute 

significantly (66%) to the citrate exuded from the roots (Johnson 1994,1996). In iron-deficient 

cucumber roots, PEP-C activity was four times greater than control roots, which then returned to 

control values when iron was re-supplied (DeNisi 2000). Although it is not clear in all of these 

studies exactly how the DIC uptake is beneficial to the plant, rhizospheric carbon fixation is an 

important factor for plant nutrient acquisition, since PEP-C and rhizospheric carbon provides 

carbon skeletons necessary for amino acid formation during nitrogen assimilation (Cramer 2003).  

There is considerable concrete evidence that the root DIC uptake leads to higher rates of nitrogen 

assimilation in some systems (Cramer 1999, 2002). Lupine leaves were found to have increasing 

nitrogen content as rhizosphere CO2 partial pressures were increased, indicating that rhizosphere 

CO2 is also beneficial for N-fixing species (Cramer 2005). However, it is important to note that in 

these studies the carbon fixation rates and corresponding PEP-C activities for the control roots 

were non-zero, confirming that there are functions for PEP-C that are independent of nutrient 

acquisition.  

Root Respiration 

 In plants, respiration is the release of energy stored in organic molecules, through the 

three pathways of glycolysis, Krebs cycle, and electron transport chain. In non-photosynthetic 

tissues such as roots, energy is provided solely by respiration. Plant respiration is very complex, 

including many alternative enzymes and shunts to biosynthetic pathways at various stages. This 



 

 

 

12 

complexity and redundancy may exist because it aids in plant ability to survive stress as sessile 

organisms (Plaxton and Podesta 2006).  

 When studying the use of inorganic carbon by roots, there are a few respiratory processes 

of note. PEP-C, which has been discussed as the root carbon fixation enzyme, is also an important 

terminal glycolysis enzyme in plant tissues and is considered to be important for the regulation of 

respiration (Figure 17). Phosphoenolpyruvate (PEP) is one of the final products of glycolysis, and 

can be a substrate for either Pyruvate kinase (PK) or PEP-C (Plaxton and Podesta 2006). The 

primary flux of PEP for respiration is through pyruvate kinase. However during various cellular or 

metabolic conditions, such as phosphate limitation or biosynthesis of amino acids, flux through 

PEP-C may be equal to or even surpass that of PK (Plaxton and Podesta 2006, Edwards 1998). 

 The Krebs cycle, important for the biosynthesis of organic acids for exudation and carbon 

skeletons for amino acid production, and discussed above as a sink for root-derived carbon, is also 

the pathway for creating reducing power in the form of NADH. NADH is then utilized by the electron 

transport chain to move protons across the mitochondrial membrane to create the “proton motive 

force” necessary to create ATP (Figure 17). However, if conditions exist such that there is 

phosphorus limitation, the production of ATP might not be favorable. In this case, the NADH can be 

used up by the alternative oxidase (AOX) instead of the traditional, ATP-generating pathway of 

cytochrome-C oxidase (Cyt C) (Podesta and Plaxton 2006). The utility of AOX in plant respiration is 

just beginning to be understood, but AOX activity does seem to occur in concert with the 

biosynthetic function of the Krebs cycle, and has been shown to increase in roots exposed to DIC 

(Shane 2004, van der Westhuizen 1998). 
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EFFECTS OF CO2 ON ROOT RESPIRATION  

Short-term or direct effects on root CO2 production 

 There has been substantial controversy amongst researchers as to whether or not there 

are direct effects of carbon dioxide on respiratory processes. Some authors have reported that as 

measurement CO2 concentration is increased, root respiration (CO2 production) decreases, but 

others have found no effect (Burton 1997, van der Westhuizen 1998, Bouma 1997). Some authors 

conclude that uptake of CO2 by roots is the cause of this apparent decrease, while others have 

sought out other metabolic causes. CO2 has been shown to directly inhibit the activities of the 

respiratory enzymes cytochrome c oxidase and succinate dehydrogenase (Gonzalez-Meler 1996), 

but the authors of these studies conclude that these enzyme inhibitions do not explain tissue or 

whole-organ scale impacts on respiration like those cited above (Gonzalez-Meler 2004). They 

suggest that broader scale direct inhibition of respiration would be unlikely because of two factors: 

1. Plants could simply increase enzyme concentration to make up for the inhibition by CO2, and 2. 

The activity of AOX, which is not inhibited by CO2, would mask the inhibition during tissue or organ-

scale measurements because it still consumes O2 (Gonzalez-Meler 2004). These authors conclude 

that the many observations of CO2 inhibition of respiration are due to leaks in the measurement 

chambers, and that in leaf measurements there were leaks through the leaf tissues themselves 

(Gonzalez-Meler 2004, Burton 2002, Janke 2001). While a leak could certainly cause this 

phenomenon in measurements of CO2 respiration, it does not seem to explain various (direct and 

indirect) observed effects of CO2 on oxygen consumption (Cramer 2002, Johnson 1994, Burton 

1997, van der Westhuizen 1998).  
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Short-term effects on O2 consumption 

 Burton et al (1997) found a direct inhibition of O2 consumption in roots when increasing the 

measurement CO2 concentration from 1000 to 5000ppm. They later suggested that these results 

should be disregarded, although there is not much rationale to do so except that the companion 

CO2 production response data is suspected of being confounded by leaks (Burton 2002). Leaks 

during O2 measurement would cause the same magnitude of error in O2 measurement at all CO2 

concentrations, unlike the situation during CO2 measurement, in which the concentration inside and 

outside of the chamber are different only for some of the measurements, causing different 

magnitudes of error. Interestingly, Burton’s data shows a non-linear decrease in both CO2 and O2 

respiration in response to measurement CO2. The respiratory decrease would occur at CO2 

concentrations from 0 to 5,000ppm, and then the respiration rate stabilized without further 

decreases, up to 20,000ppm. This pattern in the data also seems to call into question the idea that 

the response was caused by leaks. Much stronger evidence that the root respiration was not 

affected by CO2 is the actual data from their 2002 study, in which none of the species tested varied 

their respiration rates from 350ppm to 1000ppm (Burton 2002). They unfortunately did not measure 

O2 response in that study.  

 In a very complicated study, van der Westhuizen and Cramer (1998) measured short-term 

effects of measurement CO2 on O2 consumption in a few different ways. When measurement CO2 

concentration was increased from 0 up to 2000ppm, roots were found to increase their O2 

consumption by 36%, while CO2 production decreased 54% during the same treatment. When 

roots grown in NO3- were transferred from 0 into 2000ppm CO2 and measurements were taken 
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over the course of 7 hours, O2 consumption slightly increased over the period of measurement, 

while CO2 production increased by 26% after 1.5 hours, then decreased by 70%, stabilizing at the 

lower rate after 4.5 hours. Interestingly, the same 7-hour experiment was repeated for roots grown 

in NH4, in which the CO2 production decreased by 59%, and the O2 consumption also decreased 

by 7%. They also measured respiration in roots at 0ppm CO2 and 4000ppm CO2 after a 1.5-hour 

incubation, and found no difference in O2 consumption and a 30% decrease in CO2 production. 

The variations in response shown over time, as well as the different O2 consumption responses to 

nitrogen nutrition are tantalizing details of this study, because they suggest that changes in root 

metabolism could be underlying these observations. Similarly, in roots with higher DIC uptake rates, 

Johnson et al. (1994) reported a 31% decrease in O2 consumption though the underlying 

mechanism of this response was uncertain. 

Long-term effects on root respiration rates 

 Bouma et al. (1997) examined both short-term and long-term effects of CO2 on CO2 

respiration only (opposed to CO2 and O2), for citrus and bean plants. They used a system in which 

respiration could be measured continuously for 7 days, during which ambient CO2 concentration 

was altered for 2 days at a time. Prior to these respiration measurements, plants were grown in 

either 600 or 20,000ppm rhizosphere CO2. They found no long-term or short-term effects of CO2 on 

root CO2 production in either species. Surprisingly, I have been unable to identify any published 

studies that attempt to look at both short-term and long-term effects of rhizosphere CO2 

concentration on both CO2 and O2 respiration. 
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GOAL OF THIS THESIS 

Given the many ways in which rhizosphere DIC may impact plant metabolism, it is 

surprising that more studies have not directly examined the effects of rhizosphere DIC 

concentration on tree growth and physiology.  In this thesis, I present results from a greenhouse 

study examining the impact of elevated rhizosphere CO2 concentration on plant growth and 

physiology of poplar.  

In this study I use clonal cuttings of both Populus deltoides (Eastern Cottonwood) and 

Populus balsamifera trichocarpa to test a series of hypotheses regarding the effects of rhizosphere 

DIC on plant metabolism and physiology. At the whole-plant level, I test the hypotheses that 

elevated root DIC will enhance biomass accumulation, decrease the root-shoot ratio, stimulate 

photosynthetic assimilation and enhance whole plant water use efficiency in a model tree species.   

At the root-level, I explore the involvement of PEP-C in the root fixation of carbon, and present 

some of the first enzymology measures of PEP-C activity from tree roots.  Although previous 

studies have failed to show a direct regulation of PEP-C activity by rhizosphere DIC (Cramer 1999, 

2002), here I test the hypothesis that poplar roots grown in elevated rhizosphere DIC will have 

higher levels of PEP-C activity, consistent with a role for this enzyme in mediating root carbon 

metabolism in rapidly growing tree roots.  Finally, a primary goal of this study is to measure both 

the short-term and long-term effects of root DIC exposure on root CO2 production and O2 

consumption.  Given the proposed relationship between root DIC concentration and 

rhizodeposition, I specifically test the hypothesis that variation in root O2 consumption in response 

to elevated DIC is due to reduced flux through the bulk of the Krebs cycle, leading to enhanced 
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exudation of organic acids, and resulting in less NADH available to support mitochondrial 

respiration.  By focusing my efforts on examining the complex interactions occurring at the 

intersection between respiration and biosynthesis, the results of this thesis provide a mechanistic 

foundation for resolving the contradictory effects of rhizosphere DIC concentration on root 

respiration, oxygen consumption, and rhizodeposition, in root cells. 
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Chapter II Methods 

 

EXPERIMENTAL PLANT MATERIAL 

All experimental material used in this thesis was harvested from either clonal cuttings of 

Populus deltoides (Brassos, TX) or Populus balsamifera ssp. trichocarpa (collected locally as stem 

cuttings from Kelley Point Park, Portland, OR). Stem cuttings (approximately 30-40cm) from both 

species were regularly clonally propagated and maintained in potted culture in greenhouses on the 

campus of Portland State University. For the elevated DIC experiments, the entire experimental 

protocol was repeated three independent times. The first experiment was performed with stem 

cuttings from our greenhouse collection of P. deltoides, and subsequent experiments were 

performed with stem cuttings of P. balsamifera ssp. Trichocarpa, as a pest outbreak significantly 

impacted the growth of our P. deltoides collections within the PSU research greenhouse. In every 

case, multiple cuttings were taken from each individual and then pairs of cuttings from each 

individual, chosen to be a similar mass, were divided out into the two treatments. This was done in 

order to help control for genetic and size effects.  Total sample size after all three repetitions was 

25. 

 

ROOT CHAMBER DESIGN 

 I designed and constructed root chambers (i.e. “bubblers”) from the basic description 

provided by Ford et al. (2007) (Figure 18).  The chambers were built to be 4-liter hydroponic tanks 
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made of 8” diameter PVC pipe with a square plastic (PET-G) base and circular Plexiglas top. Two 

hose barbs and a plug were threaded into the PVC, about 2” from the lid. One hose barb 

functioned as the gas inlet, and had 3/8” tubing running (guided and secured by narrow PVC pipe) 

to the bottom of the chamber. This configuration ensured that gas was released at the bottom of 

the nutrient solution and helped maintain steady flow rates as well. The other hose barb functioned 

as the outlet, so that atmospheric pressure was maintained inside the tanks. The plug was used to 

replenish water and nutrient solution and monitor pH without opening the lid. Silicon aquarium 

adhesive was used to assemble parts. 

 The Plexiglas lid had a 1” hole drilled into the center with a 1.5” slip joint nut glued around 

it (Gorilla glue “Plastic Welder” adhesive), to create threads. Poplar cuttings were fitted, prior to 

rooting, with 2 hand-cut rubber gaskets designed to form a tight seal when inserted into a 1” : 1.5” 

galvanized adapter that could then be threaded onto the lid. All points of contact were coated in 

grease (Vaseline) to prevent leaks, and then the irregular circumference around tree stem was 

wrapped with self-adhering silicon tape. These were tight seals yet able to flex if the lid was lifted or 

the tree moved. The lids were closed onto the PVC tanks with 3 bungee cords crossing the lid, and 

compressing a gasket made of caulk backer rod. Bungee cords ran through aluminum “guides” 

(adhered to the lids with Gorilla glue “Plastic Welder”) and fastened to eye bolts in the base.  

 The seals were tested by turning on air flow into the inlets, and connecting the outlet to a 

flow meter to check for positive flow coming out. In addition, air around the lids, as well as the 

poplar canopy was periodically monitored for PCO2 using a LI-COR LI-840 CO2/H2O gas analyzer. 

Finally, exhaust tubing was connected from the outlet barbs to a soda lime trap. The exhaust 
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tubing was of greater diameter than the inlet, to provide a path of least resistance, and to reduce 

buildup of water in the tubing. Any water droplets were drained from the exhaust tubes every other 

day when the trees were watered. 

 Because each treatment lasted for 10 weeks at a time, much longer than a pre-mixed gas 

tank would last, I built a system that could actively mix 100% CO2 into room air and maintain 

rhizosphere CO2 concentrations within the root chambers. The flow from three standard aquarium 

pumps was merged into one line (with a flow meter in line) to a 1L Nalgene bottle. The CO2 tank 

line ran to the Nalgene bottle with 2 flow meters in line—one with a dial and the other with finer 

scale markings for more precise control. Inside the Nalgene bottle was a length of stiff tubing 

running from the bottom of the bottle (to optimize mixing) and out to a valve manifold constructed of 

Swagelok fittings and valves to split the flow to the four bubblers. The gas mixer was calibrated 

using the LI-COR LI-840 CO2/H2O gas analyzer to determine the appropriate settings to attain 

rhizosphere-like CO2 levels (approximately 15,000ppm CO2). The control bubblers also received air 

flow merged from 3 aquarium pumps split four ways. Flow from the CO2 tank was <2% that of air 

flow, so that difference in flow rates between control and treatment were quite small. 

 

RHIZOSPHERE MANIPULATIONS 

Preliminary sodium bicarbonate treatments 

Poplar stem cuttings (approximately 30cm) (P. deltoides) were rooted in a modified 

Hoagland’s hydroponic solution (1mM KNO3, 1mM Ca(NO3), 1mM NH4H2PO4, 1mM MgSO4, 10µM 
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H3BO3, 2µM MnCl2, 0.5µM ZnSO4, 0.2µM CuSO4, 0.02µM Na2MoO4, 5µM FeEDTA) buffered to 

between pH 6.0 and 6.8 with 2mM potassium-phosphate buffer, and bubbled with room air. After 

rooting (approximately 5 weeks), the rooted cuttings were transferred into 7-liter containers, two to 

a container with a screen placed between the root balls so that they would not grow into each other. 

A small air stone was installed on each side of the screen to provide aeration of the solution with 

room air. Two pots, containing two trees each, were given a control treatment of the buffered 

hydroponic solution described above. The other two pots, also with two trees each, received 

increasing (from 2 up to 6mM) additions of sodium bicarbonate over the course of the treatment 

(11 weeks). Solutions were corrected for pH every day with either HCl or KOH. However, the buffer 

capacity chosen was not able to maintain pH despite this daily effort, which is why in later 

experiments I changed to actual carbon dioxide gas bubbling, and MES buffer. 

Root carbon dioxide treatments 

 Poplar stem cuttings were transferred to the experimental greenhouse, and rooted (4 

weeks) in a modified Hoagland’s hydroponic solution (1mM KNO3, 1mM Ca(NO3), 1mM NH4H2PO4, 

1mM MgSO4, 10µM H3BO3, 2µM MnCl2, 0.5µM ZnSO4, 0.2µM CuSO4, 0.02µM Na2MoO4, 15µM 

FeEDTA) buffered to pH=5.8 with 3mM MES, and bubbled with room air. Plants were given 

supplemental nutrients every 3 days, and solution was changed completely every 10 days 

throughout the experiment (10 weeks and 12 weeks). During the final replicate of the experiment, 

the volume of all water and nutrient solution added was recorded and standardized to total dry 

weight biomass to determine total water use over the course of the experiment (analyzed by one-

way ANOVA for root treatment effect).   
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After 4 weeks of culture, tree stems were sealed into the lids of custom-fabricated closed 

hydroponic tanks bubbled with either 15,000ppm or 400ppm (room air) carbon dioxide gas (CO2). 

Sealing the tanks ensured that the tree canopy was not enriched with CO2. The carbon dioxide 

partial pressure of the gas entering the hydroponic tanks, and the partial pressure in the room 

around the leaves was regularly measured using a LI-COR LI-840 CO2/H2O gas analyzer.  Exhaust 

vents on the tanks allowed atmospheric pressure to be maintained, and were scrubbed of CO2 

using drierite and soda lime. The CO2 was bubbled constantly through the containers, but was 

turned off whenever the containers had to be opened, so as to not flood the tree canopy with CO2. 

The trees were maintained with a 14-hour day length and temperatures ranging from 15-30°C 

within the greenhouse.   

Quantification of Dissolved Inorganic Carbon (DIC) 

Water samples were taken from tanks at the time of root sampling (for enzyme activity), 

and sealed in vials with septa until inorganic carbon analysis using a Shimadzu TOC-V CSH/CSN 

analyzer. Root treatments had significantly different concentrations of inorganic carbon (two-way 

ANOVA p=0.003*). Mean DIC concentration in media bubbled with 15,000ppm CO2 was 30mg/L, 

and 5.5mg/L in media bubbled with 400ppm CO2.   

 

ROOT PEP-CARBOXYLASE ACTIVITY 

 Roots were sampled for PEP-C Activity by pooling 5 root tips (25mm total lengths from each 

individual plant), and homogenizing in extraction buffer (100mM Tricine-KOH pH 8, 5mM MgCl2, 
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5% Glycerol, 0.25mM EDTA, 14mM βME, 2% PVP-40). Root PEP-C activity was quantified using a 

NADH-coupled enzyme assay (50mM Tricine-KOH pH 8, 5mM DTT, 10mM MgSO4, 2.5mM 

NaHCO3, 15% Glycerol, 2mM PEP, 0.2mM NADH, 0.5 U/mL Malate Dehydrogenase) and 

measured spectrophotometrically at 25°C in a Shimadzu UV-1700 UV-VIS Spectrophotometer, 

following the methods of Rosenstiel et al (2004).  

Malate inhibition of PEP-C Activity 

 Root extracts from 4 plants grown under ambient conditions were pooled, and the same 

enzyme activity assay was performed as above. Malate was added to assays at 0, 0.1, 0.5, 1.0 and 

1.4mM concentration.   

Effects of pH on PEP-C Activity  

 The same activity assay as above was performed, using 7 different Tris-HCl buffers from pH 

6 to pH 9. After each assay was performed, the cuvette pH was determined using pH papers, to 

confirm the pH.  

Statistical Analyses 

 All statistical analyses were performed using JMP software (SAS Institute, Inc., 2007). Effect 

of treatment and day of assay on PEP-C activity was analyzed with a two-way ANOVA. Data from 

both the bicarbonate and gas-bubbling root treatments were pooled together, as no significant 

difference was found between the types of inorganic carbon treatment given. Malate inhibition data 

were analyzed with a one-way ANOVA and a Tukey post-hoc test. The effect of pH on PEP-C 
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activity was analyzed with a single-factor ANOVA and Tukey post-hoc test. 

 

ROOT EXUDATES 

Approximately 0.1g of intact roots were placed in a 20mL syringe filled with 15mL buffer 

(2.5mM CaSO4, 2.5mM potassium phosphate pH=5.8) and bubbled with either 400ppm or 

15,000ppm CO2. The buffer was chosen based on recommendations by Aulakh (2001) that CaSO4 

solution is a better choice than deionized water or nutrient solution for collecting root exudates. DI 

water could over-inflate exudation rates by upsetting the ion balance, but nutrient solution may 

introduce variation in root metabolism due to nutrient uptake. The syringes had an exhaust opening 

drilled into the area of the head space, and attached with a hose barb to exhaust tubing out to a 

soda lime trap. The top of the syringe, where the roots entered, was plugged with a Vaseline-

coated cotton ball. Total exudates were collected for 1.5 hours, (with a few exceptions which were 

recorded), flash frozen in liquid nitrogen and lyophilized.  Exudate samples, resuspended in 

0.25mL 0.005 N H2SO4 and centrifuged (1000 x g, 2min) to pellet out particles and excess CaSO4, 

were then analyzed for organic acid composition using high performance liquid chromatography 

(HPLC).  

The Krebs Cycle organic acids were separated using an Aldrich OA-1000 Column (300mm 

x 65mm with a guard column before the pump), using a mobile phase of 0.005 N H2SO4 (70 °C 

FIAtron TC-50 thermal controller, Rheodyne injector), and UV detection at 254nm (ESA Model 520 

UV/Vis absorbance detector). The pump (Rainin Dynamax) was programmed with a variable flow 
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rate designed to separate the Krebs cycle acids into easily quantifiable peaks, while reducing the 

overall run time of other compounds eluting after the peaks of interest. Two different programs 

were used due to a change in backpressure in the system that caused the program to have to be 

corrected for the final 10 samples. The primary program ran 3 minutes at a flow rate of 2.5mL/min, 

a 2 minute ramp to 0.75mL/min, then a 26 min run at 0.75mL/min during which the Krebs cycle 

acids would elute. Then, the pump would undergo another ramp up to 3.5mL/min and a 20 min run 

at 3.5mL/min to more rapidly elute the remaining organic acids in the samples, and ensure that all 

of the sample had passed the detector. Finally, there was a 2-minute ramp back to 2.5mL/min in 

preparation for the next run. The other program was designed to obtain the same results as the 

first, and PSI generated by the pump under the new conditions was used to match new flow rates 

to the old ones. This program used 3.5mL/min instead of 2.5mL/min, 1.25mL/min instead of 0.75 

and 4.25 mL/min instead of 3.5. The length of the 1.25mL/min portion was lengthened to 37 

minutes, and the final run time was lengthened to 75 minutes to ensure that all of the sample had 

passed the detector.  

Quantification 

Peaks were recorded and analyzed using PeakSimple software (SRI Instruments, with SRI 

Model 202 data module). Retention times and peak area quantification of samples were verified by 

injecting authentic standards of: oxalic acid, citrate, alpha-ketoglutarate, pyruvate, succinate, 

malate, and fumarate. In this method, citrate and alpha-ketoglutarate co-elute, as do malate and 

fumarate. For all samples, these peaks were determined as means of the standard equations for 
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the co-eluting peaks. Peak area-concentration relationships were found to be linear for all 

standards.  

Statistical Analyses 

All Krebs cycle exudates were analyzed for effect of root treatment with two-way ANOVA, 

with treatment and sampling day as factors. All Krebs cycle exudation rate data (except total 

malate and malate secondary peak) were log transformed to satisfy the assumptions of the 

ANOVA.  

 

ROOT RESPIRATION 

Following exudate collection (see above) root samples (approx 20cm) were harvested and 

placed into either a liquid phase or gas phase O2 electrode (Hansatech Instruments). Liquid phase 

measurements were conducted in a buffer (2.5mM CaSO4, 2.5mM Potassium phosphate buffer 

pH=5.8, Aulakh 2001) equilibrated with either room air (400ppm CO2) or 15,000ppm CO2 using the 

manufacturer’s recommended procedures. The roots were kept in place (not clogging the stir bar or 

lid) by fitting them into a tiny basket (9mmx20mm) made of plastic screening and nylon thread. The 

rate of O2 consumption was measured at 25°C for 10 minutes after a 5 min equilibration period. 

Gas phase measurements were conducted with excised roots placed on a moistened felt inside the 

chamber, and exposed to either room air or approximately 1000ppm CO2. Desired CO2 

concentrations were introduced into the chamber by removing half of the chamber air and then 

replenishing it with the measurement gas. (For example, by injecting 2000ppm to achieve 
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1000ppm in the chamber). Samples were then transferred into the Li-COR insect respiration 

chamber and CO2 release measured at 400ppm and 1000ppm with a Li-COR 6400 portable 

photosynthesis system using the on-board dynamic CO2 mixing system (Li-COR Inc., Lincoln, NE 

USA). Root respiration CO2 response curve was measured with the Li-COR 6400 using 3 root 

samples grown at control conditions and exposed to 5 measurement CO2 concentrations ranging 

from 400 - 2000ppm. For all respiration measurements, following respiration measures, samples 

were dried at 60°C for 48hrs and root respiration rates were standardized and expressed per unit 

dry mass.   

Statistical Analyses 

Root CO2 respiration data was analyzed for effects of root treatment, measurement CO2 

and sampling date, using a two-way ANOVA, as well as a Tukey post-hoc test for the interaction of 

measurement CO2 and root treatment. Respiration rate was log transformed to satisfy the 

assumptions of the ANOVA. Root respiration CO2 response curve was analyzed with a one-way 

ANOVA and post-hoc Tukey analysis. Root O2 respiration data collected in the gas phase and 

liquid phase was analyzed separately due to the large variation in the results. Both sets of data 

were analyzed with ANOVA to determine how root treatment, measurement CO2 concentration, 

date, and measurement CO2 and treatment cross-interaction affected root respiration. Gas phase 

root O2 respiration data was square root transformed to satisfy the equal variances assumption of 

the ANOVA. Liquid phase data was transformed (squared) to satisfy the equal variances 

assumption of the ANOVA. 
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LEAF GAS EXCHANGE 

Maximum rates of leaf photosynthesis (leaf net assimilation), leaf stomatal conductance, 

leaf transpiration rate (all at a light intensity of 1500µE), and leaf dark respiration were measured 

using a flow-through leaf cuvette using a Li-COR 6400, following standard protocols. Leaves were 

chosen according to similar stem position and chlorophyll content. Leaf temperature and relative 

humidity (RH) were controlled within the cuvette using the Li-COR instrument.  Temperature and 

relative humidity during measurements are presented in Table 1. Leaf temperature was regulated 

near to 25°C by controlling the block temperature. Relative humidity was maintained near to 65% 

primarily by changing the amount of airflow through drierite, and when necessary, by changing flow 

rate. CO2 concentration was maintained at 400ppm. Chlorophyll content was determined using a 

Konica Minolta Chlorophyll meter. Three measurements (relative absorbance units) were taken 

and averaged for each intact leaf, each of which was also for gas exchange measurements.  

Statistical Analyses 

Maximum leaf net assimilation, leaf stomatal conductance, leaf transpiration rate, and leaf 

dark respiration were all analyzed with two-way ANOVA to determine the effect of root treatment 

and sampling date on gas exchange characteristics. Leaf chlorophyll content, RH and leaf 

temperature had also been recorded and were included as covariates in the ANOVA. The effect of 

root treatment on chlorophyll content was analyzed with a two-way ANOVA with treatment and 

sampling date as factors. 
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WHOLE PLANT BIOMASS 

At the end of each experiment, all tree tissue (roots, stems, leaves) were harvested and 

dried for 10 days at 60°C for total dry weight (DW) biomass and root to shoot ratio determination. 

In the first replicate, stems were cut above the uppermost root to divide roots from shoots, but 

subsequently, all roots were cut off of the stem, and the entire stem was counted as shoot.   

Statistical Analyses 

Shoot DW, root DW, total DW biomass and root to shoot ratio were all analyzed for the 

effects root treatment and sampling date, using a two-way ANOVA. Initial stem cutting mass was 

included as a covariate. Shoot, root and total DW biomass were all sine-transformed to satisfy the 

equal variance assumptions of the ANOVA. 
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Chapter III Results 

 

LEAF GAS EXCHANGE 

Root carbon dioxide treatment did not have any significant effect on any of the 

physiological leaf responses we measured (Table 1). Maximum photosynthetic rate, measured at 

1500 µmol/m2/s (µE) was 15.0 ± 0.8 µmol CO2/m2/s in the 15,000 group and 15.9 ± 1.0 µmol 

CO2/m2/s in the 400 group (n=17 each ± s.e.). Stomatal conductance was 0.30 ± 0.02 mmol 

H2O/m2/s in the 15,000 group, and 0.31± 0.03 mmol H2O/m2/s in the 400 group (n=17 each ± s.e.). 

Transpiration rate in the 15,000 group was 3.4 ± 0.3 and 3.5± 0.4 in the 400 group (n=17 each ± 

s.e.) Mean dark respiration was identical in both treatment groups, 1.7 µmol CO2/m2/s (n=17,16 

respectively ± 0.14 and 0.18 s.e. respectively). In the case of photosynthesis and dark respiration, 

measurements on some days were significantly different than other days. Additionally, RH was 

significantly correlated with stomatal conductance (r2=0.15 p=0.03*) and transpiration rate. 

 

BIOMASS AND TOTAL WATER USE 

Root carbon dioxide treatment did not have any significant effect on biomass accumulation 

or root to shoot ratio in the gas-bubbling experiments (Table 2). In the earlier sodium bicarbonate 

experiment, we found a significantly smaller root to shoot ratio in bicarbonate-treated plants. 

However, I believe the method for dividing root and shoot used in that experiment was not 
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sufficiently accurate. Initial biomass was significantly correlated with shoot biomass and total 

biomass, but not root biomass (data not shown). Root carbon dioxide treatment did not have any 

significant effect on total water use over the course of the experiment (Table 2). The 15,000 group 

(n=3) used, on average, 0.399 ± 0.019 L/gDW and the 400 group (n=4) used 0.375 ± 0.024 L/gDW 

(± s.e.).  

 

ROOT PEP CARBOXYLASE ACTIVITY 

In both types of inorganic carbon treatments, i.e. sodium bicarbonate additions as well as 

carbon dioxide gas aeration, roots grown in higher inorganic carbon concentrations were found to 

have higher PEP-C activity (18% higher, Figure 1).  The inorganic carbon type was not found to 

have a significant effect, so I pooled data from both experiment types. Malate concentration 

inhibited PEP-C activity (Figure 2). The 100µM malate concentration was found to slightly inhibit 

maximum PEP-C activity, and 500µM reduced activity, significantly, by 33%. The highest malate 

concentration I tested was 1.4mM, which inhibited PEP-C activity by 69%. Root PEP-C activity was 

found to be insensitive to pH between 7 and 8.3, but was slightly inhibited at pH 6 and pH 9 (Figure 

3).  

 

RESPIRATION RATE 

CO2 Production 
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Long-term root treatment did not have an effect on root CO2 production when the treatment 

groups were measured at the same CO2 concentration (Figure 4A). However, roots grown at 

15,000ppm and measured at 1,000ppm had a lower respiration rate than roots grown at 400ppm 

and measured at 400ppm (Figure 4B). Measurement CO2 concentration did influence root CO2 

production (Figure 4B, Figure 5, Figure 9). Roots consistently reduced CO2 respiration in response 

to a change from 400ppm to 1000ppm CO2, although the magnitude of response varied (Figure 8). 

Some roots were found to have negative respiration rates when exposed to 1000ppm CO2, 

suggesting a net uptake of CO2. When measurement PCO2 was decreased back to 400ppm, roots 

increased respiration back to a similar rate as was previously measured at 400ppm (Figure 8). 

When individual root responses to measurement CO2 were analyzed for root treatment effect (i.e. 

Resp @ 400 – Resp at 1000), there was a marginal difference (p=0.08 two-factor anova, Figure 9). 

This trend is masked if all root samples are pooled as in Figure 4B. 

O2 Consumption  

Growth at 15,000ppm CO2 lead to a decrease in rate of O2 consumption (Figure 6A, 

p=0.02*), when measurements were in the liquid phase.  DIC concentration in the chamber did not 

have a significant effect on root O2 consumption, even when determined from individual roots 

(Figure 6B, Figure 9).  

Analysis of the root O2 consumption data revealed some issues with our calibration of the 

O2 electrode. Unlike root CO2 production, in which the overall respiration rates at 400ppm and 

1000ppm were fairly predictable, O2 consumption rates were quite different if they were measured 

in the liquid vs. the gas phase (Figures 6 & 7). Roots measured in gas phase had higher respiration 
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rates than those measured in liquid phase, and the treatment effect was reversed in root 

respiration measured at the gas phase (Figure 7). Due to the small size of the chamber (approx 

6mL) and the process of calibrating the electrode mV signal using air with 400ppm CO2, we 

conjecture that the subsequent measurements conducted at 1000ppm may be inflated due to 

reduced PO2 in the chamber. Additionally, any build up of CO2 produced by the root sample would 

cause the same effect, possibly resulting in the higher O2 consumption values in the 15,000 group.  

I have decided to exclude all gas phase O2 measurements from the analysis. It is important to note 

that there may also be a calibration issue within the liquid phase data as well, in that the zero O2 

signal achieved by adding sodium sulfite was generally 15-20% of the saturation signal, which is 

considerably higher than the 1% recommended by the manufacturers. This calls into question the 

absolute values we report, but not the relationships between the treatments, and is also why I’ve 

chosen not to present or discuss the respiratory quotients (RQ=CO2/O2). 

 

ROOT EXUDATES 

Krebs cycle exudation rates varied considerably amongst the root samples, and even 

within the same plant, when sampled on different days. Despite this variation, a recognizable 

exudation pattern exists amongst all samples. Succinate was, by far, the primary Krebs cycle 

exudate, forming on average 90±7% of the exuded Krebs acids (Figure 10). Pyruvate had the 

smallest percentages in the exudate profile, generally forming less than 0.5% of the exuded Krebs 

acids (Figure 11).  Malate was found to elute in two separate peaks, the first included about 23% of 

the peak area, and the second, which elutes with fumarate, contained the rest. I attempted to 
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include this peak in the analysis, because the ratio of the two peaks was very consistent across all 

standards that were injected. However, in actual samples, the smaller malate peak frequently came 

out with larger area than the main peak, which suggests that some unknown compound that I did 

not quantify may have been present in the samples, eluting with that peak. I therefore decided to 

exclude that peak from further analysis at this time. 

When individual organic acid exudation rates were analyzed as percentages (data not 

shown), no significant difference existed between the two treatments in any of the individual 

exudates. The 15,000 group exuded a higher percentage of succinate, and therefore the 400 group 

exuded higher percentages of all of the other Krebs organic acids. However, this trend was not 

statistically significant.  

When considered as a rate (nmol/gDW/s) there was an overall trend of higher exudation 

amongst the 400ppm CO2 treatment group, with significantly higher exudation found in the 

averaged citrate and α-ketoglutarate peak as well as the averaged malate and fumarate peak 

(Figure 11). Pyruvate exudation was marginally higher in the 400ppm group, as well. Unfortunately, 

we cannot differentiate between citrate and α-ketoglutarate, nor malate and fumarate in our 

analysis, and so the contribution of these individual components is obscured. 

 

RELATIONSHIPS BETWEEN ROOT EXUDATION AND RESPIRATION 

 These data were analyzed for correlations between root exudation and respiration. 

Because root respiration and root exudation were not measured simultaneously, it is difficult to 
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draw strong conclusions from these data. However the relationships are interesting, nonetheless. 

Only results from CO2 production measurements are presented, because the liquid phase O2 

electrode sample size (n=9) was too small for analyzing the root treatment groups separately. 

CO2 production and Krebs cycle exudation 

 Overall, there is not a relationship between CO2 production and Krebs cycle organic acid 

exudation. However, I found correlations between CO2 production and succinate, pyruvate and 

citrate exudation rates, but for each, it is only in a single treatment group, and only at one of the 

measurement CO2 concentrations. 

 I found negative correlations between root CO2 production in roots grown at 400ppm CO2 

and both succinate and pyruvate exudation rates (Figure 12B, Figure 14B). Exudates were 

collected before the respiration measurement. This indicates that root CO2 production, when 

measured at 1000ppm, was lower in roots that had exuded more succinate and pyruvate (r2=0.42, 

and 0.44, respectively, p=0.009* and 0.007*). Interestingly, both of these trends are driven by root 

samples that exhibited negative respiration rates when exposed to 1000ppm CO2 (Also see Figure 

8), and I will discuss later why these individual samples are of more interest than the overall 

relationships presented here. These same roots also had the greatest difference in respiration 

rates at 400ppm vs. 1000ppm, leading to the correlations presented in Figures 13 and 15. Roots 

that exuded more pyruvate also more dramatically reduced their respiration in response to 

exposure to 1000ppm CO2 (r2=0.6, p=0.0008* Figure 15). This same relationship was marginally 

significant with respect to succinate exudation (r2=0.26, p=0.05, Figure 13). 
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 Citrate exudation was found to be negatively correlated with root CO2 production in roots 

grown at 15,000ppm (Figure 16A). The more citrate these roots had produced, the lower their CO2 

production (r2=0.42, p=0.04*). This trend does not hold for the 400 treatment group, or for the CO2 

production measured at 1000ppm. 
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Chapter IV Discussion 

 Atmospheric CO2 has been rising steadily, since the industrial period, with no clear 

immediate sign of global stabilization (Tans, 2009).  Although substantial research effort has 

focused on the impacts of elevated atmospheric CO2 on plant metabolism and physiology, 

relatively few studies have examined the specific effects of elevated rhizospheric CO2 on plant 

processes, despite the fact that high soil PCO2 is almost certainly the condition under which roots 

evolved.  Fewer studies still have examined the impacts of elevated rhizospheric CO2 on plant 

processes in forest trees, a key biotic driver influencing terrestrial primary productivity and the 

atmospheric carbon budget.  In this thesis, I present results from a study aimed at examining the 

impacts of rhizospheric CO2 on fundamental aspects of root physiology and metabolism in poplar, 

an ecologically and economically relevant, emerging model system.   

As rhizosphere dissolved inorganic carbon (DIC) concentration has been shown to 

influence biomass accumulation in some plant systems, namely crops (Bialczyk 2007, Cramer and 

Richards 1999), I hypothesized that increased rhizospheric DIC would lead to an increase in 

biomass in poplar as well. I hypothesized that root carbon uptake, as observed in other plant 

systems, would impact root to shoot ratios in poplar, assuming that roots grown in higher DIC 

environments would fix more carbon, and that because of the relationship with respiration via the 

Krebs cycle that has been discussed (see introduction), root growth would be impacted in these 

plants, potentially promoting a decreased biomass accumulation.  However, in poplar, I found no 

effect of root-zone DIC on root to shoot ratio, above-ground gas exchange parameters (particularly 

net assimilation and stomatal conductance) or whole-plant biomass accumulation.  However, these 
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plants were grown hydroponically within greenhouses on the campus of Portland State University, 

under shade cloth, with ideal nutrient conditions and, as a result, these trees were not exposed to 

environmental conditions (high irradiance, high humidity, salinity stress) that have been shown to 

be necessary in order for root DIC to impact biomass accumulation and whole-plant processes 

(Bialcyzk 2007, Cramer and Richards 1999, He et al. 2007, 2010).  Previous studies have also 

shown that nitrogen form, as well as exposure to aluminum (a stressor) can influence the effect of 

rhizospheric DIC on biomass accumulation and plant growth (Cramer and Richards 1999, Viktor 

and Cramer 2003). In tomato seedlings grown at high irradiance, nitrogen form had no effect on 

biomass at 360ppm rhizospheric CO2, but at 5,000ppm rhizospheric CO2, plants fed with 2mM 

NO3- had significantly higher biomass than plants grown with 2mM NH4+. Both nutrient treatments 

(at 5000ppm) had more biomass than the 360ppm plants (Cramer and Richards 1999). In an effort 

to focus the current study on the direct effects of elevated CO2 on root metabolism in Poplar, 

independent of other interactive effects, nutrient supply and plant water status were maintained at 

optimal conditions in my hydroponic system.  The trees exhibited no signs of differential nutrient 

status with DIC treatment as they exhibited both similar leaf chlorophyll contents and rates of net 

assimilation (total leaf C/N analyses are currently underway), two well-established indicators of 

whole plant nutrient status (Chang and Robinson 2003). 

Although I did not observe any direct effect of root DIC on Poplar growth, it is possible for 

carbon acquired by the roots to be allocated to biosynthetic pathways that do not impact respiratory 

processes, most notably asparagine synthesis from oxaloacetate (Edwards 1998, Plaxton and 

Podesta 2006). In that pathway, the oxaloacetate need not enter the mitochondria at all. 



 

 

 

39 

Additionally, activity of the alternative oxidase pathway during electron transport allows for 

respiration to occur uncoupled to energy production (Plaxton and Podesta 2006). If AOX activity 

was high during root DIC uptake, then carbon gains would not directly result in gains of energy or 

growth.  

 Similar to the effects of DIC on biomass accumulation and leaf-level physiology, I found no 

differential effect of rhizosphere DIC on whole-plant water use.  These whole-plant results are 

consistent with leaf level estimates of water use efficiency and stomatal conductance measured 

with the portable photosynthesis system.  This lack of effect of elevated rhizospheric DIC on plant 

water use efficiency is in stark contrast to the well-established impact of atmospheric CO2 

concentration on plant water use efficiency in C3 plants. Taken together, these results suggest that 

there were minimal impacts of rhizospheric DIC under the environmental conditions examined, 

suggesting that poplar plants, at the whole plant level, are capable of growing normally under a 

wide range of rhizospheric CO2 partial pressures.  Further, results from these whole-plant analyses 

indicate that there is no evidence of any residual CO2 fertilization (i.e. root-chamber leakage) within 

the canopy as a result of my experimental manipulations.   

Although root DIC did not lead to dramatic changes in whole-plant growth, biomass 

allocation, leaf chlorophyll content, or leaf gas exchange characteristics, I did find several 

treatment-specific effects of DIC on Poplar root physiology. In particular, I found that Poplar roots 

grown at a higher rhizosphere DIC concentration (15,000ppm CO2) had significantly greater 

extractable root PEP-C activity, when measured with an in vitro assay. Surprisingly, this direct 

effect of rhizosphere DIC on PEP-C activity has not been found in other studies (Cramer and 
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Richards 1999, Cramer 2002). Of course, the in vitro PEP-C assay does not give information about 

actual in vivo rates of activity or regulation of the enzyme. Poplar root PEP-C activities are within 

the reported range of values for other root PEP-Cs. Results from poplar are roughly double (~100 

nmol/min/mg protein vs. 54nmol/min/mg protein) of that reported in cucumber roots (also in vitro, 

DeNisi and Zochi 2000). However, in-vitro PEP-C activity in Lupine roots (300 (normal) and 480 

(cluster roots) nmol/min/mg protein) were triple that of poplar (Johnson 1994). In this study I did not 

attempt to compare root malate content between our treatments, or cytosolic pH, nor any other 

conditions which could have impacted the actual in vivo daily rates of PEP-C activity. Nonetheless, 

rhizosphere DIC affected the roots’ PEP-C activity when measured under the same conditions in 

vitro. The higher PEP-C activity in the 15,000ppm DIC treatment group likely represents a larger 

pool of the PEP-C enzyme in those roots. A larger pool of PEP-C might be necessary to 

compensate for higher, inhibitory malate concentrations that could result in roots grown in higher 

DIC.  These results are the first hint suggesting that root DIC may perturb root function without 

necessarily impacting whole plant growth or physiology under nutrient rich conditions.   

The effect of pH on poplar root PEP-C activity is similar to that found in corn roots and in 

cucumber roots (Dong et al. 1998, De Nisi and Zochi 2000). Dong et al compared root PEP-C with 

leaf PEP-C in corn and found that at pH 7.3, root PEP-C activity was 10% less than at pH 8, 

whereas leaf PEP-C activity decreased by 60%. We found no decrease in root PEP-C activity 

between pH 7 and pH 8.3. They conclude, as we do, that root PEP-C maintains activity at a 

broader pH range than leaf PEP-C (Dong et al. 1998). In cucumber roots, PEP-C was also found to 

maintain similar rates of activity throughout a pH range of 8 to 9.5 (De Nisi and Zochi 2000). This 
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difference between root and leaf PEP-C is unsurprising given that root cells are exposed to 

relatively dramatic changes in extracellular pH due to contact with the soil environment.  

Our malate inhibition data is consistent with that of Chang and Roberts (1992) who 

measured in vivo rates of PEP-C activity in corn root tips. We did not measure PEP-C activity at 

the malate concentration that likely exists in vivo, around 3.5-7.5 mM, as was found in corn root 

tips (Chang 1992). Chang and Roberts (1992) found that in vivo PEP-C activities in the corn root 

tips were in the range of 0.08-0.18  µmol/min/g, more than 50% less than the rates we found at 

1.4mM malate.  We can conclude that the in vivo rates of PEP-C activity for our poplar roots could 

be much lower than the rates we measured with our in vitro assay, because we don’t know the 

cytosolic pH, nor do we know how much endogenous malate remained at the end of the enzyme 

extraction process.   

 Root PEPC has been suggested to have several functions, including impacts on 

rhizodeposition (Johnson 1994, 1996), anaplerotic replenishment of the respiratory Krebs cycle 

(Edwards 1998, Plaxton and Podesta 2006), and nitrogen assimilation (Cramer 2005).  Since I 

found that PEP-C activity increased in response to root DIC concentration in poplar, I further 

explored the effects of root DIC on both characteristics of rhizodeposition and respiration in my 

experimental system.  I predicted that the enhanced PEP-C activity I observed would mean 

increased rhizospheric DIC uptake, and I formed a general prediction about the how that additional 

carbon would impact root respiration and rhizodeposition. Specifically, I predicted that there is an 

inverse relationship between root respiration and Krebs cycle exudation, due to both CO2 
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production and O2 consumption being tied to cycling of organic acids, the relative pool of which 

would decrease with higher exudation rates.  

Despite the fact that roots grown in 15,000ppm rhizosphere CO2 had higher PEP-C activity, 

they generally exhibited lower total rates of root exudation as well as significantly lower root 

exudation rates of citrate and �-ketoglutarate as well as malate and fumarate. I highlight these 

compounds as they are generally found to be exuded at higher rates from roots with increased 

PEP-C activity (Johnson et al. 1996, Shane et al. 2004, Dechassa and Schenk 2004).  Therefore, it 

is surprising that elevated root DIC led to a decrease in exudation rate despite the greater PEP-C 

activities. An increase in exudation of these organic acids is generally linked to roots expressing 

nutrient deficiency and nutrient deficient roots are shown to have higher PEP-C activity (Johnson 

1994, De Nisi 2000). However, in the absence of nutrient deficiency (my system), it is likely that 

PEP-C activity may be less predictive of root exudation of organic acids and may reflect other roles 

of PEP-C in this system.  

Despite the importance of root exudation of organic acids in mediating plant-soil 

interactions, relatively few studies have directly examined the impacts of elevated rhizospheric CO2 

on exudation in non-cluster root forming species (cluster root formers represent a specific adaption 

for coping with low nutrient environments).  Shane et al (2004) report exudation rates for cluster 

roots and non-cluster roots grown under phosphorus deficiency, in Hakea prostrata. The range of 

exudation rates for citrate and malate for poplar roots is quite similar. The H. prostrata non-cluster 

roots exuded approximately 0.05 nmol/gFW/s of both malate and citrate. The cluster roots exuded 

0.5 nmol/gFW/s of each compound. The range of each of these exuded by my poplar roots, when 



 

 

 

43 

reported on a fresh weight basis is 0.19-0.5 nmol/gFW/s, well within the range of cluster root 

exudation rates.  Similarly, even the lowest exudation rates of my poplar roots are higher than 

those reported by Dechassa and Schenk (2004) in phosphorus deficient cabbage, carrot and 

potato. Citrate exudation was 0.12nmol/cm/hr in P-deficient cabbage compared with 3-7nmol/cm/hr 

as the range of citrate exudation in poplar roots (calculated using a conversion factor of 

0.00025gDW/cm, common in our root samples). Of course, centimeter of root is not a consistent 

method for standardizing exudation rates, in that the cabbage roots are likely completely different 

in diameter or mass from poplar roots. Nonetheless, according to these estimates it appears that 

nutrient deficient cabbage roots are not exuding more organic acids than the poplar roots in our 

study. It should be noted that our citrate and malate exudation rates are pooled with other 

compounds (a-ketoglutarate and fumarate), but that the comparison is still informative.  Taken 

together the results from poplar suggest that exudation rate of this species is relatively high 

compared to other systems investigated to date. The total Krebs cycle organic acid rate (in the 

range 8-22 nmol/gFW/s) was considerably higher than the reports ( 3.5nmol/gFW/s) of Shane et al 

(2004) for cluster root exudation of similar compounds (malate, citrate, succinate, lactate, and 

aconitate). Poplar exudation of citrate, malate, and succinate is several hundred times higher than 

rates exuded from cabbage, carrot and potato, when compared per cm root (Dechassa and 

Schenk 2004). There is another report of poplar Krebs cycle exudation rates, although differences 

in collection methods make the rates difficult to compare. Naik et al. (2009) report exudation rates 

in two poplar species with roots exposed to varying aluminum concentration. They did not report 

values of exudation in the roots without aluminum exposure, but interestingly, the species appear 

to differ in which organic acids they preferentially exude in response to aluminum. These authors 
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also note that their poplar exudation rates are much higher than those of other forest species 

published thus far.  

The most significant (on average 90% of total) of the exudates quantified in my system 

was succinate. Succinate exudation is also reported in other poplar species P. tremuloides and P. 

trichocarpa, but not in the same dominant role I observed (Naik et al. 2009). Succinate exudation 

was about 70% of organic acid exudation reported in cabbage and potato, and about 30% in carrot. 

However, when exposed to phosphorus deficiency, the percentage of succinate exudation dropped 

off in cabbage, because rates of citrate exudation increased 6-fold. Potato increased its succinate 

exudation 30-fold, but not citrate or malate, in response to P deficiency (Dechassa and Schenk 

2004). Some succinate exudation is also reported in cluster root exudation by Shane et al (2004), 

but not in the same dominant role seen in my poplar. In fact, they did not find it exuded by the non-

cluster roots at all, and don’t appear to have detected it in root tissues. Johnson et al (1996) did not 

detect succinate in root exudates, but did find pools of succinate root tissue, along with citrate and 

malate. Cramer, Shane, and Lambers (2005) measured organic acid concentrations in phloem and 

xylem of lupine, and detected succinate in the phloem only, suggesting that succinate may be 

traveling from the shoot. It is unclear whether the succinate exuded by poplar roots originates in 

the shoot or root, as we did not measure tissue concentrations. Despite the high variability in 

succinate exudation observed in my experimental roots, there was nearly a 40% reduction in 

succinate exudation rate in roots grown under elevated DIC.  

Although I hypothesized that greater root DIC would lead to enhanced exudation of organic 

acids, results from this study show that increased DIC actually reduced exudation rates of organic 
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acids.  As growth at 400ppm root CO2 is likely “sub-ambient” for roots growing in a natural soil 

environment, it is tempting to speculate that roots under these ‘non-physiological’ conditions may 

be suffering from slight nutrient deficiency, without the inorganic carbon supply which may be 

utilized for nitrogen assimilation, and are enhancing the release of organic acids as is reported in 

nutrient deficient species (Johnson 1994,1996, Shane 2004, Dechassa and Schenk 2004). This is 

the first report I am aware of showing that increased root DIC concentration alters the magnitude of 

compounds released to the rhizosphere in trees.  Though additional experiments are warranted, 

these results suggest that root DIC concentration may play a key role in mediating the capacity for 

root nutrient assimilation – with higher DIC concentrations leading to greater root PEPC activity 

and greater capacity to quickly assimilate N belowground.  Future studies clearly need to continue 

to examine the impacts of elevated DIC on root exudation. In particular, it would be interesting to 

explore whether organic acid exudation is related to cellular ionic balance. 

Despite the increase in root PEP-C activity at greater DIC, I did not find strong support for 

my hypothesis that there is a simple relationship between root carbon fixation via PEP-C activity, 

respiration rate and exudation of Krebs cycle organic acids. I predicted two suites of responses 

consistent with our model of the functions of root-fixed carbon. Specifically, I predicted that roots 

would assimilate more DIC via PEP-C, exude organic acids such as malate and citrate, bypassing 

the full Krebs cycle and NADH production, resulting in reduced CO2 production and O2 

consumption. However, my hypothesis would lead to a different prediction in the case that PEP-C 

is replenishing the Krebs Cycle during biosynthesis of compounds not destined for exudation, such 

as amino acids: If roots with higher PEP-C activity are not engaged in organic acid exudation, the 
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DIC would contribute to more complete cycling through the Krebs Cycle and higher CO2 production 

and O2 consumption. This set of hypotheses is consistent with the variation that has been 

observed in root respiratory responses to DIC/CO2. 

 Ideally, to test this hypothesis, measurements of exudation rates, CO2 production and O2 

consumption would be taken simultaneously. However, I was only able to measure them 

consecutively on the same roots. This experimental design includes the assumption that respiration 

rates measured in the hour(s) following exudation collection and excision will continue to reflect 

those processes that were occurring in the intact roots. This experimental design also introduces 

some uncertainty into the interpretation of the results. Specifically, it is difficult to point to direct 

causes for the correlations we see in our data because they did not coincide exactly in time.  

A key aspect of this study was to examine both the long-term and short term effects of DIC 

on root respiration.  To do so, I measured root respiration in poplar using a variety of techniques. I 

examined the influence of DIC on Poplar root respiration in a liquid phase oxygen electrode at their 

growth DIC concentrations.  Root respiration rate was reduced 27% on a dry-mass basis when 

measured at 15,000ppm CO2.  These results are remarkably similar to Johnson et al., (1994) who 

also showed roughly a 31% reduction in O2 consumption with elevated DIC despite an increase in 

extractable PEP-C activity. We found no short-term impact of DIC concentration on O2 

consumption values. This is also confirmed by the linearity of O2 consumption rates over the 

course of the measurement (15 minutes), during which the root’s own respiration was contributing 

to a build-up in chamber CO2 concentration. The magnitude of O2 consumption rates in my poplar 

were considerably lower than those reported in lupine or in tomato, but much closer to values 
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reported in harsh hakea, barley, and pine (Johnson 1994, van der Westhuizen and Cramer 1998, 

Shane 2004, Rigano 1996, Drake 2008). Again, I am unsure about the accuracy of my values due 

to possible inadequate removal of O2 during calibration of the instrument. In addition, I attempted to 

measure root respiration with an oxygen electrode in the gas phase, but issues with calibration 

invalidate those attempts, so that data will not be discussed further here.  

I also measured the response of root respiration to DIC using an infrared gas analyzer to 

quantify CO2 exchange (opposed to O2). Consistent with the results from the oxygen electrode, 

results from the IRGA analyses show suppression of respiration at elevated DIC in both long-term 

and short-term.   It is most reasonable to compare respiration of roots grown at 15,000 to those of 

roots grown at 400ppm when respiration is measured at a CO2 concentration values as close as 

possible to the growth condition (1000 and 400 respectively). Unlike the case of O2 respiration, 

CO2 production does appear to experience a short term, instantaneous suppression of respiration 

due to measurement CO2 concentration. Rates of Poplar root CO2 production are within the range 

of values reported in other studies (Shane 2004, van der Westhuizen and Cramer 1998, Bouma 

1997, Drake 2008).  

Despite the variability in measured respiration rate in response to growth DIC environment, 

there was a consistent reduction of root respiration rate with increasing measurement CO2 

concentration (with respiration rates decreasing consistently from 400ppm to 2000ppm CO2). There 

are 3 possible explanations for observed inhibition of CO2 production at higher measurement CO2 

concentrations. 1) The difference in CO2 production could be explained by the change in the 

difference in partial pressure of CO2 (∆PCO2) between the two measurement conditions. Given the 
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same mitochondrial respiration rate in the roots, the driving force for diffusion of CO2 out of the root 

is less at 1000ppm than at 400ppm. However, we found considerable variation in the magnitude of 

response to measurement CO2, which seems inconsistent with changes related to diffusional rates. 

This variation does not correlate with root mass (a stand-in for diffusional distance), suggesting that 

diffusion does not explain all of the response to measurement CO2 that we found. 2) It is also 

possible, and has been suggested by other researchers as well, that reduction in apparent CO2 

production at higher CO2 is due to a change in the uptake of CO2 by the root, resulting in a net 

decrease in production (van der Westhuizen and Cramer 1998, Cramer 2002). If this is the case, it 

would be very difficult to use CO2 production measurements as an indicator of metabolic activity, 

because the same CO2 production value could encompass quite a degree of variation in 

mitochondrial respiration, depending on how much is being obscured by uptake. If responses to 

measurement CO2 concentration are due to changes in uptake of CO2, then our results suggest 

that the 400 group took up more CO2 in response to measurement CO2, assuming that 

mitochondrial respiration is staying constant (data not significant (p=0.08)).  

 3) The third possibility is that there is an actual inhibition of some metabolic process, such 

as in the way CO2 has been found to inhibit the respiratory enzymes cytochrome c oxidase (COX) 

and succinate dehydrogenase (Gonzalez-Meler 1996). If at higher external CO2 concentrations, 

more CO2 stays in the root, then inhibitions of these enzymes would increase. The marginal 

difference we found in CO2 sensitivity between root treatment types could be due to acclimation in 

the roots already grown at higher external CO2 concentrations. However, the O2 consumption data 

appears to contradict this interpretation, as the roots grown at higher DIC seemed to be more 
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sensitive to CO2, when O2 consumption is analyzed instead of CO2 production. Also, Gonzalez-

Meler et al (1996) found that sensitivity of respiratory enzymes to CO2 was stronger when the 

mitochondria had been previously exposed to CO2.   

As both root respiration and organic acid exudation rates were reduced with increased root 

DIC in Poplar, I was interested in exploring the relationship between root respiration and Krebs 

cycle organic acid exudation in my experimental system.  Some of the Krebs cycle organic acid 

exudation rates were found to be negatively correlated with respiration rate (when quantified as 

CO2 exchange with an IRGA) but often, only for one treatment group at one measurement CO2 

concentration. This result does not strongly support the broad relationships between organic acid 

exudation and root respiration that I had hypothesized. The correlations I found between exudation 

and respiration do suggest that more detailed exploration of their relationship would be worthwhile. 

Most interesting is the observation that roots that exuded the highest quantities of succinate and 

pyruvate actually seem to take up CO2 when placed in the Li-Cor 6400 chamber at 1000ppm CO2. 

It is possible that this response is indicative that the high exudation rates immediately prior to 

excision caused a deficit in organic acids, and that the CO2 uptake is evidence of the roots 

capitalizing on available rhizospheric CO2. These results, however small, do provide more support 

that instantaneous responses to measurement CO2 have some basis in metabolism, regardless of 

issues with chamber leaks in other studies.  

In light of my results, and data presented in the studies of root respiration to date, and 

notwithstanding my hypotheses when I began this thesis, it appears that measurements of root 

respiration are in many ways uncoupled from actual energy usage by the organism. Both CO2 
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production (due to consumption of mitochondrial CO2 by PEP-C, or by uptake of external CO2 into 

the root) and O2 consumption (due to the function of the alternative oxidase) can be measured 

without assurance that any predictable quantity of ATP is produced in association. Additionally, the 

current push to estimate root respiration is for inclusion in models of the carbon cycle under global 

change scenarios. However, it appears that due to high sensitivity of roots to CO2 concentration 

under some conditions, estimating what occurs in intact soil conditions may be difficult.  

Conclusions 

Results from this thesis suggest that rhizospheric DIC concentration does not impact leaf gas 

exchange, whole plant biomass or water use efficiency in poplar under the growth conditions used. 

However, elevated DIC (similar to field conditions) did increase root PEP-C activity, and was found 

to alter relationships with exudation of some Krebs cycle organic acids. Consistent with some 

previous studies (van der Westuhizen and Cramer 1998), measurement CO2 concentration was 

observed to have an effect on root CO2 production, most likely due to a combination of changes to 

diffusional rates as well as root uptake of CO2.  Though I was unable to find support for my 

hypothesis linking root exudation and organic acid exudation across treatments, results from this 

study do provide an important new perspective on organic acid exudation in the roots of rapidly 

growing forest trees.  Exudation rates observed in poplar roots are sensitive to growth root DIC 

concentration.   Exudation rates for roots grown at 400ppm CO2 are remarkably similar to the rates 

observed in cluster roots of lupine (Shane 2004), suggesting that we may be grossly 

underestimating the magnitude and diversity of compounds released by tree roots to the 

rhizosphere.  Although root DIC did not directly impact poplar growth in the conditions examined, 
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the substantial increase in organic acid exudation at low DIC, suggests a functional relationship 

between root carbon accumulation (mediated by PEP-C) and organic acid exudation.  If these 

results can be extrapolated to field conditions they would have important implications for the 

understanding the relationship between plant roots and the rhizosphere in an environment with 

increasing CO2.  The increased activity of root PEP-C and decreased rates of exudation of organic 

acids, collectively suggests that growth of plant roots in a high DIC environment may facilitate root 

nitrogen assimilation by providing additional carbon skeletons for N-assimilation, and thereby 

reduce the release of organic acids to the soil environment to stimulate nutrient mobilization.  

Clearly more work is need on the integration of these processes under field conditions. 

Future Directions 

I think that the impacts of rhizosphere DIC on roots should be further explored, and there are some 

additional measurements that I would make to clarify relationships between DIC and root metabolic 

processes. Hydroponics are excellent for allowing the relatively unhindered study of roots, and the 

growth conditions could be manipulated to more closely replicate conditions in the rhizosphere. I 

chose to only manipulate the CO2 conditions surrounding the roots, but O2 could be manipulated as 

well to more closely match natural soil conditions. Additionally, measurement of the relative 

activities of pyruvate kinase (PK) and PEP-C in roots would give more information about flux of 

carbon through the Krebs cycle. PK and PEP-C Enzyme content, as well as organic acid content of 

roots would help elucidate the sources of exudates. Simultaneous collection of exudates during 

respiration measurements (liquid phase O2 electrode) would also improve understanding of the 

relationship between these processes, although it might require a custom built chamber. More 
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finely-controlled nutrient conditions would also be important, and it might be useful to perform root 

experiments on agar plates in an attempt to observe quantitative responses to different nutrient 

conditions or pH.  



 

 

 

53 

Tables and Figures 

Table 1: Leaf gas exchange characteristics of poplar trees grown hydroponically with either 15,000 or 400ppm root-
zone CO2. Measurements were simultaneous for photosynthesis, stomatal conductance and transpiration rate, so RH 
and leaf temp reported for photosynthesis applies to all. Root treatment was found to cause no significant difference for 
any of these gas exchange characteristics (two-way ANOVA to determine effect of treatment and day on each 
characteristic and with RH, temp, and chlorophyll content as covariates. Treatment did not affect chlorophyll content. 
There were some significant day effects, and RH did influence stomatal conductance and transpiration despite the 
relatively high degree of RH control. 

n=34 Treatment Mean 
± s.e. 

Root treatment 
ppm CO2 

Mean measurement 
RH (%) ± s.d. 

Mean leaf temp 
(ºC) ± s.d. 

1.73±0.14 15,000 62.7±2.7 23.5.±0.7 Dark Respiration 
µmol CO2/m2/s 1.73±0.18 400 63.6±1.9 23.6±0.5 

15.0±0.8 15,000 64.8±0.8 25.0±0.7 Max Photosynthesis 
µmol CO2/m2/s 15.9±1.0 400 64.9±0.9 25.1±0.5 

0.30±0.02 15,000   Stomatal conductance 
mol H2O/m2/s 0.31±0.03 400   

3.4±0.26 15,000 39.9±1.2 Transpiration rate 
mmol H2O/m2/s 3.5±0.37 400 

Leaf Chlorophyll 
Content ± s.e. 41.2±1.2 

 

Table 2: Whole plant biomass and water use in poplar trees grown hydroponically with either 15,000 or 400ppm root 
zone CO2. Biomass data is pooled from two experiments (n=13). Water use was only recorded for the second 
experiment (n=7).  Root treatment did not have a significant effect on plant biomass. (Two-factor ANOVAs with root 
treatment and day as factors and initial mass as a covariate. Shoot, root and total dry weights were sine-transformed to 
satisfy equal variances assumption of the ANOVA.) Water use was not significantly influenced by root treatment (One-
way ANOVA). 

Root CO2 
treatment 

Shoot dry 
weight (g)  
± s.e. 

Root dry 
weight (g) 
± s.e. 

Total dry 
weight (g) 
± s.e. 

Root to shoot 
ratio 
± s.e. 

Total water 
use (L/gDW) 
± s.e. 

15,000 ppm 92.4 ± 9.6 8.8 ± 2.3 101.1 ± 11.8 0.09 ± 0.01 0.40±0.01 

400 ppm 80.4 ± 8.9 9.6 ± 3.3 90.0 ± 11.9 0.10 ± 0.02 0.38±0.02 
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Figure 1: Root PEP-C activities for poplar grown hydroponically in either elevated or ambient dissolved inorganic 
carbon (DIC). Data from sodium bicarbonate and CO2 gas-bubbling treatments were pooled as DIC treatment type was 
not found to be significantly different. Effects of root treatment and sampling day on PEP-C activity were analyzed with 
a two-way ANOVA (p=0.008*). PEP-C activity was log-transformed to satisfy equal variances assumption of the 
ANOVA. Levels not connected by same letter are significantly different (Student’s t-test). Values are means (n=26) ± 
s.e. 
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Figure 2: Malate inhibition of root PEP-C activity of hydroponically grown poplar roots. Extract of 4 plants’ root tips 
pooled and exposed to different malate concentrations in the cuvette (at pH=8). Effect of different concentrations of 
malate on PEP-C activity was analyzed with a one-way ANOVA (p≤0.0001*) and Tukey post-hoc test. Levels not 
connected by same letter are significantly different. Values are means (n=3) ± s.d. 
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Figure 3:  pH effects on root PEP-C activity of hydroponically grown poplar roots. Pooled extracts (n=4) of root tips 
exposed to different pH in cuvette. Effect of pH on PEP-C activity was analyzed with a one way ANOVA (p=0.01*) and 
Tukey post-hoc test: Levels not connected by same letter are significantly different. 
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Figure 4: Respiration Rates of poplar roots grown hydroponically in either 15,000 or 400ppm CO2 (root treatment 
n.s.) . Values are means (n=18,30) ± s.e. (A). Respiration was measured at either 400 or 1000ppm CO2. Values are 
means (n=9-15) ± s.e. (B). Effects of root treatment, measurement CO2, sampling day, and meas CO2 x trtmt cross 
interaction on root CO2 production were analyzed with two-way ANOVA (measurement [CO2] p< 0.0001*). Respiration 
rate was log transformed to satisfy assumptions of ANOVA. Some days were also significantly different. The interaction 
between root treatment and measurement CO2 was not significant. Levels not connected by same letter are 
significantly different.  
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Figure 5: Respiration rate CO2-response curve of roots grown at 400ppm. Effect of different measurement [CO2] on 
root CO2 production was analyzed with a one-way ANOVA (p=0.0001*) and tukey post-hoc test. Levels not connected 
by same letter are significantly different. Values are means (n=3) ± s.e. 
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Figure 6: Liquid phase O2 electrode respiration rates of roots grown at either 15,000 or 400ppm CO2. Values are 
means (n=8-10) ± s.e. (A). Measurements were conducted in a closed chamber filled with buffer solution equilibrated 
with 400 or 15,000ppm CO2. Values are means (n=4-5) ± s.e. (B). Effects of root treatment, measurement CO2, day, 
and trtmt x meas CO2 cross-interaction were analyzed with a two-way ANOVA. (Root treatment p=0.02* In-chamber 
[DIC] not significant.) Respiration rates squared in order to satisfy equal variance assumptions of ANOVA.  
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Figure 7: Gas phase O2 electrode respiration rates of roots grown hydroponically at either 15,000 or 400ppm CO2.  
Measurements were conducted in a closed chamber injected with either room air (~400ppm) or 1000ppm CO2. Root 
treatment p=0.04*). Effects of root treatment, measurement CO2, day, and trtmt x meas CO2 cross-interaction were 
analyzed with a two-way ANOVA. Respiration rate square root-transformed to satisfy assumptions of ANOVA. Values 
are means (n=5-11) ± s.e. Note: Issues with electrode calibration led me to exclude data collected in this method. 
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Figure 8: Variation in individual root respiration rates, showing each different measurement [CO2] trial.  Root 
CO2 production measured in Li-Cor 6400 on measurement dates 9/14/10-9/19/10 (A). 9/29/10-9/30/10 (B). and 
10/5/10-10/7/10 (C). Root O2 consumption measured in the liquid phase 10/5/10-10/7/10 (D). 
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Figure 9:  Root respiratory responses to change in measurement CO2 concentration (change from 400ppm to 
1000ppm), in poplar roots grown at either 15,000 or 400ppm CO2. Effects of root treatment and sampling day on 
respiratory response to measurement CO2 were analyzed with two-way ANOVAs. Roots grown at 400ppm had a 
marginally greater decrease in CO2 production (p=0.08) in response to change in measurement CO2. Root O2 
consumption did not change in response to measurement CO2. Data was log-transformed to satisfy equal variance 
assumptions of the ANOVA. Values are means (n=9-15 CO2, and n=4-5 O2) ±s.e. 
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Figure 10: Root Krebs cycle acid exudation: Succinate and total exudation. Effect of root treatment and sampling 
day on exudation rates was analyzed two-way ANOVAs and Student’s t-tests. Both succinate and total exudation rates 
were log transformed to satisfy the assumptions of the ANOVA. Levels connected by same letter are not significantly 
different. Values are means (n=11-15) ± s.e. 
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Figure 11: Krebs cycle organic acid exudation (excluding succinate) in poplar roots grown hydroponically at either 
15,000 or 400ppm CO2. Effect of root treatment and sampling day were analyzed with two-way ANOVAs and Student’s 
t-tests. All exudation rates were log transformed to satisfy the assumptions of the ANOVAs. Levels connected by same 
letter are not significantly different. Values are means (n=11-15) ± s.e. 
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Figure 12: Succinate exudation and root respiration (@ 400 and 1000ppm measurement CO2) of poplar roots 
grown hydroponically at either 15,000 (A) or 400ppm (B) CO2 (n=25). Respiration measured at 400ppm was log 
transformed to normalize. 
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Figure 13: Change in root respiration in response to change in measurement CO2 concentration. Roots grown 
at either 15,000 or 400ppm CO2. Relationship with succinate exudation in same roots (n=25). Data fulfills assumption 
of normality. 
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Figure 14: Pyruvate exudation and root respiration (@ 400ppm and 1000ppm CO2) of roots grown hydroponically 
at 15,000 (A) or 400ppm (B) CO2 (n=25). Respiration measured at 400ppm was log transformed to normalize. 
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Figure 15: Change in root respiration in response to change in measurement CO2 concentration in roots grown 
at 15,000 and 400ppm CO2.  Relationship with pyruvate exudation rates of same roots (n=25). Data fulfills assumption 
of normality. 
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Figure 16: Citrate exudation and root respiration (@ 400 and 1000ppm measurement CO2) in poplar roots grown 
hydroponically at either 15,000 (A) or 400 (B) ppm CO2 (n=25). Data fulfills assumption of normality. 
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Figure 17: Representation of metabolic activities in a root cell associated with root carbon fixation. Matarese 
2010, after Plaxton and Podesta 2006. 
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Figure 18: Illustration of gas-mixer and hydroponic bubbler system utilized during the experiment (Matarese 
2010). 
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