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Operational ocean forecast systems provide routine marine products to an ever-widening community of users and
stakeholders. The majority of users need information about the quality and reliability of the products to exploit them fully.
Hence, forecast centres have been developing improved methods for evaluating and communicating the quality of their
products. Global Ocean Data Assimilation Experiment (GODAE) OceanView, along with the Copernicus European
Marine Core Service and other national and international programmes, has facilitated the development of coordinated
validation activities among these centres. New metrics, assessing a wider range of ocean parameters, have been defined
and implemented in real-time. An overview of recent progress and emerging international standards is presented here.

Introduction

Operational ocean forecast systems (OOFSs) now provide
a wide range of analyses and forecasts of the marine
environment that can be exploited by many users. The
value of the products to any particular user depends not
only on the quality and skill of the products but also on
the user’s knowledge (and understanding) of the quality,
skill and reliability of the products for his or her particular
application. Since the initial implementation of OOFSs
during the late 1990s, continuous efforts have been made
to evaluate hindcast and forecast accuracy and skill (Her-
nandez 2011; Martin 2011). Accuracy and skill here are
defined respectively as the OOFS products degree of close-
ness to the ‘ocean truth’ (Hernandez 2011) and the OOFS’s
usefulness for a given application (Jolliff et al. 2009). An
overview of skill assessment using observations and other
reference datasets representing this truth is given by Stow
et al. (2009).

The calibration, validation, verification and quality
control of OOFS products are core activities in ocean
operational centres (Lellouche et al. 2013; Oke et al.
2013; Blockley et al. 2014) (OOCs). Usually calibration

refers to a task in which model parameters are optimized.
Here, the calibration phase refers to the last comprehen-
sive scientific assessment of the new OOFS version
before operation. The calibration phase is also often
used to demonstrate that the new system performance is
better than the existing system. Validation refers to the
OOFS performance assessment while in operation. Verifi-
cation is defined here as the quantification of OOFS skill
based on independent data, i.e. not used to generate the
products.

Methods for assessing OOFS reliability (Crosnier & Le
Provost 2007) were defined in the early days of the Global
Ocean Data Assimilation Experiment (GODAE) exper-
iment (Bell et al. 2009), based on (1) consistency, (2)
quality (or accuracy) and (3) added value as proposed
and defined by weather forecast skill verification
approaches (Murphy 1993; Murphy & Winkler 1987).
The first two types of assessments are undertaken routinely
by OOCs as ‘internal metrics’. The third is considered as
user-oriented, and requires use of ‘external metrics’
measuring the fitness for purpose (provision of dependable,
reliable and repeatable information), or the value of ocean

© 2015 Institut de Recherche pour le Développement (IRD). Published by Taylor & Francis
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forecast services. This is also addressed by some OOCs in
parallel with verification tasks performed by users.

Experts in OOCs across the world who are assessing the
skill of OOFSs face similar issues with the observational
data sets available for validating their products. In general,
in situ and satellite measurements are collected by dedicated
data assembly centres (DACs) that pre-process the data and
make it available for OOFSs. Hence, for similar components
of operational systems, methods and tools for assessing the
representation of ocean processes can be shared. Owing to
the nature and quality of the observations, validation experts
also face comparable issues, such as the validation of mesos-
cale chlorophyll or primary products using ocean colour satel-
lite data, or the use of Lagrangian approaches and drifters to
verify the realism of eddies in regional models for oil-spill
forecast skill. As a result, there is a great potential for collab-
oration within the scientific community in this area.

Naturally, working groupswere set up to tackle, as a com-
munity, these validation issues. This started earlier within the
ocean observation community, which raised expert groups to
develop guidelines and standards for providing state-of-the-
art ocean observation products. Some examples of these are
the Ocean Surface Topography Science Team for sea
surface height (SSH) and satellite altimetry (www.aviso.
altimetry.fr), the Group for High Resolution Sea Surface
Temperature (GHRSST) for sea surface temperature (SST)
from various satellite and in situ sensors (www.ghrsst.org/),
theArgo team for in situvertical profiles of primarily tempera-
ture (T) and salinity (S) (www.argo.ucsd.edu), the Global
Ocean Surface Underway Data group for sea surface salinity
(SSS) (www.gosud.org) and the International Ocean Color
Coordinating Group (www.ioccg.org).

This paper aims to highlight recent progress in near-
real-time monitoring of OOFS performance, and to
describe different validation strategies and their limit-
ations. For the sake of completeness, we also present
DACs validation procedure for advanced observed-based
products. Some recent examples are presented and dis-
cussed in the first section. The next section illustrates pro-
gress by OOCs in integrating validation in their systems.
More specifically, since GODAE (Bell et al. 2009), the
operational community has maintained a partnership to
share and standardize validation methodologies. This com-
munity has gained mutual benefit from inter-comparing
their ocean products and inferring the relative strength
and weaknesses of the operational systems (Oke et al.
2012). These issues are addressed in the framework of
the ongoing GODAE OceanView program (Schiller et al.
2015) (GOV) (www.godae-oceanview.org) by the Inter-
comparison and Validation Task Team (IV-TT). Three
initiatives have started and that are ongoing: an Ocean
Reanalysis Intercomparison (Balmaseda et al. 2015); the
organization of a multi-model ensemble forecast approach
for ocean surface parameters; and the organization of the
near-real-time operational product ‘Class 4 metrics’

inter-comparison against observations, described later in
this paper and detailed in two companion papers (Ryan
et al. 2015; Divakaran et al. 2015).

Recent improvements in near-real time and
operational assessment

New metrics

Presently, real-time OOFS skill assessment focuses on
various aspects of the dynamics of physical and biogeo-
chemical processes of the ocean, at different time-scales,
over different areas, and with different purposes and uses.
Evaluation metrics have evolved in order to synthesize
different aspects of system performance together. For
example, Taylor (2001) and target (Jolliff et al. 2009) dia-
grams consider root-mean-square error (RMSE) or root-
mean-square differences (RMSD) together with anomaly
correlations versus observations. Similarly, cost functions
and model efficiency values (Hyder et al. 2012) can
provide a synthesis of model performance indicators.

Furthermore, new metrics have been designed to charac-
terize other properties. For example, in the case of search and
rescue, ensemble predictions and clouds of dispersion
(Melsom et al. 2012) have been used to evaluate the contri-
bution of uncertainty in ocean currents to drift projections.
Dispersion is also assessed using multi-model approaches
(such as Fukushima Cesium 137 concentration estimates;
Masumoto et al. 2012). New metrics have also been defined
for sea-ice, such as contingency tables and distribution stat-
istics used over ensemble coupled model seasonal forecast
experiments (Benestad et al. 2011). Skill assessment of
ocean biogeochemical models has also been addressed
recently. In particular, Lynch et al. (2009) point out the
failure of a model to accurately represent the ‘ocean truth’,
but also the failure to correctly assess the effective skill of
the model using appropriate metrics.

Assimilation performance assessment

In parallel, the monitoring of the performance of analysis
systems has been continuously improved. Statistics
derived from innovations (observation minus background)
and residuals (observation minus analysis) are used to
assess the consistency of the assimilation framework
(including the model background and observation error
covariances). In the case of ensemble analysis systems,
these statistics can be used to verify the adequacy of fore-
cast spread (Balmaseda et al. 2013; Desroziers et al.
2005; Desroziers & Ivanov 2001). Verifying and reducing
ocean model biases is also an important issue, as many
assimilation methods are based on the assumption that
models have no bias, which can reduce the efficiency of
analysis methods and even lead to unphysical increments
if biases are present and not handled correctly.
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Rigorous skill assessment in the assimilation frame-
work is a difficult task: most available observations are
used to adjust models and reduce analysis errors. Thus,
independent assessment is only possible by: (1) withhold-
ing part of the dataset for statistical quantification of
errors (a trade-off between a sufficient population size to
estimate a statistic while not significantly impacting the
quality of the system performance being measured); or by
(2) using other sources of data that have not been assimi-
lated (Gregg et al. 2009). The latter is generally employed
with data not available in near-real time, which is useful for
reanalysis (or hindcast) evaluation, but not for operational
routine verification.

Longer-term forecast assessment

Most of the OOCs provide short-term forecasts (from a
few days, to 1–2 weeks), but some have begun providing
longer monthly forecasts, like the Japanese Meteorologi-
cal Agency MOVE/MRI.COM-WNP OOFS. It covers a
large part of the Northwest Pacific (15°N–65°N,
117°E–160°W), with a specific zoom (1/10° resolution)
over 15°N–50°N, 117°E–160°E (Usuii et al. 2006), and
uses a multivariate Three-Dimensional Variational
(3DVAR) data-assimilation scheme (Fujii & Kamachi
2003). Persistence and 1- to 30-day forecasts are compared
against analyses to provide RMSE statistics. A forecast
skill metric is used, whereby the ratio of forecast RMSE
over the persistence RMSE is calculated for a given

forecast lead-time. Using this skill score, the forecast pro-
vides useful skill compared with persistence if the ratio is
below 1. Results from the MOVE OOFS are shown in
Figure 1 for the velocity field at 50 m depth over the
period February 2006 to January 2008. Even for 30-day
forecasts, the system performs better than persistence in
most areas around Japan, and fails only in the vicinity of
the Kuroshio Extension area [Figure 1(a–c)]. Moreover,
Kuroshio dynamics and predictability are assessed using
a specific metric based on the Kuroshio main axis. The Kur-
oshio axis error is defined as the distance between a forecast
and the ‘true’ axis position over the 133–139°E, 30–35°N
region, where the axis position is determined using the pos-
ition of the 15°C isotherm at 200 m depth from the analysis.
Figure 1(d) indicates that the dynamical forecasting system
is consistently better than persistence at all lead times. This
type of metric is also useful to convey forecast skill to
users, as the error is expressed in tangible terms (here a dis-
tance in kilometres) rather than an abstract unit-less skill
score or RMSE value.

Specific approaches for regional operational systems

Recent improvements have also been made in terms of
evaluating specific regional and mesoscale dynamics. For
example, the Gulf of Mexico Pilot Prediction Project
(GOMEX-PPP, http://abcmgr.tamu.edu/gomexppp/) is
investigating the OOFSs performance for predicting the
evolution of the Loop Current in the Gulf of Mexico. The

Figure 1. MOVE/MRI maps of forecast skill, comparing forecast and persistence RMSE statistics against analyses for velocity field at
50-m depth, for 10-, 20- and 30-day forecast lead-time, respectively [(a), (b) and (c)]. Forecast beats persistence for values below 1. (d)
Performance assessment of the Kuroshio axis position (in kilometres; see text for definition) for the forecast (solid line) and persistence
(dashed line), for 0- to 30-day lead-time.
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Long Range Ensemble Forecasting System (GOM-LERFS)
developed at the Naval Research Laboratory (Stennis,
USA), has been providing 2-month forecasts since
January 2013, with the intention of supporting end users
impacted by strong currents associated with the Loop
Current and its eddies, and to provide boundary conditions
for coastal ocean models. This 3-km resolution OOFS per-
forms weekly 32-member 60-day forecasts. It is initialized
using an analysis provided by the Navy Coupled Ocean
Data Assimilation (NCODA) scheme that uses a 5-day
assimilation window to ingest satellite altimetry, SST and
in situ data obtained from the global telecommunication
system. A verification of SSH is performed in which fore-
casts are compared in real-time with along-track SSH
data following the Class 4 metrics approach (i.e. in obser-
vation space; discussed below). Then, in model space, the
ensemble is used to assess the probabilistic forecast skill.
In Figure 2, statistics of weekly comparisons against ana-
lyses for the period January–September 2013 show that
forecasts remain skilful for approximately twice as long
as persistence. The SSH anomaly variance agrees closely
in the forecast and verifying analysis, but the ensemble
standard deviation does not appear to predict the forecast
error, suggesting that the ensemble spread does not fully
capture the forecast error patterns. Adequately sampling
the uncertainty in initial conditions, model physics and
forcing is an important aspect of ocean ensemble prediction
that requires further study.

Another example of forecast skill assessment is the
dynamical feature-based validation approach used for the
Experimental System for Predicting Shelf/Slope Optics
(ESPreSSO), operated in real-time by Rutgers University
over the New Jersey coast Mid-Atlantic Bight (Wilkin &
Hunter 2013). This OOFS is based on the 7-km horizontal
resolution Regional Ocean Modeling System (ROMS)
using boundary conditions from the HYCOM-NCODA
global OOFS. The system is initialized using daily analyses

from a Four-Dimensional Variational (4DVAR) analysis
system with a 3-day analysis window (Moore et al.
2011), which assimilates a large set of data [including
glider T/S profiles and CODAR HF-Radar measurements
(http://www.myroms.org/espresso/)]. The 4DVAR
approach allows a better quantification of model errors by
assessing the impact of the assimilated data, thereby per-
mitting the correction of large-scale biases. Slope currents
and water masses used for real-time applications are evalu-
ated using all available data. A specific off-line verification
is performed using independent surface drifters, moored
data and SSH. Moreover, a dedicated multi-model real-
time assessment has been performed, comparing estimates
from ESPreSSO together with three other regional OOFS,
and three global OOFS (including HYCOM-NCODA) in
order to evaluate the OOFS’ prediction skill for subtidal
currents and shelf water mass changes. This assessment is
comprehensively discussed in Wilkin and Hunter (2013)
including a presentation of performance improvements
through downscaling strategies. In their figures 4 and 5,
improvements to Taylor and Target diagrams are proposed,
to represent individual vs average performance, and seaso-
nal model biases respectively.

Validation of biogeochemical products

In the field of ecosystem modelling and marine-resources
management, in situ data for adequate validation of oper-
ational products are sparse. Hence, satellite ocean colour
(OC) products remain the main source of information for
estimates of phytoplankton pigment concentration distri-
bution [i.e. chlorophyll, CHL; Figure 3(a)]. The OC The-
matic Assembly Centre (TAC), within the European
MyOcean project (www.myocean.eu), has developed
specific processing chains to operationally distribute
state-of-the-art, quality-checked daily OC observations
over both global and regional domains. The need for

Figure 2. Real-time SSH assessment of the GOM-LERFS Gulf of Mexico OOFS against satellite altimetry data. Comparison with analy-
sis is restricted to water deeper than 200 m in the subdomain, 82W to 89W and 22N to 28N. (a) Correlation of SSH anomalies for persist-
ence (red) and forecast (black). (b) RMSE of the ensemble mean forecast (red) and ensemble spread standard deviation (red dashed) for
SSH. Also shown is the spatial variability in term of standard deviation (STD) of the analysis (black) and the 4-week ensemble mean fore-
cast (blue).

s224 F. Hernandez et al.

 

http://www.myroms.org/espresso/
http://www.myocean.eu


regional processing comes from the demonstrated inade-
quacy, at regional scales, of global algorithms to generate
reliable products of sufficient accuracy (Volpe et al.
2012). For example, the oligotrophic waters of the Mediter-
ranean Sea were shown to be significantly less blue and
more green than the global ocean (Volpe et al. 2007). The
OC TAC provides value-added products (generally not

distributed by space agencies) such as: (1) daily merged
fields from different sensors; (2) Level 4 products without
data voids owing to clouds generated using both Optimal
Interpolation and Empirical Orthogonal Function
approaches; and (3) products that account for the two
broad classes of bio-optical regimes (open ocean and
coastal waters). Level 4 and Level 3 (L4 and L3) mentioned

Figure 3. MODIS Aqua daily Level-3 CHL product, processed via the MedOC3 algorithm, for 30 May 2014 (a), with the corresponding
Quality Index: normalized departure from the daily climatology (b). The full online validation statistics time series is given by the shaded
plot in panel c, with time on the x axis and the histogram bins of the Quality Index on y axis; colours show the percent occurrence with
respect to the total number of valid pixels (classified as reliable by the operational processing and not flagged as cloud or other contami-
nation factor), as described by the time series on panel d.
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here refer to product levels as defined by the Committee on
Earth Observation Satellites (www.ceos.org). Typically, L4
products are regular maps of a given parameter, obtained by
merging and processing similar measurements from differ-
ent sources, and using specific estimation methods (optimal
interpolation, krigging, etc.). For these observation-based
products, both offline and online quality assessments are
performed by the OC TAC. The former refers to the com-
parison of space–time co-located in situ and satellite
derived products for quantities such as spectral remote
sensing reflectance, total suspended matter, coloured dis-
solved organic matter and chlorophyll concentration. In
real-time, such data are not sufficiently robust, and vali-
dation is limited to a consistency assessment (Hernandez
2011), where the daily climatology for each region is
used as a reference to make pixel-based comparison
(online validation). A Quality Index, based on the normal-
ized departures from climatology, is computed from the
SeaWiFS sensor [no longer operational; Figure 3(b)]. The
overall statistics and distribution are analysed, as illustrated
for the Mediterranean Sea CHL [Figure 3(c) and (d)]. In
parallel, the monitoring of input data (number, quality
… ) has increased the reliability of the products.

Many initiatives have led to progress on skill assess-
ment of biogeochemical modelling (Stow et al. 2009).
For example, as part of the Ocean Carbon Model Intercom-
parison Project, univariate metrics were proposed to quan-
tify both physical and biogeochemical parameters of the
coupled simulations (Doney et al. 2009). Multivariate
metrics (i.e. quantifying the reliability of both the par-
ameters and their relation to observed processes) (Allen
& Somerfield 2009), or map-based validation (Rose et al.
2009), is also emerging in this field. However, for real-
time assessment of ecosystem-biogeochemical forecasts,
most of the OOFSs can only rely on references given by
OC satellite products. Moreover, the dynamics of biogeo-
chemical systems is strongly characterized by the patchi-
ness of its properties generated by oceanic mesoscale,
which causes heterogeneity in concentration fields (Levy
& Martin 2013). Consequently, most forecast verifications
mimic OC product assessment, by analysing in a similar
way, at the pixel level, the model equivalent to CHL and
optical satellite data (Lazzari et al. 2012), as described in
the previous paragraph.

Validation of sea-ice products

Growing interest in polar regions has driven the need for
improved sea-ice verification metrics to demonstrate the
capacity and quality of sea-ice forecast skill to potential
users. This effort has been hindered by the reliability and
availability of observational datasets together with a lack
of knowledge of how to adequately account for nonlineari-
ties in the verification metrics. Contingency table-based
metrics, introduced in the early twentieth century

(Pearson 1904), have been re-popularized, as well as the
root-mean-square distance of ice edge. However, these
metrics may not be relevant for regional or process-
dependent verification. In particular, errors in ice edge
location assessment are sensitive to the definition of ‘ice
edge’, as multiple ice edges may be present and the total
error will be sensitive to the length of the ice edge.
Hence, the metrics defined for the Arctic might not be suit-
able in the Baltic Sea, and definitions should consider sub-
regional scaling (e.g. size of a gulf) (Lagemaa 2013).
However, even if the ice metric is not properly defined, it
still gives valuable user information for the dense marine
traffic regions like the Baltic Sea.

An example of a contingency table-based metric from
the Canadian Meteorological Centre Global Ice-Ocean Pre-
diction Systems (GIOPSv1.0) is shown in Figure 4.
GIOPSv1.0 uses a 3DVAR ice concentration analysis for
correcting the Los Alamos sea-ice model by assimilating
satellite data together with daily ice charts from the Cana-
dian Ice Service. The reference dataset is given by the Inter-
active Multisensor Snow and Ice Mapping System (IMS)
analyses from the National Oceanic and Atmospheric
Administration (NOAA) National Ice Centre that provide
binary fields of ice/open water on a 4 km grid. Sea-ice ana-
lyses suffer from an incomplete coverage of observations,
with data-reliability issues and the mis-representation of
leads. A particular issue is the high sensitivity of passive
microwave retrievals to surface melt, often resulting in
erroneous values of open water in summer. Contingency
table statistics produced using IMS analyses (applying a
threshold of 0.4 to determine binary ice/water values
from the GIOPSv1.0 ice concentration forecasts) are used
in order to evaluate the proportion of correct ice, or
correct water. These contingency scores are computed sep-
arately for forecast and persistence fields. Then, differences
of scores for forecasts and persistence are computed. These
metrics are mapped for 2011 in Figure 4 showing skilful 7-
day forecasts along most of the ice edge. In other words, 7-
day forecasts beat persistence considering the prediction of
correct proportion of sea ice and correct water.

Reliability assessment of input information

Another recent aspect in OOFS validation strategy is the
systematic feedback of errors and anomalies to providers
of input data. For instance, validation of atmospheric
forcing fields is now carried out for some wave-prediction
systems (Feng et al. 2006). Moreover, inputs of ocean
assimilation systems, such as in situ data collected by
TACs or DACs, can suffer in real-time from incomplete
levels of quality control. While automatic procedures are
applied for the rapid distribution of the observations in
real-time, more detailed visual analysis is often left for
delayed-time datasets. Other analyses usually depend on
the level of expertise of the provider. In near-real time,
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erroneous in situ profiles can drastically impact the quality
of ocean analyses. As a result, systematic quality control
has been implemented in many OOFSs to prevent this. At
Mercator Océan, two techniques are applied for in situ T/
S profiles. First, innovations (guess/forecast minus obser-
vation) are tested against a threshold envelope. This envel-
ope is defined using statistics of innovations from an ocean
reanalysis and is used to detect anomalous observations (e.
g. blue dots between 500 and 1000 m depth in Figure 5).
Second, dynamic heights are computed from the T/S incre-
ments, and then probability density functions are con-
structed for consistent dynamical areas, in order to detect
points outside from the normal distribution. In some
cases, feedback to producers is organized through blacklist-
ing (Cabanes et al. 2013).

Development of integrated operational verification
systems

Several OOCs have recently taken steps to structure cali-
bration, validation, and verification activities, in real-time
or delayed mode, as an integrated component of the
OOFSs. In the USA, the national backbone of real-time
data, tidal predictions, data management and operational
modelling supporting NOAA’s missions (http://
tidesandcurrents.noaa.gov) under the National Operational
Coastal Modeling Program now performs quality control
and forecast skill verification in a centralized way for all
OOFS through the Continuous Operational Real-Time
Monitoring System.

Similarly, the MyOcean IBI (Irish Biscay Iberian
shelves) OOFS team (Puertos del Estado, Spain, and Mer-
cator Océan, France) has developed a comprehensive tool
called NARVAL (Numeric Assessment for Regional VALi-
dation) to check its operational performance, in terms of
consistency, accuracy and reliability. NARVAL uses avail-
able observations, such as: satellite-derived Sea Level
Anomalies (SLA), SST and SSS (from both L3 and L4 pro-
ducts), in situ T/S profiles, HF-radar surface currents and
tide gauge sea level. This tool builds on the MyOcean
project structure such that the input data are quality
checked by the TACs. NARVAL is modular and extendible
for any new data sources as a reference (measurements, cli-
matologies or model estimates). All validation information
produced is archived for further evaluation. Additionally,
the ‘On-line Mode Validation’ provides an automated
quality and consistency assessment, and is routinely per-
formed for each forecast bulletin (from the previous day’s
hindcast up to 5-day forecasts). It generates Class 1–4
metrics (Hernandez et al. 2009) that provide daily statistics
and an evolution of the skill score for each parameter over
the past two weeks [Figure 6(a)]. Furthermore, a ‘Delayed
Mode Validation’ provides an overall review of the IBI
product quality over longer time periods (i.e. monthly, sea-
sonal and annual). Real-time statistics are accumulated to
provide a synthesis assessment over longer periods, while
dedicated metrics using off-line datasets, can focus on par-
ticular ocean phenomena or parameters. Metrics are per-
formed over the whole domain (26°N–56°N, 19°W–5°E),
but also over specific sub-regions of interest – both for
users and for verification teams, for example: Strait of

Figure 4. Contingency analyses of GIOPSv1.0 sea-ice forecast over 2011 for 7-day forecasts, using IMS data as reference. Forecast minus
persistence (skilful/erroneous, red positive/blue negative resp.) for proportion of correct ice (left) and correct water (right)
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Gibraltar, English Chanel, Western Mediterranean Sea,
Gulf of Biscay, Western and Northern Iberian shelves, the
Canary Islands area and the Irish Sea.

Using NARVAL, the performance can be monitored for
specific areas, dynamics and OOFS, as illustrated for SST
using a Taylor diagram (Figure 7). This type of figure is
obviously complex, but it is used by validation teams to
monitor, at a glance, several systems’ SST scores over
various areas. NARVAL has been designed to allow auto-
matic inter-comparison between IBI and adjacent regional
OOFS within the MyOcean framework for the Mediterra-
nean Sea and the North-West-Shelf [Figure 6(b)]. Compari-
son with adjacent OOFSs aims primarily to maintain
consistency in products and user delivery. Comparison
with the global OOFS (within which the IBI OOFS is
nested) quantifies added value of the regional shelf
system (Figure 7), that representing tides and high-
frequency upper ocean dynamics. There are also compari-
sons against coastal systems over key areas, such as the

SAMPA (Sistema Autónomo de Medición, Predicción y
Alerta) system around the Gibraltar Strait (Lorente et al.
2014).

In the MyOcean framework, a similar methodology is
implemented for the Baltic Sea by Danish, Estonian,
Finnish, German and Swedish OOCs, with a comprehen-
sive validation toolbox designed to cover all available
data with various metrics. It provides detailed outputs for
expert users and model developers. However, for less
experienced users and decision makers, the system pro-
vides a more general reliability output. Routines are
adapted for mapped, on-track and time-series reference
data covering the sea level, ice thickness and concentration,
T, S, transports, CHL, oxygen, nitrate and phosphate
metrics (Lagemaa et al. 2013). Moreover, the five contri-
buting Baltic OOCs have organized a multi-model verifica-
tion and comparison process, together with a multi-model
ensemble estimate assessment. For some parameters,
results are regularly posted to the Baltic Operational

Figure 5. Detection of in situ profile anomalies before assimilation in the GLORYS2V1Mercator Océan reanalysis. Left: innovation (blue
dots) and threshold envelop (red). Right: temperature-profile observations (blue dots), model forecast for the corresponding observations
(red) and climatology (green). In this case, the cluster of blue dots in the depth range 500–1000 m has not passed the test. Top: location in
the equatorial Pacific of the profile.

s228 F. Hernandez et al.

 



Figure 6. (a) Summary of comparisons computed by NARVAL (on daily, monthly, quarterly and yearly basis) to make an on-line and
delayed mode validation of the Irish – Bay of Biscay – Iberian shelves (IBI) products. Abbreviations: IBI BE, IBI best estimates; IBI
FCs, IBI forecast products at different forecast horizons; CLIM, climatologies; ATM, atmospheric fields used as IBI forcing. (b)
NARVAL Delayed-Modes web pages: SST comparison of IBI fields with OOFSs from adjacent areas and the global forecasting system.

Figure 7. SST Class 4 metrics against MyOcean super collated SST_EUR_SST_L3S_NRT_OBSERVATIONS_010_009_a. With IBI
free-run (cyan), IBI operational (blue), global old (yellow) and new version (red), for daily hindcast fields, in different domains defined
in the text. Y-axis scale also corresponds to normalized standard deviation. 0.2 isocontours for RMSD (inner dashed circles) are associated
with the normalized standard deviation.
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Oceanographic System server (www.boos.org). Beyond the
extended information on forecast scores, the inter-
comparison of different OOFS is adding value to the near
real-time validation routines, in addition to the usual
evaluation against observations and climatology. The
multi-model standard deviations from different forecast
products (Figure 8) provides valuable information about
their uncertainties, which is difficult to assess using
regular model-reference approaches owing to sparse cover-
age of observations. These figures are available daily at
www.boos.org. Interestingly, nine OOFS are assembled to
show the reliability of surface current forecast, using

vector diagrams [Figure 8(c)]. This strategy has also been
adopted in MyOcean by the North West European Shelf
Operational Oceanographic System, covering the North
Sea and English Channel regions, presenting a multi-
model assessment from Belgium, Denmark, Germany,
Norway, Sweden and UK OOCs (www.noos.cc).

Reducing uncertainties by ensemble approach:
ocean surface parameters multi-model estimation

Major incidents, such as the AF447 Air France Rio-Paris
airplane crash in June 2009, the DeepWater Horizon oil

Figure 8. Example of the multi-model standard deviation for SSS (a). Multi-model mean total water transports in Sverdrup from 4 or 5
OOFS (blue/black arrows, numbers correspond to sections) for 13 June 2014. (b) Green transect indicating that the multi-model standard
deviation transport is lower than the mean value, and yellow comprise between 1 and 3 times the mean value. (c) Progressive vector
diagram of model sea surface currents from nine Baltic Sea forecast products. All trajectories starting from the same location on the
Gulf of Finland. Similar figures are available and discussed at www.boos.org. Inga Golbeck, Xin Li and Frank Janssen (German Maritime
and Hydrographic Agency), pers. comm.
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platform accident in April 2010, the Fukushima nuclear
power plant catastrophe in March 2011 or the search for
the missing MH370 Malaysia Airlines flight in March
2014 in the Indian Ocean, have highlighted operational
oceanography’s capacity to provide relevant information
for decision makers (Masumoto et al. 2012; Kawamura
et al. 2011). For all these events, national authorities
have made requests to their respective OOCs in
order to provide some assistance in near-real time or
offline, to carry out dedicated studies to complement risk
assessment.

Ocean studies performed in support of the effort to find
the Air France plane wreckage relied on several new
aspects: (1) an international effort to collect forecasts
from different OOCs and to provide different ocean data-
sets to assist rescue activities in real-time; (2) the use of
multi-model datasets and ensemble approaches to reduce
errors of ocean surface dynamics in hindcasts and forecasts,
with the implementation of dedicated high resolution
model simulations in the area, nested into global OOFSs;
(3) a retrospective statistical analysis of the accuracy of
ocean currents and, in particular, the reliability of mixing
and transport properties; (4) the formation of an inter-
national task team, with contributions from many ocean
experts from both the in situ and modelling communities
(Scott et al. 2012; Drévillon et al. 2013). Performance
gains were also made during the search for MH370
through the use of ensemble mean products that improved
the representation of buoy trajectories.

At the Australian Bureau Of Meteorology, deterministic
forecast errors of the OceanMAPS OOFS are assessed and
reduced by implementing time-lagged ensemble forecast,
also called a multicycle ensemble (Brassington 2013).

Over four successive days, forecasts are performed each
day, starting from background fields independent from
each other. Weighted ensemble averages are then com-
puted, and forecast errors are assessed using spectral
methods that quantify the impact of ensemble averaging
as a function of wavenumber. For instance, for SST,
Figure 9 demonstrates the increase in power for random
information (Brassington 2013). By comparing the power
spectrum at different forecast periods, the growth in
random error relative to wavelength is also captured.

For marine pollution in the Northern Aegean Sea,
studies based on a 48-h oil-spill dispersion forecast have
been performed recently. The system is based on atmos-
pheric, wave and ocean circulation models coupled with
the operational systems using the Aegean-Levantine Eddy
Resolving Model (nested in the MyOcean OOFS) and
SKIRON of the University of Athens and oil-spill dis-
persion models (http://diavlos.oc.phys.uoa.gr). A Lagran-
gian-based verification east of the Limnos Island
(Northeastern Aegean Sea) was conducted during
October 2012 where 25 drifting buoys and special oil-
spill drifting instruments were compared with drift predic-
tions. The area was characterized by a very strong front,
and in many cases a small error in the prediction of the
frontal line resulted in very large errors in the oil-spill pre-
diction (Figure 10, left). This experiment shows that fore-
casts beat persistence over the first 20 h (Figure 10,
right). Moreover, in these areas of varying dynamical fea-
tures (fronts, eddies), forecast errors grow significantly,
emphasizing the need for more advanced prediction
systems such as ensemble forecasts. Ensemble approach
are considered now at regional scale, as in the Ligurian
Sea, where a multi-model strategy is tested against an

Figure 9. (a) Power spectrum for SST anomaly in the Tasman Sea for zonal sections (38–32S) and temporally averaged from 1 March to
31 August 2012 from the Australian OceanMAPS OOFS. The black (red) lines represent the 0-lag latest forecast and the ensemble mean,
respectively. The periodograms are shown for the forecast hours −096 (4-day before) solid), −048 (2-day before, dashed), 00000 (dash-dot)
and 048 (2-day forecast, dotted). (b) Difference in power between the 0-lag latest forecast and the weighted ensemble mean for the forecast
−096 (solid), −048 (dashed), 000 (dash-dot) and 048 (dotted).
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ensemble predicting system, showing the respective merit
of each approach (Mourre & Chiggiato 2014). Addition-
ally, ensemble approaches proposed by the operational
SST community at global scales have been shown to
provide promising results, where the ensemble is usually
more reliable than individual estimates (Martin et al.
2012; Dash et al. 2012; Xie et al. 2008).

Several OOFSs involved in GOV activities contributed
to the rescue actions carried out for the dramatic events
mentioned above. The IV-TT proposed to strengthen this
multi-model approach, by organizing the real-time pro-
vision of operational hindcasts and forecasts among
several GOV OOFSs. Recent experiences have shown
that (1) surface ocean parameters were the most needed
products, and (2) higher resolution improved the estimation
(e.g. for drift, dispersion, mixing, sinking, etc.). As a result,
since 2013, four global OOCs (US Navy with HYCOM-
NCODA, UK Met Office with the Forecast Ocean Assim-
ilation Model (FOAM), NOAA/NCEP with the Real-Time
Ocean Forecast System (RTOFS) and the Climate Forecast
System (CFS), and Mercator Océan with PSY3) have been
providing a daily rolling archive of model native grid fields
of best estimates and forecasts of T, S and currents at the
surface. From these nowcasts/forecasts, a first multiple/
ensemble assessment has been made, focusing on SST,
together with two observation-only datasets chosen as
reference: the NCEP Real-Time Global (RTG) (Thiébaux
et al. 2003) and the GHRSST NAVO K10 level-4 (Martin
et al. 2012) dataset. Three ensemble computations are
defined using daily OOFS outputs: (1) simple arithmetic
mean average; (2) weighted average, based on root-mean-
square (RMS) daily differences of each member with
respect to the reference SST field; and (3) clustered
average, based on a k-mean algorithm (Hartigan & Wong

1979). A first hindcast comparison has now been
performed for July 2013 compared with NCEP RTG
(Figure 11). In this evaluation, Mercator_PSY3, FOAM
and CFS perform better than the two other OOFSs. Note
also that FOAM biases are slightly different using the
NAVO K10 product (not shown). This highlights the sensi-
tivity to uncertainty in the observational dataset used as
‘truth’. Above all, Figure 11 shows that the use of an
ensemble results in an improvement over each of the
members, with the k-means clustered average performing
the best of the three ensemble methods. Similar ensemble
scores are obtained against the NAVO K10 SST (not
shown). RMS scores seem dependent on the number of
clusters: preliminary tests (not shown) from one to 10 clus-
ters indicate significant improvements. This assessment is
ongoing, with further analysis of the ensemble mean com-
putation for forecasts and for other ocean parameters. One
of the key aspects of this community effort is the real-time
provision of these OOFS outputs.

Forecast skill: intercomparison of ocean parameters
against observations: Class 4 metrics assessment

The Class 4 metrics approach, developed during the EU
MERSEA Strand1 project (Crosnier & Le Provost 2007)
and improved during the EU MERSEA-Integrated Project,
was adopted at the international level by the GODAE com-
munity (Hernandez et al. 2009). This approach is based on
comparison with reference measurements, from space or
in situ, to assess the OOFS forecasting skill. Reference
data, providing ocean ‘truth’, are used in a similar way, to
infer the accuracy of both the best estimate/analyses and
the forecasts at different lead times. Additionally, to evaluate
the added value provided by the model and the OOFSs’

Figure 10. Left: experimental area, east of the Limnos Island; surface velocities given by the model (blue arrows). Simulated oil spills
(cyan and black), centre of mass of the oil spills (red x) and drifter tracks (green x) are plotted. Right: time evolution of the oil-spill fore-
casting error (in kilometres, blue bars), derived as the distance between the drifter location and the centre of mass of the predicted oil-spill,
compared with the persistence of the centre of mass (also as the difference with drifters in km, red bars).
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short-term prediction efficiency, tests of the skill with respect
to climatological fields and persistence are made.

Class 4 metrics performed in near-real-time are limited
by the availability and quality of observations with several
important consequences. First, owing to the scarcity of
ocean measurements, the real-time assessment relies on
observations that are also used by the assimilation
system. These observations can be considered approxi-
mately independent (neglecting the autocorrelation of
observation error in time) for forecast assessment though
– in particular when considering short time-scale ocean
transient features. A second consequence is the larger
error budget for real-time observations that are not fully
cross-calibrated, verified and corrected as in the delayed
mode (Cabanes et al. 2013; Le Borgne et al. 2012). A
third consequence relates to the overall quality of reference
product in near-real time. If some biases exist between
these products and information of the same kind that is
assimilated, then validation scores can be impacted or
wrong.

Assessment using Class 4 metrics can be distinguished
from assimilation diagnostics in several ways. By assimila-
tion diagnostics, we refer to statistics in observation space
derived from the ‘background minus observation’ (i.e. the
so-called misfits); from the ‘increments’ (i.e. the correction
applied to the background to obtain the analysis); or from
the ‘analysis residual’ (i.e. analysis minus observations).
For most assimilation systems, there is a pre-processing

of Global DAC (GDAC) data through editing, filtering or
thinning, in order to limit the number of assimilation obser-
vations. This is done (1) because of a limit in the maximum
number of observations that can be used by the assimilation
scheme (computational requirements), (2) because some
observations are considered a priori redundant (i.e. thinning
provides a means to avoid having to consider correlated
observation error) or (3) because the observations include
features and dynamical processes and scales not rep-
resented by the forecasting system. ‘Super-obing’ can
also be used in this assimilation pre-processing. In any
case, the associated assimilation statistics and metrics
often result in a net reduction in the number of observations
considered. This is obviously not the purpose of the Class 4
metrics: ideally, all ‘good’ data from the GDAC can be
compared with the OOFS fields and, by the way, measure
the accuracy, forecasting skill and scales not represented
by the OOFS. Thus, this approach is not OOFS dependent
(i.e. the way observations are assimilated, the ocean model
gridding, etc.). The same observation can be used in the
evaluation of several OOFSs. That is, provided the refer-
ence data are independent, exact inter-comparison is poss-
ible, considering a specific ocean process or parameter.

The ‘Class 4’ strategy is now in place in several OOFSs,
for global (Lellouche et al. 2013; Blockley et al. 2012) or
regional assessment (Maraldi et al. 2013). In the framework
of the GOV IV-TT, the Class 4 metrics project aims to
stimulate the inter-comparison of OOFSs by verifying

Figure 11. Global SST hindcast comparison statistics with RTG SST, computed daily, in July 2013. RMS (top) and biases (bottom) time
series for HYCOM-NCODA (blue), RTOFS (green), FOAM (red), Mercator_PSY3 (cyan), CFS (purple) and ensemble averages: simple
(dashed yellow), weighted (dashed black), clustered (dashed blue). Units in Kelvin.
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different aspects of ocean processes captured by the avail-
able observations in real time. A near-real-time inter-
comparison activity has been ongoing since January 2013.
Five OOCs are involved, and six OOFSs are compared,
looking at SST, T/S at depth and SSH –with sea ice concen-
tration in preparation. A companion paper (Ryan et al.
2015) presents the global inter-comparison performed
over basin scale areas. This exercise also allows each of
the partners to assess more carefully the forecast capability
of every OOFS in the region of interest andmeasure the effi-
ciency of each system. The Australian group has performed
regionally this multi-system assessment presented in a
second companion paper (Divakaran et al. 2015).

Based on the statistics of the comparison with the same
observations, this Class 4 assessment allows the following
questions to be addressed:

. What is the relative reliability of each system for a
given parameter in near-real-time?

. What is the performance of each system in forecast
mode (5 days ahead)?

. What is the added value of the system compared with
climatology or persistence?

. What benefits could be obtained through an ensemble
approach, compared with each individual system?

As part of the Class 4 intercomparison, interesting new
metrics and ways of representing the information graphi-
cally have been proposed to better synthesize the infor-
mation. For instance, radar charts provide the score of
each system at different forecast lead times, for all par-
ameters evaluated (Figure 12). Note that the terminology
‘hindcast’ is used here for analysis, nowcast, hindcast or

‘best estimate’. Owing to the details of their real-time oper-
ational assimilation scheme, every centre is providing what
it considers as its ‘best field’ in near-real-time with
minimum delay. Scores are defined by RMSE, based on
differences between observation and model values for
each parameter normalized by the largest RMSE. Refer-
ence observations are fully described in the companion
paper (Ryan et al. 2015). Using this approach, one can
characterize the relative score of each OOFS for each par-
ameter. Missing parameters are not problematic: SLA is not
evaluated for RTOFS (Ryan et al. 2015), and the radar chart
can still be used for plotting scores from the other four
systems. Moreover, this approach allows us to assess
specific features, such as resoIution, by comparing the
global eddy permitting (PSY3, ¼°) and eddy-resolving
(PSY4, 1/12°) Mercator Océan OOFS. The radar charts
indicate that PSY3 skill scores are always better than
PSY4 scores, even for SLA. It is worth noting that PSY3
and PSY4 are run in parallel every day at Mercator
Océan (Lellouche et al. 2013), using the same forcing
fields and assimilating the same set of observations. In
this case, one may ask whether the observations used to
derive the Class 4 metrics are capable of assessing the
eddy-resolving capability of the PSY4 system, and if this
Class 4 metric is able to infer the mesoscale predictive
capabilities of these global high-resolution systems. In
this case, SLA assessment could be performed using
along-track satellite observations filtered differently, in
order to capture more mesoscale features. Similarly,
model SST could be compared with the highest resolution
and most reliable SST products provided in near-real-
time by DACs.

Figure 12. Class 4 global assessments over 2013. Radar charts for hindcast (HDCST), and 5-day forecasts (FRCST_5D). Four parameter
evaluations are displayed: 5–100 m depth temperature (TEMP), and salinity (SAL), then SST, and SLA. Each score (between 0 and 1) is
normalized by the largest RMSE value among the five evaluated OOFSs.
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Class 4 metrics over a given period and space domain
are also presented through lead-time summary plots (see
all figures of Ryan et al. 2015, and figure 7 from Divakaran
et al. 2015), or Taylor diagrams. Note that for the Austra-
lian regional seas assessment (Divakaran et al. 2015), this
diagram (figure 8 from Divakaran et al. 2015) also contains
shaded values of the skill score, as defined by Taylor
(2001). This score merges the accuracy (RMSE) and the
pattern (correlation) evaluation of the parameter variability.
Note also that this assessment of vertical parameters (here
T, S) is presented separately for biases (consistency assess-
ment), RMSE (quality, or accuracy assessment) and
anomaly correlation (pattern of the variability). This
allows OOCs to measure at which depth, and for which
water masses, the OOFS is reliable. At this stage, Class 4
metrics are univariate, but alternatively, these metrics can
be used in more ‘ocean oriented’ figures such as T–S dia-
grams (Figure 13). For this T–S diagram only hindcasts
(i.e. not forecasts, persistence or climatology) are plotted
together with the observed values, for the sake of clarity.
Figure 13 shows that both PSY3 and PSY4 systems
present inaccurate dense waters at depth, while the rest of
the water column is qualitatively well represented for this
3-month period.

Inter-comparison of several OOFSs using Class 4
metrics also allows OOCs to address the added value that
using an ensemble approach might bring. Ryan et al.
(2015) show that the ensemble mean outperforms individ-
ual OOFS scores in most cases. Interestingly, in their
Figure 6, they propose a synthetic global view of the
most reliable OOFS for the four parameters tested. Other
new approaches mentioned above (IBI OOFS) involve
inter-comparing the same diagnostic for several OOFSs
in order to show the added value of regional versus

global, free model simulation versus assimilation or old
versus new system estimates (Figure 7).

Summary

Significant progress has been made in ocean-model skill
assessment during the last 5–10 years. Under the constraints
of real-time operation, many forecasting centres have
implemented more mature validation and performance-
assessment procedures. The most advanced examples are
operationally integrated, modular and able to use any avail-
able reference dataset. Based on a large number of metrics,
they permit a diverse validation strategy: (1) comparing
old and new systems to measure potential improvements
and degradations; (2) comparing coarse resolution ‘father’
and nested high-resolution ‘son’ systems to quantify the
added value of downscaling; (3) comparing adjacent or over-
lapping systems to verify the consistency of adjacent fore-
casts; (4) multi-model comparison to better characterize
model error growth using different systems running in paral-
lel; and (5) ensemble approaches to assess the benefit of
ensemble versus individual system estimates.

Real-time assessments suffer from limitations imposed
owing to observation availability and quality, as many
high-quality reference datasets can only be used off-line –
meaning that the routine monitoring skill evaluation is
less efficient. To avoid spurious effects from erroneous
real-time data (for assimilation or validation), quality
checking and control of input information (observations,
forcing fields) is performed by most OOFS. Moreover,
the systematic feedback of quality control information
and observation ‘blacklists’ to providers is starting to be
integrated into OOFSs.

Figure 13. T–S diagram using Class 4 metrics applied on PSY3 (blue) and PSY4 (green) Mercator Océan OOFSs. Hindcast fields for the
January–March 2014 period over the Kuroshio Extension area. The observed values of temperature and salinity are plotted in red.
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More complex metrics that are better suited to assessing
physical, ecosystem and biogeochemical forecast processes
are being progressively adopted in operational centres.
Multivariate metrics now complement univariate tech-
niques in order to enhance the parameters-oriented assess-
ments to full ocean process evaluations. In parallel, metrics
including Taylor diagrams, target diagrams and radar charts
are used to provide a more enhanced quantification of
model skill. Additional user-oriented metrics are also
being developed, complementing the basic assessment of
OOFSs with more detailed information about skill for
specific applications.

Operational ocean forecasting systems are evolving
toward higher horizontal resolution and eddy-resolving
capability, and offer finer mesoscale representation. For
instance, AVISO SSH or Reynolds SST L4mapped products
offer 50–100-km resolution. Hence, these products are no
longer suitable for evaluating 5-km-resolution global eddy-
permitting OOFS. For regional and coastal OOFSs provid-
ing sub-mesoscale description, this issue is even more
crucial. Their evaluation using the existing observing
system presents new issues: are the metrics currently used
reliable, and do they provide pertinent information?

The L4 observation-based products provided by oper-
ational DAC and their evaluation also have to be considered
carefully. First, these products can be used directly by the
scientific community or other users instead of model-based
products. Second, many OOFS validation procedures rely
on these products and can be deficient if they are erroneous.

Finally, multi-model inter-comparison and ensemble
approaches offer several potential benefits. For example,
forecast spread can be used for forecast error evaluation
and is particularly efficient if individual model errors are
not correlated (e.g. for models using different forcing). In
many studies, ensemble estimates are seen to benefit from
qualities of each individual OOFS and to reduce errors.
With the initiatives carried out by the GOV IV-TT, oper-
ational oceanography is following a strategic path similar
to that of the weather-forecast community 30 years ago,
the goal being to routinely exchange information among
OOFS in a multi-model framework, and enhance both
system predictability and skill assessments, for the eventual
benefit of OOFS users.
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