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AN ALGORITHM FOR IDENTIFYING EIGENVECTORS EXHIBITING STRONG

SPATIAL LOCALIZATION

JEFFREY S. OVALL AND ROBYN REID

Abstract. We introduce an approach for exploring eigenvector localization phenomena for a class of (un-

bounded) selfadjoint operators. More specifically, given a target region and a tolerance, the algorithm
identifies candidate eigenpairs for which the eigenvector is expected to be localized in the target region to

within that tolerance. Theoretical results, together with detailed numerical illustrations of them, are pro-

vided that support our algorithm. A partial realization of the algorithm is described and tested, providing
a proof of concept for the approach.

1. Introduction

This paper concerns the development of new computational methods for exploring eigenvector localization
phenomena for selfadjoint elliptic eigenvalue problems,

Lψ .
= −∇ · (A∇ψ) + V ψ = λψ in Ω , = 0 on ∂Ω , ψ 6≡ 0 in Ω,(1)

where Ω ⊂ Rd is a bounded, connected open set, V ∈ L∞(Ω) is non-negative, and there are constants
c, C > 0 such that the symmetric matrix A : Ω→ Rd×d satisfies

cvtv ≤ vtA(x)v ≤ Cvtv for all v ∈ Rd and a.e. x ∈ Ω .

When d = 2, we require A ∈ [L∞(Ω)]d×d; and when d > 2, we require that A is uniformly Lipschitz
in each of its components. The operator L is viewed as an unbounded operator on L2(Ω), with domain
Dom(L) = {v ∈ H1

0 (Ω) : Lv ∈ L2(Ω)}. We denote the (real) spectrum of L by Spec(L), and recall that it
consists of a sequence, infΩ V < λ1 < λ2 ≤ λ3 ≤ · · · , that has no finite accumulation points. Furthermore,
the eigenspace E(λ,L) = {v ∈ Dom(L) : Lv = λv} is finite dimensional for each λ ∈ Spec(L).

The assumptions on L guarantee that it has the unique continuation property (cf. [1, 16, 23]), i.e. any
function v ∈ H1(Ω) satisfying Lv = 0 in Ω that vanishes on a non-empty open subset of Ω must vanish
identically on Ω. A simple consequence of this is that no eigenvector ψ of (1) may vanish identically on
any open subset of Ω. However, it may be the case that nearly all of the “mass” of an eigenfunction ψ is
concentrated in a non-empty, open, proper subset R of Ω. In this case, we say that ψ is localized in R. For
convenience, we will refer to a non-empty, open, proper subset R of Ω as a subdomain of Ω. We now quantify
what we mean by localization in R. Given a function v ∈ L2(Ω) and a subdomain R, the complementary
quantities

δ(v,R) = ‖v‖L2(Ω\R)/‖v‖L2(Ω) , τ(v,R) = ‖v‖L2(R)/‖v‖L2(Ω) ,(2)

provide measures of localization/concentration of v within the subdomain R. Clearly,

δ2(v,R) + τ2(v,R) = 1 , δ(v,R) = τ(v,Ω \R) , τ(v,R) = δ(v,Ω \R) ,

and we have δ(ψ,R), τ(ψ,R) ∈ (0, 1) for eigenvectors ψ and any subdomain R. Given a tolerance δ∗ ∈
(0, 1/2), we say that v is localized in R with tolerance δ∗ if δ(v,R) ≤ δ∗ or, equivalently, τ(v,R) ≥

√
1− (δ∗)2.

Note that we do not require that R is connected, although it will be in many applications.
Localization of eigenvectors may occur due to properties of the coefficients A and V , the shape of the

domain, and/or the boundary conditions. A 2013 overview of the geometric structure of eigenvectors for L =
−∆ that highlights eigenvector localization due to domain geometry is provided in [20] (see also [11,22,35,38]).
In a series of recent articles [4–6, 15], starting in 2012, the authors investigate localization due to highly
discontinuous potentials V (“disordered media”), providing some theoretical insight into the mechanisms
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driving localization, a novel numerical method for approximating likely subdomains in which localization
may occur, and a simple estimate of the smallest eigenvalue whose eigenvector is localized in each such
subdomain. In [15], the authors state that

“...there has been no general theory able to directly determine for any domain and any type
of inhomogeneity the precise relationship between the geometry of the domain, the nature of
the disorder, and the localization of vibrations, to predict in which subregions one can expect
localized standing waves to appear, and in which frequency range.”

Although progress has been made by these authors and others (cf. [2,3,29,34,44]) in the meantime, there is
still room for improvement, particularly on the algorithmic front. We describe the computational approaches
of [4] and [2, 3], which are presented for Schrödinger operators L = −∆ + V , before giving a summary
description of our own.

Central to the work in [4–6, 15] is the so-called landscape function u for L. The following basic result,
which is stated in each of these works, and can be proved by applying the Maximum Principle to w± =
λ‖ψ‖L∞(Ω)u± ψ, provides pointwise bounds on an eigenvector in terms of its eigenvalue and the landscape
function.

Proposition 1.1. Let (λ, ψ) be an eigenpair of (1). It holds that

|ψ(x)| ≤ λu(x)‖ψ‖L∞(Ω)(3)

pointwise in Ω, where u ∈ Dom(L), satisfies Lu = 1 in Ω.

An outline of the computational approach from [4] is:

(a) Compute the landscape function u.
(b) Determine several or all local minima of the associated effective potential W = 1/u, Wk = W (xk)

for 1 ≤ k ≤ N , with Wk ≤Wk+1.

(c) Estimate N eigenvalues as λ̃k = (1 + d/4)Wk. The factor (1 + d/4) is supported empirically and
heuristically.

(d) Choose the set Rk to be the connected component of {x ∈ Ω : W (x) ≤ E} that contains xk, where

E ≥ λ̃k is a parameter to be set by the user. It is expected that δ(ψ,Rk) is small, where ψ is an

eigenvector associated with the eigenvalue of L estimated by λ̃k.

We highlight a few features of this approach. The most obvious is that it does not involve the (approximate)
solution of any eigenvalue problems; only the solution of a single source problem is required. From this,
estimates (as opposed to convergent approximations) of several eigenvalues are computed, together with
localization regions for eigenvectors whose eigenvalues are near the given estimates. Eigenvector approxima-
tions are not provided, though the authors mention solving for the smallest eigenpair of L with homogeneous
Dirichlet conditions on Rk, or some slightly larger region, as an option. We note that λ̃k, 1 ≤ k ≤ N , are
not necessarily estimates of the first N eigenvalues of L. For example, there may be multiple eigenvectors
that are localized in one or more of the regions R1, . . . , Rk whose eigenvalues are smaller than the smallest
eigenvalue having an eigenvector localized in Rk+1. We emphasize that the method of [4] estimates only the
smallest eigenvalue having an eigenvector localized in a each of its determined subdomains R; we will refer
to this eigenvalue (or eigenpair) as the ground state for R.

In contrast, the approach of [2,3], aims to compute localized eigenvectors (and their eigenvalues), together
with their localization regions, by a two-phase iterative process. Given a highly disordered, but structured,
potential V , a fine mesh T ε is generated that is deemed suitable for resolving the lowermost part of the
spectrum of L via a finite element method—the user determines the number N of eigenpairs sought. A
(much) coarser mesh T H , of which T ε is a refinement, is used in the first phase of the algorithm, whose
aim is to provide regions of localization, together with a basis for a rough approximation of the space in
which approximate eigenpairs will be computed during the second phase. Starting with finite element hat
functions associated with the vertices of T H (there should be at least 3N of them), a few approximate inverse
iterations, using one preconditioned conjugate gradient (PCG) step per iteration, are performed during phase
one, with a mechanism involving Rayleigh quotients and a parameter η ∈ (0, 1) used pair down the set of
functions after each iteration. At the end of phase one, a basis for a coarse subspace of dimension at least
3N is obtained. Since T ε is a refinement of T H the functions obtained in phase one are already finite
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element functions (of the same degree) on T ε. In phase two, a few steps of approximate inverse iteration
are again used on the finer discretization, starting with the functions obtained from phase one; this time,
however, three PCG steps are used per iteration. After each inverse iteration, approximate eigenpairs are
obtain by a Rayleigh-Ritz procedure on the remaining set of functions, and a similar mechanism is used
to pair down the set of functions (if needed) for the next iteration. At the end of phase two, a set of at
least 2N approximate eigenpairs is obtained, and the first N of them are kept. Variations on this basic
algorithm are presented in [3], and the description above comes from Algorithm 1 in that paper. This
algorithm is clearly more sophisticated and costly than that described above from [4], but it does provide
approximations of eigenpairs, not just eigenvalues, and the quality of these approximations can be controlled
by parameters in the discretization. Additionally, this algorithm can find more than one eigenvector that is
localized in a given region, which was not the case for the approach of [4]. However, the authors note that
their algorithm assumes that the first N eigenvectors are localized, which is a reasonable assumption for the
highly disordered potentials they consider, but might be problematic for problems in which other factors,
such as domain geometry, are dominant drivers of localization. The approach of [4] does not assume that the
first N eigenfunctions are localized, but is currently limited to computing estimates of as many eigenvalues
and localization subdomains as there are local minima of W = 1/u.

Both approaches discussed above are aimed at the lower part of the spectrum, and are best suited to
situations in which this part of the spectrum contains many localized eigenvectors. Additionally, these
approaches offer no a priori control of how strongly localized an eigenvector ψ should be in a localization
subdomain R determined by their algorithms, i.e. how small δ(ψ,R) should be, in order to consider it
“localized enough”. Our approach puts this consideration at the forefront, and targets with the following
fundamental task:

(T)
Given a subdomain R, an interval [a, b] and a (small) tolerance δ∗ > 0, find all eigenpairs (λ, ψ) for

which δ(ψ,R) ≤ δ∗ and λ ∈ [a, b], or determine that there are not any.

One might obtain reasonable candidates for such an R using a landscape function approach, as in [4], or the
first phase of Algorithm 1 in [3], but for our purposes we will just assume an R is given. If [a, b] contains
relatively few eigenvalues of L (counted by multiplicity), this task can be accomplished reasonably efficiently
using existing technology: just compute (approximate) all eigenpairs (λ, ψ) for λ ∈ [a, b] by your favorite
method, and check δ(ψ,R) for each. However, if [a, b] contains many eigenvalues of L, or we have no a
priori sense of how many eigenvalues it contains, an approach that automatically filters out eigenvectors that
are not localized in R is desirable. Drawing inspiration from the work of Marletta [36, 37] on combating
the effects of spectral pollution in computing eigenvalues for operators having essential spectrum, we also
consider a complex-shifted version of the operator (though our operator L has no essential spectrum). More
specifically, given a subdomain R and a number s > 0, we define the normal operator Ls by

Ls = L+ is χR , Dom(Ls) = Dom(L) .(4)

The intuition behind our approach is that, if (λ, ψ) is an eigenpair of L with ψ highly localized in R, then
their ought to be an eigenpair (µ, φ) of Ls with µ near λ+ i s and φ near ψ. This intuition will be justified
theoretically in Section 2. With this in mind, our algorithm template, Algorithm 1, begins by finding
eigenpairs (µ, φ) of Ls for which =µ is near s. These eigenpairs of Ls are then “post-processed” to find
eigenpairs (λ, ψ) of L for which ψ is likely to be localized in R. The parameter δ∗ governs both whether
=(µ) is “near enough” to s, and whether δ(ψ,R) is “small enough”.

The rest of the paper is outlined as follows. In Section 2, we establish the key theoretical results that
naturally lead to an algorithm template for (T), and illustrate several of the results and ideas of this
section via two 1D examples for which discretization is not needed for computing eigenpairs of L and
Ls. The algorithmic template itself is given in Section 3, together with a description of one reasonable
choice for computing eigenpairs of Ls that lie in a target region—the FEAST method. Section 4 contains
several experiments illustrating the performance a practical realization of the algorithm using finite element
discretizations to approximate eigenpairs. Is Section 5 we offer a few concluding remarks.

2. Theoretical Results and Illustrations

Given a proper subdomain R and an s > 0, we now explain and justify what we mean by asserting that,
3



If (λ, ψ) is an eigenpair of L with ψ highly localized in R, then there is an eigenpair (µ, φ) of
Ls, defined in (4), that is close to the eigenpair (λ+ i s, ψ) of L+ i s.

A natural analogue of this assertion, with the roles of L and Ls reversed, also holds, and both will be
considered below, after first establishing some simple bounds on the real and imaginary parts of eigenvalues
of Ls. Suppose that (µ, φ) is an eigenpair of Ls. We have

µ =
(Lφ, φ)

‖φ‖2L2(Ω)

+ i s[τ(φ,R)]2 ,(5)

where (·, ·) is the (complex) inner-product on L2(Ω). It follows by the unique continuation principle and the
variational characterization of the eigenvalues of L that

Proposition 2.1. For any µ ∈ Spec(Ls), 0 < =µ < s and <µ > λ1(L) = min Spec(L).

We now present the first of two key results concerning the eigenpairs of L, Ls and L+ i s.

Theorem 2.2. Let (λ, ψ) be an eigenpair of L. Then

dist(λ+ i s,Spec(Ls)) ≤ s δ(ψ,R) .(6)

Let µ = arg min{|λ+ i s− σ| : σ ∈ Spec(Ls)}. If M ⊂ Spec(Ls) contains µ, then

inf
v∈E(M,Ls)

‖ψ − v‖L2(Ω)

‖ψ‖L2(Ω)
≤ s δ(ψ,R)

dist(λ+ i s,Spec(Ls) \M)
,(7)

where E(M,Ls) =
⊕
{E(σ,Ls) : σ ∈M} is the invariant subspace for M .

Proof. Since λ + i s /∈ Spec(Ls), (λ + i s − Ls)−1 is bounded and normal, and we have (cf. [30, Chapter 5,
Section 3.5])

‖(λ+ i s− Ls)−1‖−1 = dist(λ+ i s,Spec(Ls)) .

We see by direct computation that (λ+ i s− Ls)ψ = i s χΩ\Rψ, from which we obtain

‖ψ‖L2(Ω) ≤ ‖(λ+ i s− Ls)−1‖ s‖ψ‖L2(Ω\R) .

Rearranging terms, and using the definition of δ(ψ,R), completes the proof of (6).
Now let Ps = 1

2πi

∫
γ
(z − Ls)−1 dz denote the (orthogonal) spectral projector for E(M,Ls). Here, γ ⊂ C

is any simple closed contour enclosing M and excluding Spec(Ls) \M . Noting that Ps commutes with Ls,
direct algebraic manipulation reveals that

I − Ps = (λ+ i s− Ls(I − Ps))−1(I − Ps)(λ+ i s− Ls) .(8)

It follows that

(I − Ps)ψ = (λ+ i s− Ls(I − Ps))−1(I − Ps) i sχΩ\Rψ ,

Therefore,

‖(I − Ps)ψ‖L2(Ω) ≤
s‖ψ‖L2(Ω\R)

dist(λ+ i s,Spec(Ls) \M)
,

which establishes (7). We note that it was not necessary that M contain µ for (7) to hold, but that including
µ in M makes the demoninator larger. Of course, for (7) to be a meaningful bound, the term on the right
must be less than 1, so including (at least) µ in M is prudent. �

A simple consequence of Proposition 2.1 and Theorem 2.2, put in the context of our key task (T), is that

Corollary 2.3. If (λ, ψ) is an eigenpair of L with λ ∈ [a, b] and δ(ψ,R) ≤ δ∗, then there is an eigenpair
(µ, φ) of Ls in the region U = U(a, b, s, δ∗) = {z ∈ C : dist(z, L) ≤ sδ∗ , =z < s} pictured in Figure 1, where
L = [a, b] + i s.

We also have the complementary result to Theorem 2.2, by similar reasoning.
4
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Figure 1. The region U = U(a, b, s, δ∗) from Corollary 2.3.

Theorem 2.4. Let (µ, φ) be an eigenpair of Ls. Then

s [δ(φ,R)]2 ≤ dist(µ,Spec(L+ i s)) ≤ s δ(φ,R) ,(9)

dist(<µ,Spec(L)) ≤ s δ(φ,R) τ(φ,R) .(10)

Let λ = arg min{|σ −<µ| : σ ∈ Spec(L)}. If Λ ⊂ Spec(L) contains λ, then

inf
v∈E(Λ,L)

‖φ− v‖L2(Ω)

‖φ‖L2(Ω)
≤ s δ(φ,R) τ(φ,R)

dist(<µ,Spec(L) \ (Λ ∪ {<µ}))
,(11)

where E(Λ,L) is the corresponding invariant subspace.

Proof. Since µ /∈ Spec(L+ i s), and (L+ i s−µ)φ = i s χΩ\Rφ, the upper bound in (9) now follows in the same

way as its counterpart (6). Since µ = µ1 + i s[τ(φ,R)]2, |d + i s − µ| = |d − µ1 + i s[δ(φ,R)]2| ≥ s[δ(φ,R)]2

for any d ∈ R, from which the lower bound follows immediately.
Letting δ = δ(φ,R) and τ = τ(φ,R), one finds that (L − µ1)φ = i s(τ2χΩ\Rφ − δ2χRφ) by direct

computation. If µ1 ∈ Spec(L), then (10) holds trivially, so we assume that µ1 6∈ Spec(L). It follows that

‖φ‖2L2(Ω) ≤ ‖(L − µ1)−1‖2‖i s(τ2χΩ\Rφ− δ2χRφ)‖2L2(Ω)

= ‖(L − µ1)−1‖2s2(τ4‖φ‖2L2(Ω\R) + δ4‖φ‖2L2(R)) .

Shifting around terms, and recalling that δ2 + τ2 = 1, we obtain gives

‖(L − µ1)−1‖−2 ≤ s2(δ4τ2 + τ4δ2) = s2δ2τ2 ,(12)

which yields (10).
Now let P = 1

2π i

∫
γ
(z − L)−1 dz denote the (orthogonal) spectral projector for E(Λ,L), where γ is a

simple closed contour that encloses Λ ∪ {µ1}, and excludes Spec(L) \ Λ. Noting that P commutes with L,
the identity

I − P = (L(I − P )− µ1)−1(I − P )(L − µ1) ,(13)

follows by direct algebraic manipulation. From this, (11) is achieved as before. �

Remark 2.5 (Vector Normalization). Given an eigenpair (µ, φ) of Ls, with ‖φ‖L2(Ω) = 1, we will further
normalize φ as follows:

φ←− cφ where c = arg min{‖=(dφ)‖L2(Ω) : |d| = 1} .(14)

Our rationale for minimizing the imaginary part in this sense is that if some scaling of φ, cφ, is close to a
real(!) eigenvector ψ of L, which is the case if the upper-bound in (11) is small, then the imaginary part
of cφ should be small. Proposition 2.6 will provide further motivation for this kind of normalization. For
a given non-zero function φ = φ1 + iφ2, not necessarily an eigenvector, one can recast the minimization
problem α = min{‖=(dφ)‖L2(Ω) : |d| = 1} as a 2× 2 eigenvalue problem, with α2 as the smaller of the two

(real) eigenvalues. The corresponding real eigenvector c = (c1, c2), with c21 + c22 = 1, is related to the optimal
scalar c by c = c1 + i c2. The matrix for this eigenvalue problem is(

‖φ2‖2L2(Ω)

∫
Ω
φ1φ2 dx∫

Ω
φ1φ2 dx ‖φ1‖2L2(Ω)

)
.(15)

It can be seen, using the Cauchy-Schwarz inequality, that this matrix is positive semidefinite, and that α = 0
iff {φ1, φ2} is a linearly dependent set.
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Proposition 2.6. Let (µ, φ) be an eigenpair of Ls with ‖φ‖L2(Ω) = 1, and set µ1 = <µ, φ1 = <φ, φ2 = =φ,
τ = τ(φ,R) and δ = δ(φ,R). It holds that

‖(L − µ1)φ1‖2L2(Ω) = s2(τ4‖φ2‖2L2(Ω\R) + δ4‖φ2‖2L2(R)) .(16)

Proof. As was seen in the proof of Theorem 2.4, (L − µ1)φ = i s(τ2χΩ\Rφ − δ2χRφ). Comparing the real
and imaginary parts of both sides, we determine that

(L − µ1)φ1 = −s(τ2χΩ\Rφ2 − δ2χRφ2) .

This identity immediately yields (16). �

The following 1D examples illustrate several of the ideas and results discussed so far.

Example 2.7. For Ω = (0, 1), we consider the operator

L = − d2

dx2
+

4∑
k=1

VkχRk
, Rk =

1

4
(k − 1, k) ,

with homogeneous Dirichlet boundary conditions, for constants Vk ≥ 0. The landscape function u can be
determined analytically in this case. The eigenfunctions can also be determined analytically, up to the
solutions of a non-linear equation for the eigenvalues (cf. [12]). As a concrete illustration, we consider the
case (V1, V2, V3, V4) = (0, 802, 0, 4002). In this case, u has precisely two local maxima, u1 = 0.008652 and
u3 = 0.008819, at x1 = 0.13155 and x3 = 0.61972, respectively. The approach of [4] estimates the two
ground state eigenvalues as λ ≈ 1.25/u3 = 141.74280 and λ ≈ 1.25/u1 = 144.46879; the actual ground
state eigenvalues in this case are λ = 140.49323 and λ = 143.18099. Using the factor 1.875 employed in [4]
for a (more complicated) 1D Schrödinger problem, the localization interval for the first ground state is
[0.528993, 0.710441] ⊂ R3, and for the second ground state, it is [0.0416835, 0.221412] ⊂ R1.

In Figure 2, plots are given of the maximum localization measures max τk = max τ(ψ,Rk), for the eigen-
vectors associated with the smallest sixteen eigenvalues, and for the eigenvectors associated with first fifteen
eigenvalues larger than V4 and the one immediately preceding them. The plot concerning eigenvalues near
or larger than V4 was specifically chosen to demonstrate localization in the region R4, which would not have
been predicted in the approaches of [4] or [2, 3]. Plots of three eigenvectors are also given, together with
their eigenvalues and the largest of their localization measures, to illustrate what “highly localized” may or
may not look like in practice. With respect to the standard ordering of eigenvalues 0 < λ1 < λ2 < λ3 < · · ·
(all eigenvalues of L are simple), the eigenpairs pictured in Figure 2(B) correspond to λ11, λ13 and λ96. It is
clear that τk ≤ 0.84 does not correspond to a natural understanding of being highly localized in Rk, but that
τk ≥ 0.96 does, in these cases. The first twelve eigenvectors for this example, those for which λ < V2 = 802,
are all strongly localized in either R1 or R3, alternating between these subdomains, with max{τ1, τ3} > 0.96;
and the remaining four eigenvectors, though each most localized in R2, are not highly localized in any of the
four subdomains. Among the sixteen eigenvectors much higher in the spectrum, four of them are strongly
localized in R4, with τ4 > 0.96, the second, third, fourth and seventh; none of the rest are highly localized
in any of the four subdomains.

A slight modification of the approach in [12] allows for the computation of complex eigenpairs for Ls, and
we use it below. In Table 1, we see the five eigenvalues λ of L for which λ ∈ [0, 220000] and δ(ψ,R3) ≤ δ∗ =
1/5 for the corresponding eigenvector. The twelfth eigenvalue of L, λ = 4954.5303, just fails to make the
cut, with δ(ψ,R3) = 0.27074936. For convenience in comparison, this eigenvalue and its localization measure
are included in the table in italics. Also given in this table are all eigenvalues µ of Ls = L + i sχR3 within
the region U(0, 220000, s, δ∗), for s = 1 and s = 100, together with the localization measures δ(φ,R3) for
their corresponding eigenvectors. In both cases for Ls, six eigenpairs make the cut, with the final eigenvalue
approximating λ = 4954.5303. Recalling (5), we note that δ(ψ,R3) can be obtained directly from =µ,

δ(ψ,R3) =
√

1−=µ/s. When s = 1, λ and <µ, and δ(ψ,R3) and δ(φ,R3), agree in all digits shown, for
eigenpairs (λ, ψ) and (µ, φ) that are matched. We note that there are 130 eigenvalues of L in [0, 220000], so
the reduction to six candidates for localization in R is significant.

In Table 2, we see the two eigenvalues λ of L for which λ ∈ [0, 220000] and δ(ψ,R4) ≤ δ∗ = 1/5 for
the corresponding eigenvector. Also given in this table are all eigenvalues µ of Ls = L + i sχR4 within the
region U(0, 220000, s, δ∗), for s = 1 and s = 100, together with the localization measures δ(φ,R4) for their

6
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(a) max τk for λ ∈ (140, 7155) (left) and λ ∈ (158923, 176357) (right)
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(b) Three eigenvectors, with λ and max τk.

Figure 2. Localization measures max τk = max τ(ψ,Rk) for 32 eigenvectors, and plots of
three of these eigenvectors, for Example 2.7.

corresponding eigenvectors. In both cases for Ls, six eigenpairs make the cut, and the eigenvalues of L that
best match the remaining four of Ls, together with their localization measures, are also given in italics in
this table.

Finally, in Figure 3, analogues of the plots in Figure 2(B) are given for Ls, with s = 100, and R = R3 for
the first pair of plots, R = R2 for the second pair, and R = R4 for the third pair. Each pair of plots shows
the real and imaginary parts of an eigenfunction φ, normalized so that ‖φ‖L2(Ω) = 1 and α = ‖=φ‖L2(Ω) is
minimized—see Remark 2.5. Up to scaling, the corresponding ψ and φ1 = <φ show strong resemblances.
Localization values δ(φ,R) and relative residuals ‖(L−µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) (see Proposition 2.6) are also
included. The second eigenvector, shown in Figure 3(B), has the largest (worst) δ-value, α-value and relative
residual among the three, whereas the third eigenvector is best in each of these categories. The α-values in
Table 1 for s = 100 increased from 7.189× 10−4 to 5.337× 10−3 for the first five, and α = 1.1015× 10−2 for
the sixth. For the eigenvectors in Table 2 with s = 100, α = 4.152× 10−3 and α = 8.870× 10−3 for the first
two, and the α-values ranged between 1.515× 10−2 and 2.613× 10−2 for the final four.

Based on the apparent correlation between a normalized eigenvector φ of Ls having a small α-value
and it being close to an eigenvector ψ of L that is localized in R, one might be tempted think that α-
values for eigenvectors of Ls are, by themselves, decent indicators of localization of eigenvectors of L in
R. However, this is not the case. For example, the second eigenvalue of Ls, with s = 100 and R = R3,
is µ = 143.18098 + 6.2629546 × 10−17 i, with the real part of the (normalized) eigenfunction φ highly
localized in R1, and its significantly smaller imaginary part highly localized in R3: δ(<φ,R1) = 0.032815726,
δ(=φ,R3) = 0.042859575 and α = 6.9038783 × 10−10. The eigenvector φ of L that is closest to φ has
λ = 143.18098, δ(ψ,R1) = 0.032815726 and δ(ψ,R3) = 1.0000000. So a small α-value for φ in this case
corresponds to a nearby eigenvector of L that is highly localized in the complement of R3! Of course, we never
would have considered this eigenpair of Ls if we were searching in the region U indicated in Corollary 2.3.

Mathematica was used for all of these computations and plots, employing very high precision arithmetic.

Example 2.8 (False Indication of Localization, Large s). It can be the case that Ls = L+ i s χR has localized

eigenvectors even when L has none. For example, if L = − d2

dx2 on (0, 1), with homogeneous Dirichlet
7



Table 1. Eigenvalues and localization measures in R3 for eigenpairs (λ, ψ) of L with
λ ∈ [0, 220000] and δ(ψ,R3) ≤ δ∗ = 1/5, for Example 2.7. Eigenvalues and localization
measures for the eigenpairs (µ, φ) of Ls with µ ∈ U(0, 220000, s, 1/5), for s = 1 and s = 100.
In italics are the eigenvalue and localization measure for L that fail to satisfy δ(ψ,R3) ≤ δ∗,
but which have obvious counterparts among the given eigenpairs of Ls.

s = 1 s = 100
λ δ(ψ,R3) <µ =µ δ(φ,R3) <µ =µ δ(φ,R3)

140.49323 0.0324770 140.49323 0.99894524 0.0324770 140.49441 99.894539 0.0324748
561.35749 0.0659934 561.35749 0.99564487 0.0659934 561.36244 99.564551 0.0659886
1260.5517 0.1019069 1260.5517 0.98961499 0.1019069 1260.5640 98.961665 0.1018987
2233.8447 0.1425062 2233.8447 0.97969199 0.1425062 2233.8708 97.969580 0.1424928
3472.5421 0.1928871 3472.5421 0.96279456 0.1928871 3472.5974 96.280425 0.1928620
4954.5303 0.2707494 4954.5303 0.92669479 0.2707494 4954.6877 92.674005 0.2706658

Table 2. Eigenvalues and localization measures in R4 for eigenpairs (λ, ψ) of L with
λ ∈ [0, 220000] and δ(ψ,R4) ≤ δ∗ = 1/5, for Example 2.7. Eigenvalues and localization
measures for the eigenpairs (µ, φ) of Ls with µ ∈ U(0, 220000, s, 1/5), for s = 1 and s = 100.
In italics are the eigenvalues and localization measures for L that fail to satisfy δ(ψ,R4) ≤ δ∗,
but which have obvious counterparts among the given eigenpairs of Ls.

s = 1 s = 100
λ δ(ψ,R4) <µ =µ δ(φ,R4) <µ =µ δ(φ,R4)

160158.93 0.0577667 160158.93 0.99666301 0.0577667 160158.92 99.667632 0.0576513
160629.92 0.1092483 160629.92 0.98806481 0.1092483 160629.94 98.809982 0.1090879
161389.73 0.2332336 161389.73 0.94560213 0.2332335 161390.21 94.613050 0.2320981
163942.68 0.2610104 163942.68 0.93187361 0.2610103 163942.71 93.203093 0.2607088
167673.57 0.3716197 167673.57 0.86189881 0.3716197 167673.93 86.221341 0.3711962
170192.99 0.4219290 170192.99 0.82197599 0.4219289 170192.51 82.233071 0.4215084

conditions, the eigenpairs are (λn, ψn) = ((nπ)2, sin(nπx)). Taking R = (0, 1/4), we have

1

4

(
1− 2

π

)
≤ [τ(ψn, R)]2 =

1

4

(
1 +

in+1 + (−i)n+1

nπ

)
≤ 1

4

(
1 +

2

3π

)
, [τ(ψn, R)]2 → 1

4
.

Clearly, none of the eigenvectors are localized in R.
However, if we take s = 104, we find an eigenpair (µ, φ) of Ls with µ = 149.02494 + 9991.7736 i and

δ(φ,R) = 0.02868. In this case, φ is highly localized in R, and µ will lie in some U(a, b, s, δ∗) for any
δ∗ ≥ 0.000822, which could lead to the false indicator that there is an eigenpair (λ, ψ) of L with ψ highly
localized in R. The nearest eigenvalue of L+ i s to µ is λ = (4π)2 + i s, with ψ = ψ4, for which R is a nodal
domain.

Example 2.9 (False Indication of Localization, Small s). One might wonder if only allowing smaller s, say
s ≈ 1, would eliminate such false indicators of localization of eigenvectors of L, but that is not necessarily the

case. Suppose that L = − d2

dx2 + V χ(1/4,3/4). It is straight-forward to show that eigenvectors of L must have
either even or odd symmetry about x = 1/2, so eigenvectors cannot be highly localized in either R = (0, 1/4)
or R = (3/4, 1). We also note that, being a Sturm-Liouville problem, the eigenvalues are known to be simple,
but choosing large V can result in distinct eigenvalues that are very close. For our illustrations, we choose
V = 802. The eigenvectors corresponding to the smallest two eigenvalues of L are given in Figure 4. These
eigenvalues are extremely close to each other, λ2 − λ1 ≈ 3.59 × 10−16. Increasing V reduces this gap even
further.

When R = (0, 1/4) and s = 1 are chosen for Ls, the eigenpair (µ, φ) having smallest real part µ1 is given in
Figure 4. For this eigenpair, we have δ(φ,R) = 0.032815726, ‖(L−µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 7.27553×10−6,
which is a very strong false(!) indicator of localization of an eigenvector ψ of L having eigenvalue λ near µ1.
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(a) s = 100 for R3, δ(φ,R3) = 0.27066575, ‖(L − µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 0.67472464.
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(b) s = 100 for R2, δ(φ,R2) = 0.53309756, ‖(L − µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 10.9088368.

1
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0.5
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(c) s = 100 for R4, δ(φ,R4) = 0.05765133, ‖(L − µ1)φ1‖L2(Ω)/‖φ1‖L2(Ω) = 0.36354044.

Figure 3. Plots of φ1 = <φ (left) and φ2 = =φ for eigenvectors φ of Ls, normalized
so that ‖φ‖L2(Ω) = 1 and α = ‖φ2‖L2(Ω) is minimized, for Example 2.7. The eigenvalues
µ = µ1 + iµ2 are given above the plots of φ1, and the α-values are given above the plots of
φ2. Compare with Figure 2(B).

There is a counterpart of λ2 among the eigenvalues of Ls as well, having real part 143.180985607932844609
(slightly larger than µ1 = <µ) and imaginary part 3.2278925 × 10−32. The corresponding eigenvector is
highly localized in (3/4, 1). Motivated by this observation, we mention a simple analogue of (6) whose proof
follows precisely the same pattern as that for (6) in Theorem 2.2. For an eigenpair (λ, ψ) of L, it holds that

dist(λ , Spec(Ls)) ≤ sτ(ψ,R) = sδ(ψ,Ω \R) .(17)

9



An obvious analogue for (7) holds as well, though we do not state it here.
Changing to R = (3/4, 1) yields essentially identical results as were obtained for R = (0, 1/4), up to a

flip in the graphs of the real and imaginary parts of φ across x = 1/2 and a change in signs. These are also
given in Figure 4. If one had the inspired idea of taking R = (0, 1/4) ∪ (3/4, 1), the first two eigenpairs of
Ls (ordered by their real parts) are very close to those of L. These are given in Figure 5.

Because of the tight clustering of eigenvalues of L, we use this example to discuss the eigenvector result (11)
in Theorem 2.4. With R = (0, 1/4), the pair (µ1, φ1) = (<µ,<φ) associated corresponding to Figure 4 (B) has
µ1 very close to two eigenvalues of L, those we called λ1 and λ2 above, but φ1 is not close any eigenvector of
L. If we were to take Λ = {λ1} or Λ = {λ2} in (11), then the denominator in the bound, dist(µ1,Spec(L)\Λ),
is extremely small, which permits the poor approximation of φ1 in E(Λ,L). Note that µ1 /∈ Spec(L), so
Spec(L)\(Λ∪{µ1}) = Spec(L)\Λ, and so we use the more concise expression dist(µ1,Spec(L)\Λ). However,
if we take Λ = {λ1, λ2}, then dist(µ1,Spec(L)\Λ) is much larger, and a good approximation of φ1 in E(Λ,L)
is ensured. More specifically, the next closest eigenvalues of L to µ1 are λ3 = 572.082899256658465449 and
λ4 = 572.08289925665847099, so dist(µ1,Spec(L) \ Λ) = λ3 − µ1 = 428.90191. In this case, it is easy to see
how φ1 is very close to a linear combination of the eigenvectors of L pictured in Figure 4(A); calling these

ψ1 and ψ2, we see that φ1 ≈ −(ψ1 + ψ2)/
√

2.
As a matter of interest, we mention that the landscape function u for L has a single local maximum value

umax = 0.0086523880, which is achieved at x = xmax = 0.13154762 and x = 1 − xmax. Using the approach
of [4], the corresponding estimate of the smallest eigenvalue is λ̃ = 1.25/umax = 144.46879. The summary
description for finding a localization region R that was given in Section 1 is inadequate in this case, because
both connected components of {x ∈ Ω : W (x) ≥ E} (for E ≥ λ̃) contain a minimizer of W = 1/u, and
both components are of the same size, so such a consideration cannot be used as a tie-breaker. The authors
of [4] note that tightly clustered minima and/or minimizers of W can make the choice of corresponding
localization regions much more challenging, and indicate that they may pursue a more nuanced approach in
the future.

Remark 2.10. As suggested by (17), one could easily develop results analogous to those in this section but
for which the roles of R and Ω \ R are “reversed”. While still being concerned with localization in R, the

complex-shifted operator would be defined instead as L̃s = L+ i sχΩ\R. The analogue of the statement given
at the beginning of this section is:

If (λ, ψ) is an eigenpair of L with ψ highly localized in R, then there will be an eigenpair

(µ, φ) of L̃s that is close to (λ, ψ).

The analogues of (6) and (10) in this case are

dist(λ , Spec(L̃s)) ≤ sδ(ψ,R) , dist(<µ,Spec(L)) ≤ sδ(φ,R)τ(φ,R) ,(18)

for eigenpairs (λ, ψ) of L and (µ, φ) of L̃s. There are similarly predictable analogues of the other results in

this section. A careful comparison of an approach based on L̃s with that based on Ls is a topic of future
research.

3. An Algorithm Template for (T)

Guided by the results of Section 2, we propose the algorithm template given in Algorithm 1 for our
fundamental task (T), which we restate here for convenience,

(T)
Given a subdomain R, an interval [a, b] and a (small) tolerance δ∗ > 0, find all eigenpairs (λ, ψ) for

which δ(ψ,R) ≤ δ∗ and λ ∈ [a, b], or determine that there are not any.

Practical realizations are obtained by choices made on lines 2 and 8 of Algorithm 1, and we describe below
reasonable choices for each. Tables 1 and 2, in which some eigenvalues of Ls in U corresponded to an
eigenvector of L that was not sufficiently localized in R, demonstrate why line 9 is needed.

We first consider line 2 of Algorithm 1. There are several classes of methods that are designed for finding

eigenpairs (µ, φ) (or just eigenvalues) of an operator, with µ in some user-specified region Ũ ⊂ C, which we

will assume is simply connected and has a (piecewise) smooth boundary γ = ∂Ũ . We mention methods that
are based on associated contour integrals, and classify them into four categories: Sakurai-Sugiura methods
(SS, CIRR) (cf. [7, 27, 28, 40, 41, 52]), FEAST methods (cf. [17, 18, 24, 31, 39, 45, 49, 51]), Beyn methods

10



1

4

1

2

3

4
1

0.5

1.0

1.5

2.0
λ  143.18098548693914842

1

4

1

2

3

4
1

-2

-1

1

2

λ  143.18098548693914878

(a) The first two eigenvectors of L.
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(b) The real (left) and imaginary of the first eigenpair of Ls with R = (0, 1/4).
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(c) The real (left) and imaginary of the first eigenpair of Ls with R = (3/4, 1).

Figure 4. Plots of the first two eigenvectors of L, and of the real an imaginary parts of
the first eigenvector of Ls for different choices of R, and s = 1. See Example 2.9.

(cf. [8–10, 32, 47]), and Spectral Indicator Methods (RIM, SIM) (cf. [25, 26, 33, 48]). Unlike the other three
approaches, Spectral Indicators Methods do not involve the approximate solution of eigenvalue problems,
and yield only eigenvalue approximations.

As we use the FEAST approach for our experiments in Section 4, we provide a brief high-level description of
how it works for a normal (or selfadjoint) operator A having compact resolvent, such as Ls or L. Although we
are primarily concerned with applying FEAST to the normal operator Ls, we describe it first for selfadjoint
A, and then indicate how it can be made applicable to normal operators. Suppose that f = f(z) is
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(c) The real (left) and imaginary of the second eigenpair of Ls with R = (0, 1/4) ∪ (3/4, 1).

Figure 5. Plots of the first two eigenvectors of L, and of the real an imaginary parts of
the first eigenvector of Ls for different choices of R, and s = 1. See Example 2.9.

a rational function that is bounded on Spec(A). Then B .
= f(A) is a bounded (normal) operator on

Dom(B)
.
= Dom(A), and if (λ, ψ) is an eigenpair of A, then (f(λ), ψ) is an eigenvector of B. We emphasize

that the eigenvectors of A and B are the same! Now suppose that the open set Ũ contains some finite

subset Λ ⊂ Spec(A) and that the contour γ = ∂Ũ does not intersect Spec(A). The rational function f is

then chosen as an approximation of the characteristic function for Ũ , f(z) ≈ χŨ (z) = 1
2π i

∮
γ
(ξ − z)−1 dξ.

This rational approximation is often obtained from a quadrature approximation of this Cauchy integral,
taking the form f(z) =

∑n−1
k=0 wk(zk − z)−1, but there are other ways of obtaining such a rational function
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Algorithm 1 Eigenvector Localization Template

1: procedure Localize(a, b, s, δ∗, R)
2: determine all eigenpairs (µ, φ) of Ls with µ ∈ U(a, b, s, δ∗) . Corollary 2.3
3: if no eigenvalues are found in 2 then
4: exit . There are no eigenpairs (λ, ψ) of L with λ ∈ [a, b] and δ(ψ,R) ≤ δ∗
5: else
6: for each eigenpair (µ, φ) found in 2 do
7: φ←− cφ . Normalize φ, Remark 2.5
8: post-process (<µ,<φ) to obtain (approximate) eigenpair (λ̃, ψ̃) of L
9: if δ(ψ̃, R) ≤ δ∗ then

10: accept (λ̃, ψ̃)
11: end if
12: end for
13: end if
14: return accepted (approximate) eigenpairs (λ̃, ψ̃)
15: end procedure

(cf. [21, 46]). It follows that B approximates (in some sense) the spectral projector S for A associated with
Λ, i.e. S = χŨ (A) = 1

2π i

∮
γ
(ξ −A)−1 dξ. We have E

.
= Range(S) = E(Λ,A), which is the target invariant

subspace. FEAST is based on subspace iteration using the “filtered operator” B: starting with a random
finite-dimensional subspace E0 ⊂ Dom(A) that satisfies SE0 = E, the iteration generates a sequence of
subspaces Ek+1 = BEk that converge to E with respect to subspace gap. A Rayleigh-Ritz procedure is used
on a finite rank operator Ak : Ek → Ek to obtain approximations Λk that converge to Λ in the Hausdorff
metric, and a natural by-product of this procedure is that an orthonormal basis of Ek is obtained. More
specifically, Ak = PkA|Ek

, where Pk is the orthogonal projector onto Ek, and Λk = Spec(Ak). The rate of

convergence is governed by the ratio

κ
.
=

supλ∈Spec(A)\Λ |f(z)|
infλ∈Λ |f(z)|

< 1 ,(19)

so a good “filter function” f for the region Ũ should decay rapidly (in modulus) away from Ũ , and ideally

not vary too much within Ũ . For non-selfadjoint (normal) A, approximations Ek and E∗k of the right and
left invariant subspaces E and E∗ of A are obtained using subspace iteration with B and its adjoint B∗, with
some variations on how to extract eigenvalue approximations and maintain well-conditioned bases of Ek and
E∗k (cf. [31, 51]).

It is convenient to use

Ũ = Ũ(a, b, s, δ∗) = {z ∈ C : dist(z, L) ≤ sδ∗} , L = [a, b] + i s ,(20)

for the search region. Recall that the eigenvalues of Ls that are of interest are in its lower-half, U , which is

pictured in Figure 1. The region Ũ , when viewed as a domain in R2, is often called a Bunimovich stadium

in the context of quantum billiards, where it serves as a popular example (cf. [11]). We will refer to γ = ∂Ũ
as a Bunimovich curve. A unit-speed parameterization of γ that traverses it counter-clockwise, starting at
the point b+ i(s− r), is given by z(t) = x(t) + i y(t), where

(x(t), y(t)) =


r(sin( tr ),− cos( tr )) + (b, s) , 0 ≤ t ≤ t1
(b+ t1 − t, s+ r) , t1 ≤ t ≤ t2
r(sin( t+a−br ),− cos( t+a−br )) + (a, s) , t2 ≤ t ≤ t3
(a− t3 + t, s− r) , t3 ≤ t ≤ P

,(21)

and

r = sδ∗ , t1 = πr , t2 = t1 + b− a , t3 = t2 + πr , P = 2πr + 2(b− a) .(22)
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(a) Bunimovich curve γ = ∂Ũ and poles

(quadrature points) of f(z).
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(b) Contour plot of |f(z)| for a − 2r ≤
<z ≤ b+ 2r and s− 2r ≤ =z ≤ s. The

red curve is part of γ = ∂Ũ .

Figure 6. Poles and contour plot of |f(z)| for the rational filter f(z) associated with

Ũ = Ũ(a, b, s, δ∗) for (a, b, s, δ∗) = (−4, 18, 10, 1/5); n = 32 equispaced points are used for
the filter.

The parameterization is made P -periodic by setting z(t + P ) = z(t). The n-pole rational filter function
associated with γ is obtained by applying the trapezoid rule to 1

2π i

∮
γ
(ξ − z)−1 dξ,

f(z) =

n−1∑
k=0

wk(zk − z)−1 , zk = z(kh+ πr/2) , wk =
hz′(kh+ πr/2)

2π i
, h =

P

n
.(23)

The offset of πr/2 in the definition of the quadrature points (poles) zk and weights wk provides a more
symmetric distribution of these points. An example Bunimovich curve, overlaid with the poles of f(z), is
given in Figure 6, together with a contour plot of |f(z)| that illustrates its effectiveness in distinguishing
between points inside γ from those outside. The thick red curve in the contour plot is the portion of γ for
which =z ≤ s—recall that eigenvalues µ of Ls satisfy =µ < s. The thick black curves in the contour plot are
the contours |f(z)| = 2j , −8 ≤ j ≤ 2, with the curve for |f(z)| = 2−8 being farthest from γ. These indicate

the desired rapid decay of |f(z)| away from Ũ .
We now consider the post-processing step on line 8. As suggested by Theorem 2.4 and Proposition 2.6, the

pair (µ1, φ1) = (<µ,<φ) is often a decent starting point for finding an eigenpair (λ, ψ) of L with λ “close” to
µ1; recall that |µ1 − λ| ≤ sδ(φ,R)τ(φ,R). A reasonable post-processing procedure consists of a few inverse
iterations, see Algorithm 2. One might instead opt for Rayleigh quotient iterations, which replace µ1 with the

Algorithm 2 Approximate Eigenpair Post-Processing

1: procedure Post-process(µ1, φ1, tol)

2: λ̃←− µ1

3: ψ̃ ←− φ1/‖φ1‖L2(Ω)

4: while ‖Lψ̃ − λ̃ψ̃‖L2(Ω) > tol do

5: ψ̃ ←− (µ1 − L)−1ψ̃

6: ψ̃ ←− ψ̃/‖ψ̃‖L2(Ω)

7: λ̃←− (Lψ̃, ψ̃)
8: end while
9: return post-processed (approximate) eigenpair (λ̃, ψ̃)

10: end procedure
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current approximation λ̃ on line 5 of Algorithm 2. However, it is expected that few iterations will be needed,
so requiring the action of only one inverse is perhaps more attractive. We note that Proposition 2.6 allows
for the efficient computation of the initial residual, which may already be below the prescribed tolerance,
resulting in no inverse iterations. In practice, one might use a more readily computable proxy for the residual
norm.

In Remark 3.1 below, we highlight a potential danger of relying on the post-processing procedure in
Algorithm 2 as stated in situations in which µ1 = <µ is close to an eigenvalue of L, but φ1 = <φ is not
close to an eigenvector despite the fact that ‖Lφ1−µ1φ1‖L2(Ω) is reasonably small. Example 2.9 was chosen
precisely to illustrate how such scenarios could arise. While we do not expect such situations to be common
enough to reject Algorithm 2 as a viable option, it is useful to consider possible variants that are likely
to be more robust in such situations. One such variant is to first estimate (as efficiently as possible) how
many eigenvalues of L are “near” µ1 (cf. [14, 50]), as this has a direct affect on the convergence rate of
inverse iteration. Recall that we are guaranteed that there is at least one eigenvalue of L that is within
sδ(φ,R)τ(φ,R) of µ1, so we might consider a slightly larger interval around µ1 for our eigenvalue count
estimate. If the approach estimates m eigenvalues of L near µ1, then inverse iteration would be performed
using a subspace of size at least m. After extracting (approximate) eigenpairs, each would be tested for its
localization in R, as in lines 9-11 of Algorithm 1. A more in-depth discussion of variants of the post-processing
algorithm will be postponed for subsequent work.

Remark 3.1 (Possible False Positives from Post-Processing). As was demonstrated in Example 2.9, it is

possible for ‖Lψ̃ − λ̃ψ̃‖L2(Ω) to be relatively small without (λ̃, ψ̃) being close to an eigenpair of L. In that

example, we would have ‖Lψ̃− λ̃ψ̃‖L2(Ω) = 7.27553× 10−6 for the initial check on line 4. If the tolerance in
Algorithm 2 was chosen larger than this, no inverse iterations would be performed, and the procedure would
return its input, which is not close to an eigenpair of L and would falsely indicate an eigenvector of L that is
localized in R = (0, 1/4). Setting a smaller tolerance in this case will force at least one inverse iteration, but
the question of when the tolerance is small enough to be considered “safe” for the types of problems of interest
is a subtle one. In fact, by increasing the constant V in Example 2.9, the initial residual ‖Lψ̃−λ̃ψ̃‖L2(Ω) can be

made arbitrarily small, so no tolerance would seem safe. For Example 2.9 with V = 802 (as was used in that

example), the form of (L−µ1)−1ψ̃ is known in advance—linear combinations of (regular and/or hyperbolic)
sines and cosines having known frequencies on each subinterval—so inverse iterations can be carried out
by solving linear systems that enforce the boundary conditions and the continuity of the function and its
derivative across subintervals. After performing the first inverse iteration, and renormalizing, the resulting
function hardly differs from its predecessor at all—the maximal pointwise difference between the two functions
is on the order of 10−9—which suggests that many inverse iterations would be required (in essentially exact
arithmetic!) before the iterates began to reasonably approximate the true eigenvector. The extremely slow
convergence of inverse iteration in this case is expected, due to the fact that there are two eigenvalues of
L that are extremely close to µ1 (and to each other). Since the next nearest eigenvalues of L are much
farther away from µ1, performing inverse iteration with a two-dimensional subspace, (re)orthogonalizing its
basis as needed, will lead to much more rapid convergence, from which (approximate) eigenpairs can be
easily extracted using a Rayleigh-Ritz procedure. The initial basis might be chosen randomly, or one might
choose ψ̃ = φ1/‖φ1‖L2(Ω) as one of the two basis functions and the other to be the normalized version of the

orthogonal complement u⊥ of the landscape function u with respect to φ1, i.e. u⊥ = u − (u, ψ̃) ψ̃. In this
case, the “clever” choice of initial basis leads to very few inverse iterations before approximate eigenpairs
very close to those given in Figure 4(A) are obtained by the Rayleigh-Ritz procedure. From these two, one
can then deduce that there are no eigenvectors of L whose eigenvalues are near µ1 that are localized in
R = (0, 1/4), though one can see that they are localized in R = (0, 1/4) ∪ (3/4, 1).

Remark 3.2. As indicated near the beginning of this section, an approach such as SIM, which yields only
eigenvalue approximations, might be used in line 2 of Algorithm 1. In this case, line 7 is clearly irrelevant,
and the post-processing phase would proceed with only eigenvalue approximations. Since inverse iteration
is used, and can proceed with random initialization, such an approach is feasible. The potential reduction
in cost by using SIM on line 2 might make up for the potential increase in cost of using inverse iteration
with random initialization, as opposed to the (likely) better initialization obtained from methods that return
eigenpairs in line 2.
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Up to this point, we have not discussed how to choose the parameter s in Ls. Example 2.8 illustrates that
choosing s “too large” can introduce false indicators of localization that would later have to be recognized
and rejected, but how large is “too large” in terms of producing false indicators may be problem-dependent,
as can be seen in Examples 2.7 and 2.9. In the first of these examples, choosing s = 1 or s = 100 had very
little practical effect on the how well eigenpairs (µ, φ) of Ls with µ ∈ U(a, b, s, δ∗) served as predictors of
eigenpairs (λ, φ) of L for which λ ∈ [a, b] and δ(φ,R) ≤ δ∗. Example 2.9, which was specifically designed to
yield false indicators of localization even when s is small, probably should not be weighed so heavily in coming
up with practical guidance about how to choose s, but nonetheless illustrates that the quality of localization
indicators coming from line 2 of Algorithm 1 can be quite sensitive to the choice of s for certain problems.
Given the localization tolerance δ∗, there is some theoretical appeal to choosing s so that r = sδ∗ ≤ 1,
because it makes it easier for the bounds in eigenvector results such as (7) and (11) to be meaningful (i.e.
smaller than 1). However, Example 2.7 again shows that such a restriction is not necessary. It may be
that a “good” choice of s, in relation to a, b and δ, is dictated largely by practical efficiency considerations
concerning the method used for computing eigenpairs (µ, φ) of Ls with µ ∈ U(a, b, s, δ∗). For example, with
the FEAST approach used above, the rational filter f(z) determines how rapidly its iterations converge. We
recall that the key issue is the contrast between |f(µ)| for µ ∈ U = U(a, b, s, δ∗) and µ ∈ Spec(Ls) \ U ; the
greater the contrast, the fewer number of iterations are needed. For fixed (a, b, s, δ∗), increasing the number
n of poles in f (see (23)) will reduce the number of iterations needed, but increase the cost per iteration.

For a fixed n, the aspect ratio of U (equivalently Ũ) affects the quality of the filter. In Figure 6, n = 32
poles produces a very nice contrast for (a, b, s, δ∗) = (−4, 18, 10, 1/5); the aspect ratio ((b − a) + 2r)/(2r)
is 6.5 in this case. However, changing only s from 10 to 1 increases the aspect ratio to 56, and destroys
the quality of the filter. We do not picture the poor filter here, but mention that |f(z)| ≥ 1/2 for some z
with =z = s− 2r; the filter when s = 10 satisfied |f(z)| < 2−7 (typically even smaller) for all such z. Now,
taking (a, b, s, δ∗) = (−4,−9/5, 1, 1/5) restores the aspect ratio of U to 6.5, and |f(z)| looks precisely as that
pictured in Figure 6. We note that the only change between this and the “poor filter” situation is that b
was changed to restore the original aspect ratio of 6.5. For a fixed U(a, b, s, δ∗) (and n), the situation can
be improved by subdividing [a, b], [a, b] = [a0, a1]∪ · · · ∪ [ap−1, ap] for some p ∈ N, where aj = a+ j(b− a)/p.
Each subregion U(aj , aj+1, s, δ

∗), which will have a smaller aspect ratio than U(a, b, s, δ∗), can be searched
independently (in parallel) for eigenvalues of Ls. In light of the discussion above, it appears that offering
practical guidance for choosing s may require significant experimentation, so we postpone such judgments
to later work that is more computationally focused.

Remark 3.3 (Alternate Approach Using Bounded Operator). As indicated above, when b − a is very large,

the search region Ũ(a, b, s, δ∗) for eigenvalues of Ls will typically have a very large aspect ratio, which

would necessitate subdivision Ũ(a, b, s, δ∗) =
⋃
{Ũ(aj , aj+1, s, δ

∗) : 0 ≤ j ≤ p − 1}. Since each subregion

Ũ(aj , aj+1, s, δ
∗) can be explored independently and in parallel, large regions can be efficiently explored in

practice when parallel computing is available. However, a different approach might be used that requires
only a single search region even if one wants to test all eigenvectors of L for localization in R—assuming
that there are only finitely many linearly independent eigenvectors of L that are localized in R to within a
given tolerance (see Remark 3.4 for a counterexample).

Suppose that b > 0 is a known or computed lower bound on Spec(L). The eigenvectors of M = bL−1

are precisely those of L, and we have Spec(M) ⊂ (0, 1]. If we define Ms = M + i s χR, then Spec(Ms) ⊂
(0, 1] + i (0, s), and the obvious analogues of the results in Section 2 hold for M and Ms, as they did for

L and Ls. Now, instead of exploring potentially many regions Ũ(aj , aj+1, s, δ
∗) for eigenvalues of Ls, we

explore a single region Û(s, δ∗) = [0, 1] + i[s(1 − δ∗), s] for eigenvalues of Ms. Of course, this assumes

that Û(s, δ∗) contains only finitely many eigenvalues of Ms counting multiplicities. The associated filtered
operator B = f(Ms) for FEAST iterations has the form

B =

n−1∑
k=0

wk(zk −Ms)
−1 = L

n−1∑
k=0

wk((zk − i s χR)L − b)−1 .(24)

A more thorough investigation of theoretical and practical considerations related to such an approach is
intended for future work, though we note here that one must still contend with issues of discretization
related to resolving highly oscillatory eigenvectors.
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Remark 3.4. Although we expect that, when R is a relatively small subdomain of Ω, and δ∗ < 1/2, there will
typically be only finitely many eigenvectors ψ of L that satisfy δ(ψ,R) ≤ δ∗, this need not be the case. For
example, let Ω be the unit disk and L = −∆. The eigenvalues are known to be λm,n = [jn(m)]2, for m ≥ 1
and n ≥ 0, where jσ(m) is the mth positive root of the first-kind Bessel function Jσ. The corresponding
eigenspaces, expressed in polar coordinates, are

E(λm,n,L) = span{Jn(jn(m)r) sin(nθ) , Jn(jm(m)r) cos(nθ)} = span{ψ(0)
m,n , ψ

(1)
m,n} .

Given r∗ ∈ (0, 1), we consider the annulus R for which r∗ < r < 1 (0 ≤ θ < 2π). For n ≥ 1, we have

‖ψ(k)
m,n‖2L2(Ω) = (π/2)[Jn+1(jn(m))]2, and

[δ(ψ(k)
m,n, R)]2 =

(r∗)2([Jn(jn(m)r∗)]2 − Jn−1(jn(m)r∗)Jn+1(jn(m))r∗)

[Jn+1(jn(m)r∗)]2
.

It can be shown that δ(ψ
(k)
1,n, R)→ 0 as n→∞, regardless of the choice of r∗, which is a way of quantifying

the statement that the eigenvectors ψ
(k)
1,n concentrate near the boundary of Ω for large n. So we see that,

even if r∗ is near 1, so R is relatively small compared to Ω, and δ∗ is small, there will be infinitely many
linearly independent eigenvectors ψ of L satisfying δ(ψ,R) ≤ δ∗.

4. A Partial Realization of Algorithm 1

An implementation of the FEAST algorithm that uses finite element methods to discretize the associated
operators is described in [17] (see also [18]). Corresponding code, Pythonic FEAST [19], builds on the
general purpose finite element software package NGSolve [42, 43], and provides a convenient user interface
in Python. Recent modifications to Pythonic FEAST allow for normal operators such as Ls, which we use
to illustrate a partial realization of Algorithm 1. In this realization, the computation (approximation) of
eigenpairs of Ls whose eigenvalues are in the search region U(a, b, s, δ∗), and the renormalization of the
eigenvectors, is performed—up through line 7 of Algorithm 1. These computations provide likely candidates
for associated localized eigenvectors of L, to be obtained through post-processing and then finally accepted
or rejected based on the tolerance δ∗. The post-processing is not automated here, and we instead rely on
visual comparison and experience to determine the eigenpairs of L that correspond to those computed for
Ls. The final accept/reject decision for these eigenvectors of L is clear based on their δ-values.

To illustrate the implementation, we have chosen an example for which localization is due to domain
geometry, as opposed to coefficients in the differential operator. The operator is L = −∆, with homogeneous
Dirichlet boundary conditions, and the domain Ω consists of three squares, one 4 × 4, one 3 × 3 and one
2 × 2, joined by two 2 × 1 rectangular “bridges”, as shown in Figure 7. We refer to Ω as the “three bulb”
domain, and to each of the squares as “bulbs”. Many simple constructions such as this could be chosen
to yield localization of some eigenvectors (cf. [13, 20]), and this domain was chosen because localization
of eigenvectors in each of the three bulbs occurs (multiple times) early in the spectrum. The eigenvalue
problems were discretized using quadratic finite elements on a fixed (relatively fine) quasi-uniform triangular
mesh having maximal edge length 0.1, resulting a a finite element space of dimension 15493.

To provide a baseline for comparison, we computed the first 71 eigenpairs for this discretization of L, whose
(discrete) eigenvalues are in the range (1.22, 33.30). Contour plots of the first sixteen eigenvectors are given
in Figure 7, and exhibit instances localization in each of the three bulbs. In our localization experiments, we
search for eigenvectors that are localized with tolerance δ∗ = 1/4, so τ∗ =

√
15/4 ≈ 0.96825, in each of the

three bulbs, for eigenvalues in [1, 33]. There are 70 such (discrete) eigenpairs in this portion of the spectrum.
When R is taken to be the left bulb, 20 of these eigenvectors satisfy the localization tolerance. When R is
taken as the right bulb, 9 of these eigenvectors satisfy the localization tolerance. Finally, when R is taken
to be the middle bulb, only one of the these eigenvectors satisfies the localization tolerance.

When R is taken as the middle bulb, two computed eigenpairs of Ls are found having computed eigenvalues
in U(1, 33, 1, δ∗). This search region was split into smaller (slightly overlapping) search regions as discussed
in and before Remark 3.3, each having aspect ratio 2/(2r) + 1 = 5 (r = sδ∗ = 1/4), that were tested
independently using the Bunimovich filter having n = 32 poles. These eigenvalues of Ls were µ = 4.50447 +
0.98218i and µ = 24.33196 + 0.96185i. The corresponding eigenpairs of L have λ = 4.50292, for which the
eigenvector is sufficiently localized in R, and λ = 24.20972, for which its eigenvector ψ is not, δ(ψ,R) =
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Figure 7. Contour plots of the first sixteen computed eigenvectors for the three bulb
domain. Computed eigenvalues are given for each, as well as localization measures for the
bulb in which the eigenvector is most localized: τ` for left bulb, τr for right bulb, and τm
for middle bulb.

λ = 1.2297 , τ` = 0.9999 λ = 2.1714 , τr = 0.9997 λ = 3.0528 , τ` = 0.9994 λ = 3.0842 , τ` = 1.0000

λ = 4.5029 , τm = 0.9910 λ = 4.8706 , τ` = 0.9983 λ = 5.3051 , τr = 0.9952 λ = 5.4827 , τr = 1.0000

λ = 6.0910 , τ` = 0.9974 λ = 6.1682 , τ` = 1.0000 λ = 7.7167 , τ` = 0.9845 λ = 8.0185 , τ` = 1.0000

λ = 8.3618 , τr = 0.9707 λ = 9.3829 , τm = 0.7945 λ = 10.029 , τ` = 0.8359 λ = 10.284 , τr = 0.7948

Figure 8. Middle bulb. Top panel: Contour plots of the eigenvector φ of Ls corresponding
to the true indicator µ = 4.50447 + 0.98218i, and of the matched eigenvector ψ of L (with
λ = 4.50292). Bottom panel: Contour plots of the eigenvector φ of Ls corresponding to
the false indicator µ = 24.33196 + 0.96185i, and of the matched eigenvector ψ of L (with
λ = 24.20972). The notation “f ∈ [c, d]” in the images below indicates that the range of
the function f shown in a given contour plot is [c, d].

<φ ∈ [−0.94,5.0e-4] =φ ∈ [−1.5e-2,4.4e-3] ψ ∈ [−0.94,1.3e-3]

<φ ∈ [−0.83, 1.10] =φ ∈ [−0.11, 0.12] ψ ∈ [−0.84, 0.84]

0.64489 > δ∗ (τ(ψ,R) = 0.76427 < τ∗). Contour plots of the real and imaginary parts of the eigenvectors
φ are given, together with their matched (real) eigenvectors ψ, in Figure 8. Since the color scheme in each
image is relative to the range of values of the plotted function (blue for the smallest values and red for the
largest), the ranges of function values are given explicitly in the figures for added context. We note that
max |=φ| is significantly smaller than max |<φ| for the true indicator—about two orders of magnitude. For
the false indicator, the difference is about one order of magnitude.

When R is taken as the right bulb, 14 computed eigenpairs of Ls were found whose eigenvalues were
in U(1, 33, 1, δ∗). This search was conducted in the same way for the middle bulb. Since there are only 9
eigenvectors of L that are localized in R within the tolerance δ∗, five of the eigenpairs of Ls provide false
indicators in this case. All 14 eigenvalues of Ls are given in Table 3, together with the eigenvalues of L with
which we have matched them and the localization measures (δ-values) of the corresponding eigenvectors of L.
Those that fail to make the final cut are emphasized using italics. Of the five false indicators, a strong case
could be made that three of the corresponding eigenvectors ψ of L just barely failed to make the cut—those
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<µ =µ λ δ(ψ,R) <µ =µ λ δ(ψ,R)
2.17146 0.99932 2.17143 0.02610 18.61842 0.99841 18.62201 0.32601
5.30605 0.99047 5.30506 0.09800 18.98014 0.83889 18.98051 0.48562
5.48270 1.00000 5.48270 0.00638 21.86147 0.99711 21.86307 0.07712
8.37589 0.94815 8.36148 0.24017 27.32128 0.99505 27.32821 0.18688

10.41327 0.82496 10.28357 0.60658 28.12641 0.90667 28.15248 0.33336
10.96057 0.99984 10.96061 0.02829 28.48136 0.99618 28.48221 0.06920
14.24624 0.99981 14.24624 0.01599 31.58901 0.97649 31.58960 0.27542

Table 3. Computed eigenvalues µ of Ls in U(1, 33, 1, δ∗) for the right bulb, paired with
matched eigenvalues λ of L and localization measures δ(ψ,R) of their corresponding eigen-
vectors φ. The five false indicators are highlighted in italics.

Figure 9. Right bulb. Top panel: Contour plots of the eigenvector φ of Ls corresponding
to the false indicator µ = 10.41327 + 0.82496i, and of the matched eigenvector ψ of L (with
λ = 10.28357). Bottom panel: Contour plots of the eigenvector φ of Ls corresponding to
the false indicator µ = 18.98014 + 0.83889i, and of the matched eigenvector ψ of L (with
λ = 18.98051).

<φ ∈ [−0.63, 0.72] =φ ∈ [−0.28, 0.11] ψ ∈ [−0.61, 0.59]

<φ ∈ [−0.74, 0.72] =φ ∈ [−0.22, 0.21] ψ ∈ [−0.73, 0.71]

for which 0.25 < δ(ψ,R) < 0.34. In Figure 9 we provide contour plots, analogous to those in Figure 8, for
the remaining two false indicators and their matched eigenvectors of L.

We finally turn to the investigation of localization in the left bulb. For this choice of R, there are 20
eigenvectors of L that satisfy the localization tolerance. Taking U(1, 33, 1, δ∗) as before, we compute 29
eigenpairs of Ls, so there are 9 false indicators in this case. Table 4, analogous to Table 3 for the right bulb,
provides the corresponding numerical data. Of the 9 false indicators, only three (perhaps 4) really miss the
mark in their predictions of localization for the matched eigenvectors of L. We also performed the search
with s = 1/2, for eigenpairs of Ls with eigenvalues in U(1, 33, 1/2, δ∗). In lieu of the level of detail provided
in Table 4, we summarize the results. The choice of s = 1/2 yielded 28 candidates, with one fewer false
indicator, corresponding to λ = 30.99216. Changing to s = 1/4 eliminated two more false indicators, those
corresponding to λ = 10.02874 and λ = 10.84459. Further reducing to s = 1/8, 1/16, 1/32 or 1/64 did not
eliminate any of the remaining false indicators.

5. Concluding Remarks

We have provided theory, together with detailed examples illustrating key results, motivating Algorithm 1
for exploring eigenvector localization phenomena. A partial realization of Algorithm 1 was described and
tested on a problem exhibiting multiple instances of localization due to domain geometry early in its spec-
trum, providing a “proof of concept” for our approach. What is missing from this realization is a post-
processing phase in which eigenpairs of L are obtained from those of Ls automatically, though some form
of inverse iteration was suggested for this. We have not provided numerical analysis, i.e. theoretical insight
into the effects of discretization errors, for our approach, but intend to pursue that in future work. Future
work will also include extensive testing of a full realization of Algorithm 1, as well as variants discussed
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<(µ) =(µ) λ δ(ψ,R) <(µ) =(µ) λ δ(ψ,R)
1.22976 0.99989 1.22975 0.01043 17.86628 0.99922 17.86930 0.03231
3.05287 0.99882 3.05277 0.03393 20.94272 0.99914 20.94341 0.06392
3.08423 1.00000 3.08423 0.00046 22.62970 0.99581 22.58585 0.44630
4.87100 0.99661 4.87063 0.05798 22.81320 0.99887 22.81332 0.03824
6.09172 0.99482 6.09100 0.07199 24.62085 0.99792 24.62379 0.13433
6.16815 1.00000 6.16815 0.00195 24.87619 0.94232 24.89579 0.32321
7.72286 0.97045 7.71673 0.17517 25.27439 0.88857 25.27430 0.02228
8.01849 0.99999 8.01849 0.00263 27.67153 0.99504 27.67714 0.14656

10.14045 0.84445 10.02874 0.54897 30.70848 0.99543 30.70761 0.07065
10.48456 0.99995 10.48453 0.01301 30.84404 0.99999 30.84395 0.00292
10.77238 0.91878 10.84459 0.68925 31.11016 0.82898 30.99216 0.60879
12.33173 0.99981 12.33501 0.29032 31.92197 0.99340 31.91777 0.18332
15.41686 0.99990 15.41680 0.01730 32.34692 0.93750 32.38753 0.37163
15.95522 0.93615 16.02489 0.26457 32.65153 0.99340 32.65182 0.10739
16.03284 0.99941 16.04093 0.28087

Table 4. Computed eigenvalues µ of Ls in U(1, 33, 1, δ∗) for the left bulb, paired with
matched eigenvalues λ of L and localization measures δ(ψ,R) of their corresponding eigen-
vectors φ. The 9 false indicators are highlighted in italics.

in Section 3, on a wide variety of problems, with a view toward providing guidance on how to set key
parameters.
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