# Portland State University

# PDXScholar

Engineering and Technology Management Faculty Publications and Presentations

Engineering and Technology Management

6-1-2024

# Exploring Cybertechnology Standards Through Bibliometrics: Case of National Institute of Standards and Technology

Tugrul Daim Portland State University

Haydar Yalcin Ege University

Alain Mermoud Armasuisse Science and Technology

Valentin Mulder Armasuisse Science and Technology

Follow this and additional works at: https://pdxscholar.library.pdx.edu/etm\_fac

Part of the Risk Analysis Commons Let us know how access to this document benefits you.

# **Citation Details**

Daim, T., Yalcin, H., Mermoud, A., & Mulder, V. (2024). Exploring cybertechnology standards through bibliometrics: Case of National Institute of Standards and Technology. World Patent Information, 77, 102278.

This Article is brought to you for free and open access. It has been accepted for inclusion in Engineering and Technology Management Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.



Contents lists available at ScienceDirect

# World Patent Information



journal homepage: www.elsevier.com/locate/worpatin

# Exploring cybertechnology standards through bibliometrics: Case of National Institute of Standards and Technology \*

Tugrul Daim<sup>a,b,1,\*</sup>, Haydar Yalcin<sup>a</sup>, Alain Mermoud<sup>c</sup>, Valentin Mulder<sup>c</sup>

<sup>a</sup> Ege University, Erzene Mahallesi Ege Universitesi Merkez Yerleşkesi, 35040, Bornova, Izmir, Turkey

<sup>b</sup> Portland State University, Portland, OR, USA

<sup>c</sup> Cyber-Defence Campus, armasuisse Science and Technology, EPFL Innovation Park, Lausanne, Switzerland

## ARTICLE INFO

ABSTRACT

Keywords: Technology analysis Techmining Social network analysis Cybersecurity National institue of standards and technology Cyber security is one of the topics that gain importance today. It is necessary to determine the basic components, basic dynamics, and main actors of the Cyber security issue, which is obvious that it will have an impact in many areas from social, social, economic, environmental, and political aspects, as a hot research topic. When the subject literature is examined, it has become a trend-forming research subject followed by institutions and organizations that produce R&D policy, starting from the level of governments. In this study, cybersecurity research is examined in the context of 5 basic cyber security functions specified in the cyber security standard (CSF) defined by the National Institute of Standards and Technology (NIST). It is aimed to determine the research topics emerging in the international literature, to identify the most productive countries, to determine the rankings created by these countries according to their functions, to determine the research clusters and research focuses. In the study, several quantitative methods were used, especially scientometrics, social network analysis (SNA) line theory and structural hole analysis. Statistical tests (Log-Likelihood Ratio) were used to reveal the prominent areas, and the text mining method was also used. we first defined a workflow according to the "Identify", "Protect", "Detect", "Respond" and "Recover" setups, and conducted an online search on the Web of Science (WoS) to access the information on the publications on the relevant topics It is seen that actors, institutions and research create different densities according to various geographical regions in the 5 functions defined within the framework of cybersecurity. It is possible to say that infiltration detection, the internet of things and the concept of artificial intelligence are among the other prominent research focuses, although it is seen that smart grids are among the most prominent research topics. In the first clustering analysis we performed, we can say that 17 clusters are formed, especially when we look under the definition function. The largest of these clusters has 32 data points, so-called "decision making models".

# 1. Introduction and background

Cybersecurity can be defined as a discipline that focuses on securing computer systems, networks, software, and data. We can say that they aim to protect against cyber-attacks, prevent unauthorized access, ensure data confidentiality, ensure data integrity, and make information systems useable at all levels [1–3]. Cyber security applications appear to consist of several sub-components. While the component that includes the work done for the protection of computer networks is called network

Security, it covers topics such as protecting network components (router, switch, firewall, etc.), monitoring and filtering traffic, removing network weaknesses, and taking precautions against attack [4]. In system security, which includes studies to ensure the security of information systems such as operating systems, servers, desktop computers and mobile devices, issues such as authentication, access control, security patches, detection and prevention of malicious software are examined [5]. In data security, which aims to ensure the security of sensitive and personal data, solutions are developed for issues such as data

\* This research was funded by armasuisse Federal Office for Defence Procurement; contract number 8203005331.

\* Corresponding author. Portland State University, Portland, OR, USA. *E-mail address*: tugrul.u.daim@pdx.edu (T. Daim). https://www.linkedin.com/in/tugruldaim (T. Daim), https://www.linkedin.com/in/haydar-yal%C3%A7in-6bb9a527 (H. Yalcin), https://www.linkedin.com/in/alainmermoud

(A. Mermoud), https://www.linkedin.com/in/valentin-mulder (V. Mulder)

<sup>1</sup> Tugrul Daim was a visiting faculty at Ege University during this research project.

https://doi.org/10.1016/j.wpi.2024.102278

Received 29 June 2023; Received in revised form 10 March 2024; Accepted 5 April 2024 Available online 20 April 2024

0172-2190/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

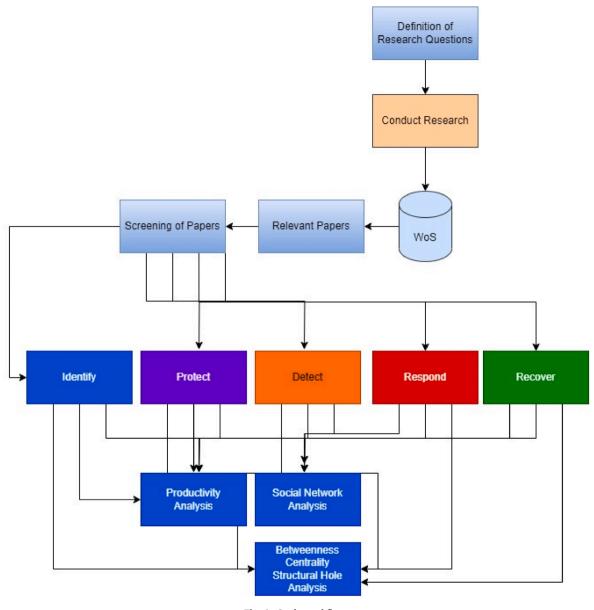



Fig. 1. Study workflow.

encryption, database security, data recovery and backup, and data loss prevention [5–7]. In the studies carried out to ensure the security of applications defined as Software Security, topics such as secure software development, detection of weak points, security tests and code analysis are covered [8,9]. Cryptography can also be shown among the topics sought for solutions in this context: Investigating the methods of encrypting and decrypting information, Cryptography is used to provide confidentiality, integrity and authentication in communication [10,11]. Finally, there comes the Social Engineering applications, which is a unit that examines an area where attackers try to access sensitive information by manipulating people. While dealing with social engineering, psychology, and human behavior, it aims to produce solutions for applications that aim to deceive users with methods such as giving information, phishing, and fraud [12,13]. Since the issue of cyber security has the potential to affect many areas in terms of social, economic, environmental, and political aspects, it has been a subject discussed at the level of governments [14,15]. Looking at the literature, previous studies indicate that in many situations where the corporate world lives, organizations have permeable controls on attack detection and monitoring, incident response, or IT forensics. Although it is stated that cyber problems can originate from internal and external sources of any organization or system, it requires organizations to do internal research as well as focus on external interaction in parallel with the world trend. For organizations to better combat attacks, they need to look both internally and externally and establish a solid cybersecurity stance against potential attackers, regardless of which vector originates. In the UK, the Center for Conservation of Critical National Infrastructure (CPNI) defines Critical National Infrastructure (KUA) as follows: the facilities, systems, sites, and networks that enable the country to function socially and economically and provide essential services needed to sustain everyday life in England [16,17]. In a world where 80 percent of private sector industries operate national assets as part of their core business, there is a compelling need for better understanding, protection and maintenance of critical assets and information infrastructures against cyber threats [18]. There is limited consumer and end-user understanding or technical skills against growing cyber threats [19-21]. The USA, which aims to produce solutions according to the principles of multiple perspective analysis, has also carried out a series of studies on this subject. Focusing on five main functions from the main reference points of the subject, the USA aimed to develop a standard based on

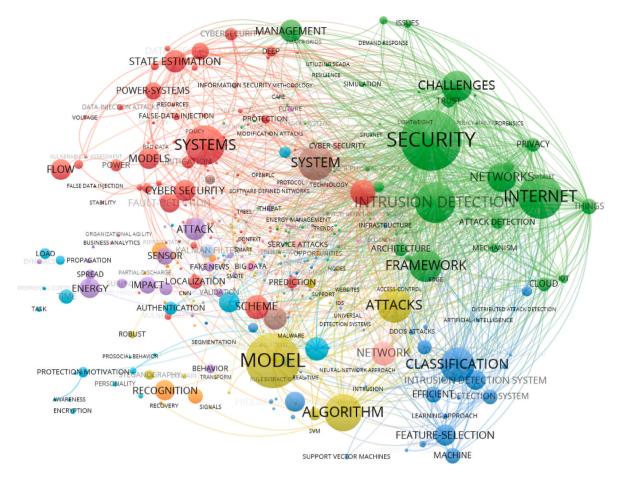



Fig. 2. Keyword analysis.

these functions. Since the subject consists of so many sub-components and application areas, it has become necessary to develop a standard on this subject and a framework consisting of five basic functions has been developed for cybersecurity. The responsibility of the work to be done for this purpose has been undertaken by the American Standard Institute called National Institute of Standards and Technology (NIST). NIST is a federal agency that provides standards and guidance on science, technology, and cybersecurity systems in the United States [22, 23]. The National Institute of Standards and Technology Cybersecurity Framework (NIST CSF) has been developed to determine applicable security standards and rules in all industries with critical infrastructure. NIST CSF aims to provide a flexible and repeatable structure based on performance and efficiency, while helping to identify, assess and manage cyber risks. In this respect, it can be said that it aims to identify improvement areas for existing cyber risks, to identify security gaps that are not met by published standards, and to develop action plans for these gaps [24]. NIST has developed several frameworks (frameworks) in the field of cybersecurity, one of which is called the NIST Cybersecurity Framework (NIST Cybersecurity Framework). Since our study will be based on this framework, we believe that it will be useful to give information about the subject. The NIST Cybersecurity Framework is a guide to help those concerned manage their cybersecurity risks and improve their security programs. The framework consists of five main functional categories.

1. **Identify**: It is designed to help organizations understand cybersecurity risks, identify their assets and storage, create their risk strategy, and perform an organizational-level security assessment.

- Protect: It includes security measures such as raising awareness of cyber security, access control, secure network design, system configuration.
- 3. **Detect:** Helps organizations set up protection strategies to help detect cyberattacks or security incidents and quickly identify cybergroups. It includes operations such as reporting of detection observations of events, log management, and threat intelligence monitoring.
- 4. **Respond (Reply):** Helps organizations respond to cybersecurity groups quickly and effectively to direct attacks. This process, which includes operations such as emergency management, incident management, intrusion detection and prevention, and intervention against the application, is very important.
- 5. **Recover**: Helps organizations plan and perform normal business process reassembly after cybersecurity incidents. It includes operations such as data backup and recovery, system restore, business continuity.

The NIST Cybersecurity Framework highlights the principle of "Continuous Improvement," a cycle to enable organizations to continually improve their cybersecurity practices.

# 2. Methodology

At the set of our research, we intended to explore both journal publications [25,26] and patents [27–29] to explore the research and development activity in different clusters of cybersecurity as defined by NIST. This approach is very common in literature [30]. Unfortunately, there was not a critical number of patents found in individual clusters. However prior literature [31,32]. demonstrate that journal paper trends

are good early indicators of IP trends. Therefore, we made conclusions about expected IP trends based on bibliometric trends. Since the standards are new, patenting should already be in process in this field. We expect the patenting to follow publications closely in the coming months or a year or two.

We then defined a workflow according to the "Identify", "Protect", "Detect", "Respond" and "Recover" setups, and conducted an online search on the Web of Science (WoS) to access the information on the publications on the relevant topics (Fig. 1).

In the next stage, we performed productivity analysis and social network analysis (SNA) applications. In SNA analysis, we examined the indicators required to detect developing (LAC) and mature (HAC) points, especially with structural hole analysis. We revealed the differences between nodes with high constraint aggregate and nodes with low constraint aggregate. By looking at the betweenness centrality values within the scope of SNA over the centrality values, we have ensured that the nodes are ranked according to the importance of their roles in the network [33] (Fig. 2). Productivity analysis includes several elements, including examining the number, citations, publication process, and impact of a researcher's or an institution's publications [34]. In our study, indicators such as the number of articles published by the researcher or institution in a certain period, the number of citations of published articles by other researchers, the performance of the researcher or institution in academic indexes were examined. With the social network analysis, the actors with the highest degree of connectivity (degree), the actors with the highest betweenness centrality value, the actors with high constraint rate and the nodes with low constraint rate were examined [35-38]. Each social network analysis indicator is ranked for the five functions (identify, protect, detect, respond, and recover) determined by NIST for the cybersecurity field. In this way, the rankings obtained have made it possible to identify the prominent actors for each function, the actors acting as a bridge, the actors that have strengthened their network position, and the actors that are open to development and will increase in relative importance. To give brief information about the analyzes made, it can be said that he made a series of evaluations based on the basic indicators based on Social Network Analysis. If we explain the values we examined in this context: With Degree Partition, it is aimed to calculate the indicators expressing the number of connections of each term with other terms in the network. In this way, the centrality degree of the term, which is the number of edges (connections) coming to the node (term) in the network [10]. With the Betweenness Centrality indicator, we planned to measure the extent to which a term acts as a bridge or intermediary between other terms in the network. In this regard, by measuring the number of shortest paths passing through the term, it was possible to identify the terms with the highest potential for information flow or impact [37]. We calculated a series of indicators for the detection of virgin areas by structural hole analysis. In this context, we first took a closer look at the Low Aggregate Constraints (LAC): indicator. According to this indicator, which expresses the degree to which the terms and neighboring terms are related to each other, a low LAC value indicates that the neighboring terms of a term are not strongly related to each other. In this respect, it is possible to say that the terms with this value indicate that they have less restrictions in terms of information flow or interaction between their neighbors, while they refer to relatively untouched or developing nodal points. It is possible to detect nodes that have strengthened their position in the network with the High Aggregate Constraints Constraint (HAC) value. In other words, the HAC value, which is the opposite indicator of the LAC value, expresses the extent to which a term is related to its neighboring terms, while a high HAC value indicates that the term has a high restriction in terms of information flow or interaction between its neighbors. Considering the SNA values obtained, it is possible to make the following inferences about the terms in the field of cybersecurity [38].

Cluster analysis stands out as an analysis method that is increasingly used as one of the main methodologies of choice for analyzing multivariate data [39,40]. In our study, we aimed to group research focuses by using the clustering function to better understand Cybersecurity research and identify prominent research focuses, so that we can identify cybersecurity clusters within the years when they formed critical cohesion. While this gave us the opportunity to see the dynamics of research focuses that have emerged in the field of cybersecurity over the years, it has given us the opportunity to closely follow the basic dynamics of the field by showing how far the research clusters have diverged from each other [41].

If we are to describe the metrics for each cluster, we see that the largest cluster (Cluster 0) stands out from the others with 24 data points and a high silhouette score of 0.935. The label associated with this cluster (LLR) is "Attack detection" and the data points in this cluster are The average year is 2017 (751.85, 1.0E-4). Cluster 1 has 16 data points with a silhouette score of 0.852. It has been labeled as "Human cyber-security behavior" according to this cluster (LLR) algorithm, where good similarity was detected between data points within the cluster. Cluster 2 is labeled "Data breaches" and the average year of data points in this cluster is 2015. Cluster 3 is identified by the label "Supply chain management" with 16 data points, while the average year of data points in this cluster is 2016.

It can be said that the clusters represent different topics or themes within the dataset based on the label associated with each cluster. On the other hand, the silhouette score for each cluster indicates the similarity of the data points within the cluster, while the higher scores indicate higher similarity. The average year of data points in each cluster provides information about the time or period in which the research related to the subject of the cluster was conducted. In general, these metrics can be translated into important inputs that can be used in policy making with information about the clustering patterns and characteristics of the data points in each cluster.

# 2.1. social network analysis

#### 2.1.1. NIST's identify

Aiming to guide the development of organizational understanding to manage cybersecurity risk to systems, assets, data, and capabilities, this function is the basis for the effective use of NIST's cybersecurity framework. This Function, Asset Management, aims to understand the business context, the resources that support critical functions, and the associated cybersecurity risks, enabling organizations to focus and prioritize their efforts consistent with their risk management strategy and business needs; business environment; Management; Risk assessment; and Outcome Categories such as Risk Management Strategy [42–44].

If we compare the clusters according to the parameters in the table; It is observed that the sizes of the clusters vary between 11 and 32, while the largest cluster, Cluster 0, has 32 data points. Clusters 16 and 17 have the smallest cluster sizes. The average year associated with each cluster represents the temporal direction. The clusters cover a year range from 2015 to 2017 with varying distributions. Cluster 0 has 32 data points and shows a concentration for the topic of "modelling decision-making" in 2016. In other words, it is possible to say that there is a trend that shows a significant focus on understanding and managing the risks associated with decision-making in context of cyber security. Cluster 1, with its 30 data points, represents the concept of "vulnerability assessment" that emerged around 2016. It represents a crucial research focus in that it demonstrates a focus on the application of vulnerability assessment, potentially aimed at improving cybersecurity services. Cluster 2 represents the set of 30 data points labeled as "anti-malware behavior". This cluster, which represents research or discussions about people or techniques that reached critical density in 2016 and plays a critical role in hacking or cybersecurity, is one of the prominent research focuses for NIST's Identify function. On the other hand, it is observed that the focus is on "smart factory" consisting of cluster 3 and 30 data points. A group of 30 data points that are strongly associated with the concept of smart factories. These data points likely reflect research,

Summary of the largest 18 clusters (Identify).

| ClusterID | Size | Silhouette | Label (LLR)                                  | Average<br>Year |
|-----------|------|------------|----------------------------------------------|-----------------|
| 0         | 32   | 0.79       | modelling decision-making (178.19, 1.0E-4)   | 2016            |
| 1         | 30   | 0.818      | vulnerability assessment (165.42, 1.0E-4)    | 2016            |
| 2         | 30   | 0.882      | anti-malware behaviour (202.92, 1.0E-4)      | 2016            |
| 3         | 30   | 0.866      | smart factory (178.28, 1.0E-4)               | 2017            |
| 4         | 27   | 0.939      | exploratory study (204.51, 1.0E-<br>4)       | 2015            |
| 5         | 25   | 0.89       | incident response (205.66, 1.0E-<br>4)       | 2017            |
| 6         | 25   | 0.888      | cyberattack detection (212.24, 1.0E-4)       | 2019            |
| 7         | 24   | 0.935      | using deep learning (676.17, 1.0E-4)         | 2017            |
| 8         | 24   | 0.938      | future research (274.99, 1.0E-4)             | 2015            |
| 9         | 23   | 0.99       | smart grid (781.72, 1.0E-4)                  | 2016            |
| 10        | 21   | 0.921      | blockchain technology (344.89, 1.0E-4)       | 2017            |
| 11        | 21   | 0.983      | managerial perspective (206, 1.0E-4)         | 2018            |
| 12        | 19   | 0.942      | cyber risk (255.14, 1.0E-4)                  | 2017            |
| 13        | 17   | 0.933      | autonomous vehicle (192.8, 1.0E-<br>4)       | 2017            |
| 14        | 14   | 1          | weakests link (257.41, 1.0E-4)               | 2016            |
| 15        | 13   | 0.88       | virtual reality environment (186.42, 1.0E-4) | 2016            |
| 16        | 11   | 0.976      | 5g network (249.99, 1.0E-4)                  | 2017            |
| 17        | 11   | 0.946      | data breaches (247.95, 1.0E-4)               | 2017            |

discussions, or data related to the implementation, technologies, and advancements in smart factories during the year 2017. The silhouette values that emerged in the clustering analysis show that although the clusters are well separated from each other, they are located very close to each other in terms of neighborhood relations. The prominent clusters for the identify function and the indicators that are the basis for cluster analysis are given in Table 1 and Fig. 3.

### 2.1.2. NIST's protect

Aiming to guide the development and implementation of appropriate measures to ensure the secure delivery of critical infrastructure services, this function helps limit or contain the impact of a potential cybersecurity incident. According to NIST, the output categories included in this function are Access Control; Awareness and Education; Data security; Information Protection Processes and Procedures; Care; and Protective Technology processes [22,45].

The cluster has the largest size with 0.27 data points (Fig. 4). Cluster 14 has the smallest size with only 7 data points. Silhouette Coefficient: The 10th, 12th, and 13th clusters have the highest silhouette coefficient of 1 Cluster 2 has the lowest silhouette coefficient of 0.773, which can be interpreted as indicating some overlap or less distinctiveness between the data points. When the label is compared in terms of Average Year, it can be interpreted that the average years have changed from 2013 to 2019, in other words, the time frames in which the research focuses are interested or relevant are concentrated in this six-year period. To summarize, it is clearly seen that the clusters differ in size, silhouette coefficient, subject and average year of prominence. According to the results of the cluster analysis, the topics represented by the tags, "security assessment methodologies", "vulnerability risks", "technological research", "critical infrastructure", "secure data transmission", "behavioral strategies", "technology adoption", "cybersecurity" " is shaped as "cyber-physical security" (Table 2).

# 2.1.3. NIST's detect

The Detection Function, which includes developing and implementing appropriate activities to identify the occurrence of a cyber security incident, aims to ensure that cyber security incidents are discovered at the time they occur. This Function is Abnormalities and Events; Security Continuous Monitoring; and Results Categories such as Detection Actions [22,46].

When we compare clusters, it can be said that cluster 2 is the largest cluster with 28 data points (Fig. 5), while Cluster 16 is the smallest cluster with only 6 data points in terms of cluster size. When we evaluate it within the framework of the silhouette coefficient, it is possible to say that the quality of the cluster is at a good level. Cluster 8 is labeled "DDoS Attack" and Cluster 11 is "Automated Cyber". The average year for most clusters is 2018, suggesting that research or data points in these clusters are relatively new. In general, "cybersecurity", "energy internet", "Internet of Things", "artificial intelligence", etc. It covers a range of topics such as Clusters are tabulated with details showing varying sizes, silhouette coefficients, thematic focuses, and publication years, reflecting the diversity and complexity of the research field (Table 3).

# 2.1.4. NIST's respond

Aimed at developing and implementing appropriate actions to take on a detected cybersecurity incident, the Response Function as a function aims to support the ability to contain the impact of a potential cybersecurity incident. Respond Function Response Planning; Communication; Analysis; Decrease; and Improvements [47,48].

If we compare clusters (Fig. 6), it is seen that cluster sizes vary according to the number of data points they contain. Cluster 0 has the largest size with 18 data points, while Clusters 5, 6, 7, 8 and 9, 10 and 11 represent the smallest clusters in terms of the number of data points they contain. The silhouette coefficient measures the compactness and separation of clusters. Cluster 7 stands out with its high silhouette coefficient of 0.98, which indicates that the data points within the cluster are well separated from the other clusters. The LLR method was used to identify a tag representing the dominant theme or topic within each cluster. Accordingly, its tags can be said to provide insights into the main focus areas in each cluster. In this respect, it is possible to say that the 1st Cluster is labeled as "Classification Measure" and the 4th Cluster "Reinforcement Learning".

While the average year represents the temporal direction of the clusters, it denotes the average publication year of the data points in each cluster. In this regard, it is seen that the research focuses on the respond function have average years ranging from 2015 to 2020. By looking at this value, it can be said that the studies on the respond function are a mixture of recent and relatively old research points (Table 4).

# 2.1.5. NIST's recover

The recover function, which refers to developing and implementing appropriate activities to maintain resilience plans and restore capabilities or services that have been disrupted due to a cybersecurity incident, supports timely recovery of normal operations to mitigate the impact of a cybersecurity incident. This Function is Recovery Planning; Improvements; and Communication results categories [49,50].

When we compare these clusters, it is seen that Cluster 0 is the largest with 10 data points, and Clusters 8 and 9 are the smallest with 4 and 3 data points, respectively. Cluster 1, which is the second largest cluster, is labeled "False Data Injection Attack", while Cluster 6 is labeled "Railway Communications Case Study". When we want to represent the temporal direction of the clusters in terms of average year, it is seen that the clusters cover the time period from 2019 to 2021, depending on the average publication year of the data points in each cluster. This indicates that the studies on the recover function involve a mix of relatively recent and somewhat older research points. In general, clusters in the recovery function, "scoping studies", "false data injection attacks", "malicious attack resistance", "efficient production", "data decryption", "rail transport industry", "rail communication case studies" covers topics such as "data analysis" and "digital forensics analysis". The clusters show different dimensions, silhouette coefficients, thematic focuses, and how

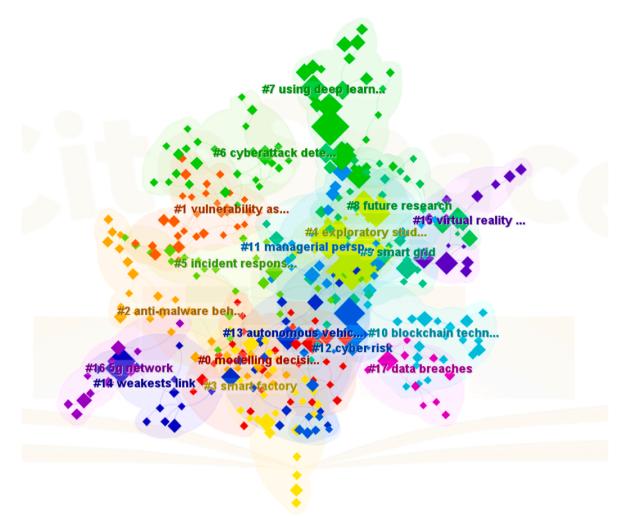



Fig. 3. Cluster analysis (Identify).

well they differentiate from each other, reflecting the diversity and complexity of the recovery function in the context of cybersecurity (Table 5).

When we analyze the scientific research on the rescue function; NIST's cybersecurity framework recovery functions are observed to be spread across multiple clusters. In other words, it can be said that clusters covering different areas that are vital for each cyber resilience and recovery function have emerged. Clusters define specific areas, from combating malicious attacks and mitigating DoS attacks to protect critical infrastructure such as the rail transport industry and programmable logic controllers. There are also quests for the necessity of efficiently securing production processes and decrypting data after cyber incidents. On the other hand, efforts to develop methodologies for digital forensic analysis, which investigate case studies in railway communications and are necessary for post-event investigations, also attract attention. These clusters also provide important clues as they reflect NIST's holistic approach to cyber security, addressing various threats and sectors and ensuring resilience and continuity in the face of evolving cyber risks (Fig. 7).

# 2.1.6. Comparing all components of NIST cybersecurity framework in terms of social network analysis metrics

2.1.6.1. *Keywords.* To examine the functions defined in the NIST Cybersecurity framework, which is the cyber security framework standard, we have considered metrics based on social network analysis. In this context, we especially evaluated these functions defined as identify,

protect, detect, respond, and recover. We looked at the necessary indicators to determine the roles of the keywords under these functions with their social network analysis values. We started to work by identifying the degree of connectivity, the indicator of centrality betweenness, the identification of nodes with high constraints, and the identification of nodes with low constraints. In the next step, we continued the analysis by listing the top 25 keywords of the rankings formed by the nodes under each function. In this way, it gave the opportunity to make inferences about the determination of the nodal points that continue to be important in the functions determined in the context of the cyber security framework according to the NIST standard, the detection of the nodes that will lose their importance, and the determination of the sub-technology areas that can be defined as open to development or relatively untouched areas. In this part of the study, a comparison process based on social network analysis values was made. According to this comparison, the roles and scores of the keywords in the cyber security framework function list defined by NIST are compared according to their social network analysis values.

When we analyze them according to their functions, the terms "Security," "Computer Security," and "Information Security" among the headings under the Identify heading are closely related to the Identify function. These topics are about identifying and analyzing vulnerabilities, threats or vulnerabilities. In addition, "Privacy" and "Blockchain" headers can also be linked to identification, data privacy and security can be said to be a part of this function. The titles "Cybersecurity," "Machine Learning," and "Internet of Things" under Protect can be associated with the Protect function. These topics include implementing

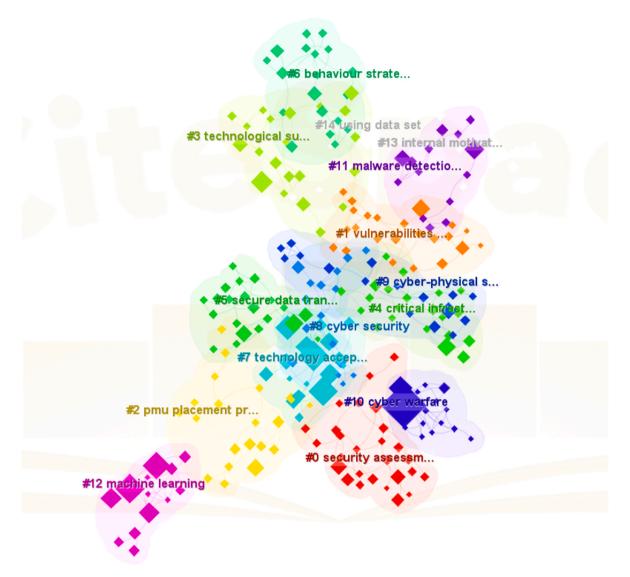
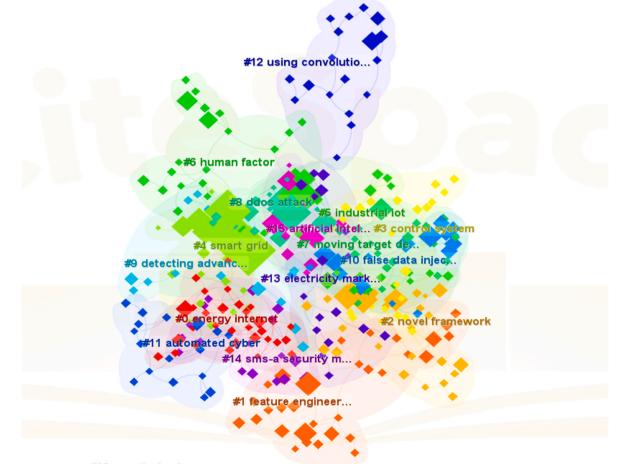



Fig. 4. Cluster analysis (Protect).

security measures, protecting against attacks, and securing systems. In addition, the title "Computer Crime" can also be linked to the protection function, taking measures against criminal activities is part of this function. As for the Detect function, the titles "Cybersecurity," "Machine Learning," and "Deep Learning" are closely related to the Detect function. These topics are directly related to detecting anomalies, attacks or harmful activities and using early warning systems. "Intrusion Detection" and "Anomaly Detection" headings can also be shown as other topics to be associated with this function. In the Respond function, the concepts of "Cybersecurity," "Machine Learning," and "Security" stand out as components that include reacting, responding, and taking necessary measures to attacks or anomalies quickly and effectively. "Phishing" and "Covid-19" headings stand out as headings that can be associated with the Respond function and draw attention to the importance of responding to attacks or emergencies. Finally, in the Recover function, the "Cybersecurity," "Machine Learning," and "Computer Security" titles stand out as the titles associated with the Recover function, which include the subjects of restoring, repairing, and improving systems after attacks. "Smart Grid" and "Critical Infrastructure" headings stand out as structures that need to be rapidly improved after attacks, especially energy systems or critical infrastructures, which can be associated with the Recover function (Table 6).

If it is necessary to analyze and compare the similarities and


differences between the concepts gathered under five functions, the concepts gathered under the Identify function include "Security", "Machine Learning", "Internet of Things", "Computer Security", "Deep Learning", "Computer Crime", " It seems that there are terms such as "Anomaly Detection". While these concepts are generally concerned with the identification, analysis and classification of security threats and vulnerabilities, terms such as "Cybersecurity" and "Privacy" stand out among the terms with high centralization value. It can be said that these concepts focus on determining security and privacy issues. Among the concepts gathered under the Protect function are terms such as "Cybersecurity", "Security", "Machine Learning", "Internet of Things", "Computer Security", "Privacy". These concepts deal with the implementation of security measures, the protection of systems, and the prevention of vulnerabilities. While the terms "Cybersecurity" and "Security" stand out among the terms with high centralization value, it is possible to say that these terms represent general security measures and protection strategies. The concepts gathered under the Detect function are "Cybersecurity", "Machine Learning", "Deep Learning", "Internet of Things", "Computer Security", "Anomaly Detection". These concepts prioritize the detection of security breaches and attacks, the detection of anomalies, and the analysis of events. While "Cybersecurity" and "Machine Learning" stand out among terms with high centralization value. These terms appear to represent important tools and techniques for the

Summary of the largest 15 clusters (Protect).

| Cluster<br>ID | Size | Silhouette | Label (LLR)                                               | Average<br>Year |
|---------------|------|------------|-----------------------------------------------------------|-----------------|
| 0             | 27   | 0.834      | security assessment methodologies (85.3, 1.0E-4)          | 2016            |
| 1             | 23   | 0.809      | vulnerabilities risks nist<br>perspective (90.47, 1.0E-4) | 2019            |
| 2             | 21   | 0.773      | pmu placement protection (57.71, 1.0E-4)                  | 2018            |
| 3             | 21   | 0.905      | technological survey (104.29, 1.0E-4)                     | 2016            |
| 4             | 21   | 0.791      | critical infrastructure (106.11, 1.0E-4)                  | 2016            |
| 5             | 21   | 0.817      | secure data transmission (91.4, 1.0E-4)                   | 2017            |
| 6             | 20   | 0.923      | behaviour strategies (102.18, 1.0E-4)                     | 2018            |
| 7             | 17   | 0.946      | technology acceptance (72.91, 1.0E-4)                     | 2015            |
| 8             | 17   | 0.96       | cyber security (71.21, 1.0E-4)                            | 2016            |
| 9             | 16   | 0.891      | cyber-physical security (91, 1.0E-<br>4)                  | 2018            |
| 10            | 15   | 1          | cyber warfare (138.87, 1.0E-4)                            | 2015            |
| 11            | 14   | 0.899      | malware detection (115.57, 1.0E-<br>4)                    | 2019            |
| 12            | 14   | 1          | machine learning (141.78, 1.0E-4)                         | 2019            |
| 13            | 8    | 1          | internal motivator (79.03, 1.0E-4)                        | 2018            |
| 14            | 7    | 0.978      | using data set (77.45, 1.0E-4)                            | 2013            |

detection and analysis of security incidents. Under the Respond function, there are terms such as "Cyberattack", "Covid-19", "Threat Analysis", "Response", "Game Theory", "Risk Management". It can be said that these concepts are related to responding to security events and threats, stopping attacks and crisis management. Among the terms with high centralization value, "Cyberattack" and "Covid-19" stand out. These terms represent strategies for responding to cyber-attacks and outbreaks. Finally, it has been observed that there are terms such as "Smart Grid", "Covid-19", "Critical Infrastructure", "Response", "Game Theory", "Risk Management" in the Recover function. These concepts are directly related to the recovery, restructuring and normal functioning of systems after attacks and incidents. Among the terms with high centralization value, "Smart Grid" and "Covid-19" stand out. It can be said that these terms represent terms for the recovery of energy grids and postpandemic recovery strategies (Table 7).

Among the concepts gathered under the identify function are terms such as "Security", "Machine Learning", "Internet of Things", "Computer Crime", "Computer Security", "Deep Learning". These terms relate to identification processes such as identifying security threats, data analysis, and threat classification. It is observed that "Security" and "Computer Security" stand out among the terms with high centralization value representing general security issues and the security of computer systems. Among the concepts gathered under the Protect function are terms such as "Cybersecurity", "Security", "Feature Extraction", "Machine Learning", "Security of Data", "Computer Security". These terms relate to systems protection, enforcement of security measures, data security and access controls. Among the terms with high centralization value, "Cybersecurity" and "Security" stand out. These terms represent general



#16 practical cyber-...

Fig. 5. Cluster analysis (Detect).

Summary of the largest 17 clusters (Detect).

| ClusterID | Size | Silhouette | Label (LLR)                                           | Average<br>Year |
|-----------|------|------------|-------------------------------------------------------|-----------------|
| 0         | 32   | 0.867      | energy internet (140.76, 1.0E-4)                      | 2017            |
| 1         | 31   | 0.919      | feature engineering (210.79, 1.0E-<br>4)              | 2018            |
| 2         | 28   | 0.954      | novel framework (315.07, 1.0E-4)                      | 2018            |
| 3         | 25   | 0.929      | control system (183.84, 1.0E-4)                       | 2018            |
| 4         | 25   | 0.942      | smart grid (327.38, 1.0E-4)                           | 2017            |
| 5         | 25   | 0.914      | industrial IoT (279.4, 1.0E-4)                        | 2018            |
| 6         | 21   | 0.9        | human factor (151.14, 1.0E-4)                         | 2018            |
| 7         | 21   | 0.909      | moving target defense approach<br>(180.22, 1.0E-4)    | 2018            |
| 8         | 20   | 0.976      | ddos attack (308.44, 1.0E-4)                          | 2011            |
| 9         | 19   | 0.99       | detecting advanced persistent threat (242.05, 1.0E-4) | 2018            |
| 10        | 18   | 0.893      | false data injection attack (399.57, 1.0E-4)          | 2016            |
| 11        | 18   | 1          | automated cyber (150.48, 1.0E-4)                      | 2018            |
| 12        | 18   | 0.908      | using convolutional neural network (173.15, 1.0E-4)   | 2018            |
| 13        | 18   | 0.952      | electricity market operation (141.77, 1.0E-4)         | 2018            |
| 14        | 17   | 0.909      | sms-a security management<br>system (164.41, 1.0E-4)  | 2016            |
| 15        | 12   | 0.884      | artificial intelligence (169.91, 1.0E-4)              | 2018            |
| 16        | 6    | 1          | practical cyber-attack detection (119.11, 1.0E-4)     | 2019            |

security measures and protection strategies. Concepts gathered under the Detect function consist of terms such as "Cybersecurity", "Cyberattack", "Machine Learning", "Deep Learning", "Intrusion Detection", "Data Models". These terms relate to detecting security breaches, identifying anomalies, detecting cyber-attacks, and analyzing events. Among the terms with high centralization value, "Cybersecurity" and "Intrusion Detection" stand out. These terms represent important tools and techniques for the detection and analysis of security events. The concepts gathered under the Respond function are.

It creates terms like "Security", "Security of Data", "Cloud Computing", "Phishing", "Threat Analysis", "Anomaly Detection". These terms relate to responding to security incidents, stopping attacks, crisis management, and threat analysis. Among the terms with high centralization value, "Security" and "Anomaly Detection" stand out. These terms represent strategies for reacting to security events and detecting anomalies. Among the concepts gathered under the recovery function There are terms such as "Cybersecurity", "Covid-19", "Smart Grid", "Computer Crime", "Covid-19", "Critical Infrastructure". These terms deal

# Table 4

Summary of the largest 10 clusters (Respond).

| ClusterID | Size | Silhouette | Label (LLR)                                             | Average<br>Year |
|-----------|------|------------|---------------------------------------------------------|-----------------|
| 0         | 18   | 0.901      | construction industry (27.75, 1.0E-4)                   | 2016            |
| 1         | 14   | 0.877      | taxonomising countermeasure (37.57, 1.0E-4)             | 2018            |
| 2         | 14   | 0.877      | cyber conflict (38.57, 1.0E-4)                          | 2019            |
| 3         | 12   | 0.957      | domain-oriented topic discovery (25.13, 1.0E-4)         | 2018            |
| 4         | 12   | 0.796      | reinforcement learning (22.78, 1.0E-4)                  | 2018            |
| 5         | 11   | 0.934      | open science grid (38.77, 1.0E-4)                       | 2015            |
| 6         | 11   | 0.89       | understanding cybersecurity<br>economics (33.1, 1.0E-4) | 2019            |
| 7         | 11   | 0.98       | zero-trust model (33.53, 1.0E-4)                        | 2020            |
| 8         | 10   | 0.89       | zero-day attacks detection (25.66, 1.0E-4)              | 2018            |
| 9         | 10   | 0.886      | circular economy (24.31, 1.0E-4)                        | 2017            |

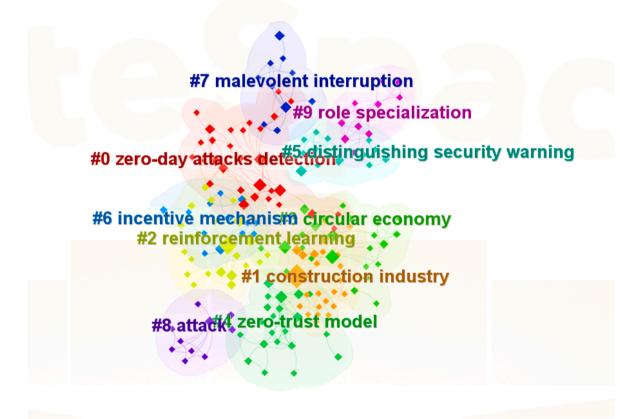



Fig. 6. Cluster analysis (Respond).

Summary of the largest 9 clusters (Recover).

| Cluster<br>ID | Size | Silhouette | Label (LLR)                                     | Average<br>Year |
|---------------|------|------------|-------------------------------------------------|-----------------|
| 0             | 10   | 1          | scoping review (12.54, 0.001)                   | 2021            |
| 1             | 9    | 0.856      | false data injection attack (16.82, 1.0E-4)     | 2019            |
| 2             | 9    | 0.929      | malicious attack-resilience (13.11, 0.001)      | 2019            |
| 3             | 8    | 0.875      | efficient manufacturing (15.13, 0.001)          | 2019            |
| 4             | 8    | 0.888      | decrypting data (14.49, 0.001)                  | 2020            |
| 5             | 8    | 1          | rail transportation industry (14.99, 0.001)     | 2021            |
| 6             | 5    | 0.964      | railway communication case study (11.46, 0.001) | 2019            |
| 8             | 4    | 0.965      | data (4.66, 0.05)                               | 2020            |
| 9             | 3    | 1          | digital forensic analysis (11.99, 0.001)        | 2021            |

with the recovery, reconstruction, and normal functioning of systems after attacks and incidents. Among the terms with high centralization value, "Smart Grid" and "Covid-19" stand out. These terms represent strategies for recovering energy grids and post-pandemic recovery. It is worth noting that these concepts are concepts that have reached the level of maturity under each function with high scarcity rates (Table 8).

Low-restriction concepts collected for the identify function include terms such as "Digital Forensics", "Web Security", "Culture", "Connected and Autonomous Vehicles", "Attribution", "Machine Learning (ML)". These terms relate to incident detection, threat detection, digital monitoring, and analysis processes. Among the terms with low centralization value, "Digital Forensics" and "Web Security" stand out. These terms represent digital evidence gathering and web security issues. Concepts with a low restriction rate among those gathered under the Protect function consist of terms such as "Proactive Defense", "Privacy Violation Risk", "Privacy Impact Assessment", "Privacy-Preserving Aggregation", and "Privacy-Preserving Consensus". These terms relate to the implementation of security measures, assessment of privacy risks, data protection and privacy. Among the terms with low centralization value, "Proactive Defense" and "Privacy Violation Risk" stand out. These

terms represent active defense strategies and risks associated with privacy breaches. There are terms such as "Cybersecurity Testing", "Human-Machine Interface", "Information Sharing", "Statistical Anomaly Detection", "Cyber Attacks Detection" among the concepts with low restriction rate gathered under Detect. These terms relate to the detection of attacks, detection of anomalies, security testing and information sharing. Among the terms with low centralization value, "Cybersecurity Testing" and "Human-Machine Interface" stand out. These terms represent issues of security testing and human-machine interaction or interface. Concepts with low restrictions in the response function include terms such as "Online Voting", "Municipalities", "Network Flow Forensics", "Malware Traffic Analysis", "Security Operations Center". These terms relate to responding to security incidents, analyzing incidents, monitoring and managing threats. Among the terms with low centralization value, "Online Voting" and "Municipalities" stand out. These terms represent strategies for online voting and the safety of local governments. Concepts with low restriction rate gathered under the Recover function consist of terms such as "Online Voting", "Municipalities", "Network Flow Forensics", "Malware Traffic Analysis", "Security Operations Center". These terms deal with the recovery, reconstruction, and normal functioning of systems after attacks and incidents. Among the terms with low centralization value, "Network Flow Forensics" and "Malware Traffic Analysis" are prominent concepts that usually represent network traffic analysis and malware detection (Table 9).

2.1.6.2. Institutions. Institutions gathered under the identify function include institutions such as "King Saud Univ", "Prince Sattam Bin Abdulaziz Univ", "Chinese Acad Sci", "Univ Texas San Antonio", "Taif Univ". Among the institutions with high centralization value, "King Saud Univ" and "Prince Sattam Bin Abdulaziz Univ" stand out. These institutions can be specified as universities that have important studies on the determination process and information gathering. For the protect function, it is observed that institutions such as "King Saud Univ", "Menoufia Univ", "Umm Al Qura Univ", "Prince Sattam Bin Abdulaziz Univ", "King Abdulaziz Univ" stand out, while "King Saud Univ" and "Prince Sattam" It can be said that institutions such as "Bin Abdulaziz Univ" are among the institutions are also universities that have

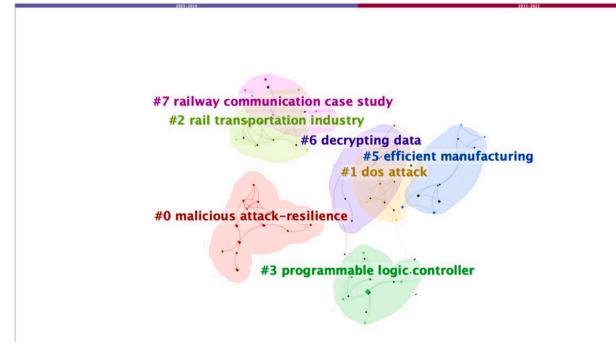



Fig. 7. Cluster analysis (Recover).

#### World Patent Information 77 (2024) 102278

| Identify                | Protect                    | Detect                     | Respond                 | Recover                    |
|-------------------------|----------------------------|----------------------------|-------------------------|----------------------------|
| Security                | Cybersecurity              | Cybersecurity              | Cybersecurity           | Cybersecurity              |
| Machine Learning        | Security                   | Machine Learning           | Machine Learning        | Security                   |
| Internet of Things      | Machine Learning           | Deep Learning              | Security                | Machine Learning           |
| Computer Security       | Internet of Things         | Intrusion Detection        | Cyberattack             | Computer Security          |
| Deep Learning           | Computer Security          | Anomaly Detection          | Phishing                | Covid-19                   |
| Computer Crime          | Privacy                    | Security                   | Computer Security       | Smart Grid                 |
| Anomaly Detection       | Deep Learning              | Internet of Things         | Smart Grid              | Computer Crime             |
| Artificial Intelligence | Intrusion Detection        | Feature Extraction         | Information Security    | Cloud Computing            |
| Intrusion Detection     | Computer Crime             | Malware                    | Feature Extraction      | Phishing                   |
| Privacy                 | Blockchain                 | Cyberattack                | Covid-19                | Threat Analysis            |
| Malware                 | Smart Grid                 | Computer Security          | Anomaly Detection       | Deep Learning              |
| Protocols               | Cyber-Security             | Computer Crime             | Deep Learning           | Internet                   |
| Cloud Computing         | Artificial Intelligence    | Artificial Intelligence    | Internet of Things      | Feature Extraction         |
| Feature Extraction      | Malware                    | Data Models                | Cloud Computing         | Data Models                |
| Smart Grid              | Cyberattack                | Cyber-Security             | Computer Crime          | Critical Infrastructure    |
| Standards               | Internet of Things (IoT)   | Intrusion Detection System | Internet                | Lawsuit                    |
| Information Security    | Intrusion Detection System | State Estimation           | Artificial Intelligence | Target                     |
| Blockchain              | Cyber-Physical Systems     | Support Vector Machines    | Critical Infrastructure | Governance                 |
| Data Models             | Critical Infrastructure    | Smart Grid                 | Privacy                 | Anomaly Detection          |
| Risk Management         | Anomaly Detection          | Protocols                  | Malware                 | Biological System Modeling |
| Taxonomy                | Information Security       | Neural Networks            | Cybercrime              | Privacy                    |
| Support Vector Machines | Authentication             | Critical Infrastructure    | Complex Systems         | Data Breach                |
| Real-Time Systems       | Cryptography               | Training                   | Data Models             | Internet of Things         |
| Safety                  | Network Security           | Network Security           | Data Mining             | Decision Making            |
| Computer Architecture   | Feature Extraction         | Botnet                     | Decision Making         | Malware                    |

#### Table 7

Betweenness centrality.

| Identfy                 | Protect                  | Detect                   | Respond                 | Recover                 |
|-------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
| Security                | Cybersecurity            | Cybersecurity            | Cybersecurity           | Cybersecurity           |
| Machine Learning        | Security                 | Security                 | Security                | Security                |
| Internet of Things      | Machine Learning         | Machine Learning         | Machine Learning        | Machine Learning        |
| Computer Security       | Internet of Things       | Internet of Things       | Smart Grid              | Smart Grid              |
| Deep Learning           | Computer Security        | Computer Security        | Covid-19                | Covid-19                |
| Information Security    | Cyber-Security           | Cyber-Security           | Internet of Things      | Internet of Things      |
| Privacy                 | Privacy                  | Privacy                  | Information Security    | Information Security    |
| Smart Grid              | Smart Grid               | Smart Grid               | Deep Learning           | Deep Learning           |
| Computer Crime          | Intrusion Detection      | Intrusion Detection      | Cybercrime              | Cybercrime              |
| Artificial Intelligence | Deep Learning            | Deep Learning            | Threat Analysis         | Threat Analysis         |
| Anomaly Detection       | Blockchain               | Blockchain               | Serious Games           | Serious Games           |
| Blockchain              | Information Security     | Information Security     | Response                | Response                |
| Malware                 | Anomaly Detection        | Anomaly Detection        | Game Theory             | Game Theory             |
| Network Security        | Artificial Intelligence  | Artificial Intelligence  | Risk Management         | Risk Management         |
| Standards               | Network Security         | Network Security         | Artificial Intelligence | Artificial Intelligence |
| Intrusion Detection     | Computer Crime           | Computer Crime           | Technology              | Technology              |
| Cloud Computing         | Cyberattack              | Cyberattack              | Anomaly Detection       | Anomaly Detection       |
| Phishing                | Malware                  | Malware                  | Cyberattack             | Cyberattack             |
| Risk Management         | Scada                    | Scada                    | Complex Systems         | Complex Systems         |
| Human Factors           | Cyber-Physical Systems   | Cyber-Physical Systems   | Surveillance            | Surveillance            |
| Risk Assessment         | Critical Infrastructure  | Critical Infrastructure  | Human-Machine Interface | Human-Machine Interface |
| Covid-19                | Authentication           | Authentication           | Cyber-Attack            | Cyber-Attack            |
| Protocols               | Internet of Things (IoT) | Internet of Things (IoT) | Threat Hunting          | Threat Hunting          |
| Internet                | Election Law             | Election Law             | Internet                | Internet                |
| Critical Infrastructure | Cryptography             | Cryptography             | Computer Security       | Computer Security       |

pioneering studies on protection measures and security policies. In the detect function, it is seen that institutions such as "Prince Sattam Bin Abdulaziz Univ", "Taif Univ", "King Abdulaziz Univ", "Prince Sultan Univ", "Univ Waterloo" are collected, while "Prince Sattam Bin Abdulaziz Univ" is among the institutions with high centralization value. and "Taif Univ". These institutions are universities that stand out with their publications in the field of detection of threats, detection of anomalies and security analysis. It is seen that institutions such as "Univ Illinois", "Tokyo Inst Technol", "Umbc", "City Univ London", "Univ Milan" are gathered under the Respond function. It can be said that "Univ Illinois" and "Tokyo Inst Technol" stand out among the institutions with high centralization value, and these institutions are pioneers with their publications on responding to security incidents, incident analysis and management. In the recovery function, it is possible to see institutions

such as "Univ Texas San Antonio", "Fordham Univ", "Nist", "Univ Southampton", "Natl Inst Informat". "Univ Texas San Antonio" and "Nist", which have high centralization values, stand out as institutions that come to the fore in post-attack system recovery, restructuring and continuity (Table 10). When we evaluate the prominent institutions based on functions according to geographical regions, "Univ Texas San Antonio" and "Fordham Univ" in North America are the prominent institutions in post-attack system recovery, restructuring and continuity. "Univ Illinois" is a prominent organization with publications on security incident response, incident analysis and management. In Europe, "Univ Southampton" and "Natl Inst Informat" are institutions that play an important role in post-attack system recovery, restructuring and continuity. "City Univ London" and "Univ Milan" are prominent institutions in security incident response, incident analysis and management. Looking

High aggregate constraints (HAC).

| Identfy                 | Protect                     | Detect                      | Respond                    | Recover                    |
|-------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|
| Security                | Cybersecurity               | Cybersecurity               | Cybersecurity              | Cybersecurity              |
| Machine Learning        | Security                    | Cyberattack                 | Security                   | Security                   |
| Internet of Things      | Computer Security           | Feature Extraction          | Machine Learning           | Machine Learning           |
| Computer Crime          | Machine Learning            | Machine Learning            | Computer Security          | Computer Security          |
| Computer Security       | Internet of Things          | Security                    | Covid-19                   | Covid-19                   |
| Deep Learning           | Organizations               | Computer Crime              | Smart Grid                 | Smart Grid                 |
| Servers                 | Data Models                 | Deep Learning               | Computer Crime             | Computer Crime             |
| Resilience              | Intrusion Detection         | State Estimation            | Cloud Computing            | Cloud Computing            |
| Privacy                 | Medical Services            | Data Models                 | Phishing                   | Phishing                   |
| Data Models             | Computer Crime              | Support Vector Machines     | Threat Analysis            | Threat Analysis            |
| Cloud Computing         | Power System Security       | Intrusion Detection         | Deep Learning              | Deep Learning              |
| Automation              | Privacy                     | Computer Security           | Internet                   | Internet                   |
| Training                | Critical Infrastructure     | Computational Modeling      | Feature Extraction         | Feature Extraction         |
| Critical Infrastructure | Smart Grids                 | Training                    | Data Models                | Data Models                |
| Computer Architecture   | Informatics                 | Internet of Things          | Critical Infrastructure    | Critical Infrastructure    |
| Data Mining             | Computer Hacking            | Power Systems               | Lawsuit                    | Lawsuit                    |
| Risk Management         | Security Of Data            | Power System Dynamics       | Target                     | Target                     |
| Survey                  | Cyber-Physical Systems      | Phasor Measurement Units    | Governance                 | Governance                 |
| Licenses                | Protocols                   | False Data Injection Attack | Anomaly Detection          | Anomaly Detection          |
| Integrated Circuits     | Security And Privacy        | Protocols                   | Biological System Modeling | Biological System Modeling |
| Protocols               | Network Intrusion Detection | Servers                     | Privacy                    | Privacy                    |
| Big Data                | Real-Time Systems           | Ip Networks                 | Data Breach                | Data Breach                |
| Information Security    | Deep Learning               | IoT                         | Internet of Things         | Internet of Things         |
| Computer Hacking        | Correlation                 | Performance Evaluation      | Decision Making            | Decision Making            |
| Networks                | Power Grids                 | Malware                     | Malware                    | Malware                    |

# Table 9

# Low aggregate constraints (LAC).

| Identify                             | Protect                                          | Detect                           | Respond                                                     | Recover                                                     |
|--------------------------------------|--------------------------------------------------|----------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Digital Forensics                    | Proactive Defense                                | Cybersecurity Testing            | Online Voting                                               | Online Voting                                               |
| Web Security                         | Privacy Violation Risk                           | Human-Machine                    | Municipalities                                              | Municipalities                                              |
|                                      |                                                  | Interface                        |                                                             |                                                             |
| Culture                              | Privacy Impact Assessment                        | Information Sharing              | Network Flow Forensics                                      | Network Flow Forensics                                      |
| Connected And<br>Autonomous Vehicles | Privacy-Preserving Aggregation                   | Statistical Anomaly<br>Detection | Malware Traffic Analysis                                    | Malware Traffic Analysis                                    |
| Attribution                          | Privacy-Preserving Consensus                     | Cyber Attacks<br>Detection       | Security Operations Center                                  | Security Operations Center                                  |
| Machine Learning (Ml)                | Security Standards                               | Application Layer                | Neurosecurity                                               | Neurosecurity                                               |
| Information Security<br>Management   | User Awareness                                   | Web Application<br>Security      | User Interface Design                                       | User Interface Design                                       |
| International Law                    | Countermeasure                                   | Energy Management<br>System      | Security Warning                                            | Security Warning                                            |
| Due Diligence                        | Electronic Voting                                | Security Policies                | Voting Standards                                            | Voting Standards                                            |
| Power System State<br>Estimation     | Attack Graph                                     | Pattern Mining                   | Security Analysis and Valuation                             | Security Analysis and Valuation                             |
| Bioeconomy                           | Human Factors                                    | Web Vulnerabilities              | Security Information and Event<br>Management (Siem) Systems | Security Information and Event<br>Management (Siem) Systems |
| Hardware Trojan                      | Self-Efficacy                                    | Return-Oriented<br>Programming   | Resilient Event Storage                                     | Resilient Event Storage                                     |
| Human Rights                         | Transportation Security                          | Fuzzing                          | Security Protocols                                          | Security Protocols                                          |
| Socio-Technical Systems              | Simulation                                       | Developing Countries             | Risk Scoring                                                | Risk Scoring                                                |
| Synchrophasors                       | Higher Education Institution                     | Program Slice                    | Reputation Propagation                                      | Reputation Propagation                                      |
| Cross-Border Health Data<br>Exchange | Data Sharing                                     | Data Quality                     | Renewable Mitigation                                        | Renewable Mitigation                                        |
| Interviews                           | Proactive Secure Scheme                          | Cyber Attack Detection           | Regional Cooperation                                        | Regional Cooperation                                        |
| Medical Device                       | Fintech                                          | Drdos                            | Peace-Making                                                | Peace-Making                                                |
| Social Networks                      | Model                                            | Design Science                   | Thompson Sampling                                           | Thompson Sampling                                           |
| Information Assurance                | Moving Target Defense (Mtd)                      | Complex Event<br>Processing      | Paillier Cryptosystem                                       | Paillier Cryptosystem                                       |
| Useable Security                     | Eu Law                                           | Cybersecurity Of<br>Substations  | Smart Home (Sh)                                             | Smart Home (Sh)                                             |
| Blockchain Technology                | Spear Phishing                                   | Bots                             | Pending Intent                                              | Pending Intent                                              |
| Information Warfare                  | Cardiovascular Implantable<br>Electronic Devices | Automatic Generation<br>Control  | Mahalanobis Distance Metric                                 | Mahalanobis Distance Metric                                 |
| Geopolitics                          | Decision Support System                          | Malicious Url                    | Warnings                                                    | Warnings                                                    |
| Threat Modelling                     | Architectural Tactic                             | Safety                           | Zero-Days Attack                                            | Zero-Days Attack                                            |

at the Middle East.

"King Saud Univ", "Prince Sattam Bin Abdulaziz Univ", "Umm Al Qura Univ" and "King Abdulaziz Univ" appear to be prominent institutions in the protection function, while "Prince Sattam Bin Abdulaziz Univ", "Taif Univ" and "King Abdulaziz Univ" Abdulaziz Univ" are leading universities in threat detection, detection of anomalies and security analysis. In Asia, "Chinese Acad Sci" excels in threat detection, detection of anomalies and security analysis. "Tokyo Inst Technol" is a prominent

# Degree.

| Identify                                 | Protect                                  | Detect                                   | Respond                               | Recover                                              |
|------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------------------|
| King Saud Univ                           | King Saud Univ                           | Prince Sattam Bin Abdulaziz<br>Univ      | Univ Illinois                         | Tokyo Inst Technol                                   |
| Prince Sattam Bin Abdulaziz<br>Univ      | Menoufia Univ                            | Taif Univ                                | Umbc                                  | Nanyang Technol Univ                                 |
| Chinese Acad Sci                         | Umm Al Qura Univ                         | King Abdulaziz Univ                      | Taif Univ                             | Univ Macau                                           |
| Univ Texas San Antonio                   | Univ Jeddah                              | Prince Sultan Univ                       | City Univ London                      | Zhejiang Gongshang Univ                              |
| Taif Univ                                | Taif Univ                                | Umm Al Qura Univ                         | Univ Milan                            | Fordham Univ                                         |
| Charles Darwin Univ                      | King Abdulaziz Univ                      | Princess Nourah Bint<br>Abdulrahman Univ | Sphynx Technol Solut Ag               | Cent South Univ                                      |
| Univ Waterloo                            | Princess Nourah Bint<br>Abdulrahman Univ | Swinburne Univ Technol                   | Simplan                               | Guangzhou Univ                                       |
| Air Univ                                 | La Trobe Univ                            | Deakin Univ                              | Social Engn Acad                      | Huaqiao Univ                                         |
| Deakin Univ                              | Prince Sattam Bin Abdulaziz<br>Univ      | Univ Waterloo                            | Tuv Hellas Tuv Nord Sa                | East China Univ Sci & Technol                        |
| Univ Oxford                              | Minia Univ                               | Asia Univ                                | Itml                                  | Carnegie Mellon Univ                                 |
| George Mason Univ                        | Edith Cowan Univ                         | Chinese Acad Sci                         | Atos Spain Sa                         | Nyu                                                  |
| Purdue Univ                              | Macquarie Univ                           | Univ Texas San Antonio                   | Danaos Shipping Co                    | Univ Southampton                                     |
| Nanyang Technol Univ                     | Sphynx Technol Solut Ag                  | Virginia Tech                            | Tech Univ Crete                       | Fdn Univ Ceipa                                       |
| Georgia Inst Technol                     | Imam Abdulrahman Bin Faisal<br>Univ      | King Saud Univ                           | Fdn Res & Technol Hellas              | Cotecmar                                             |
| King Abdulaziz Univ                      | Fdn Res & Technol Hellas                 | King Khalid Univ                         | Hellen Mediterranean Univ<br>Hmu      | Nist                                                 |
| Prince Sultan Univ                       | Tech Univ Crete                          | Manchester Metropolitan Univ             | Sungkyunkwan Univ                     | Shenzhen Inst Artificial Intelligence a<br>Robot Soc |
| Univ Warwick                             | Kyungpook Natl Univ                      | Vellore Inst Technol                     | Cyber Def Lab                         | Univ Sydney                                          |
| Univ Piraeus                             | Swinburne Univ Technol                   | Univ Management & Technol                | Dept Curriculum & Instruct            | Swinburne Univ Technol                               |
| Univ Maryland                            | Univ Milan                               | Menoufia Univ                            | Illinois Foundry Innovat<br>Engn Educ | Xidian Univ                                          |
| Umm Al Qura Univ                         | Kafrelsheikh Univ                        | Lebanese Amer Univ                       | Secondary Educ Dept                   | Shibaura Inst Technol                                |
| Princess Nourah Bint<br>Abdulrahman Univ | Univ Nebraska                            | Natl Taiwan Univ Sci & Technol           | Univ Texas San Antonio                | Csiro                                                |
| Indiana Univ                             | Univ Waterloo                            | Univ New South Wales                     | Univ Houston                          | Natl Inst Informat                                   |
| Univ Padua                               | Norwegian Univ Sci & Technol             | Qatar Univ                               | Vignana Bharathi Inst<br>Technol      | Ut Mem Hermann Ctr Hlth Care Qua<br>& Safety         |
| Vellore Inst Technol                     | Lulea Univ Technol                       | Macquarie Univ                           | Anal Comp & Engn Solut                | Baylor Coll Med                                      |
| Univ Technol Sydney                      | Virginia Tech                            | Air Univ                                 | Queensland Univ Technol               | Michael E Debakey Va Med Ctr                         |

# Table 11

Betweenness centrality.

| Identify                  | Protect                         | Detect                                 | Respond                                | Recover                                            |
|---------------------------|---------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|
| King Saud Univ            | Taif Univ                       | King Abdulaziz Univ                    | Univ Oxford                            | Nanyang Technol Univ                               |
| Univ Texas San Antonio    | La Trobe Univ                   | Prince Sattam Bin Abdulaziz<br>Univ    | Univ Warwick                           | Xian Univ Technol                                  |
| Univ Waterloo             | Guangzhou Univ                  | Chinese Acad Sci                       | Georgia State Univ                     | Carnegie Mellon Univ                               |
| Univ Oxford               | Air Univ                        | Virginia Tech                          | City Univ London                       | Ajou Univ                                          |
| George Mason Univ         | Rmit Univ                       | Singapore Univ Technol &<br>Design     | Alan Turing Inst                       | Tokyo Inst Technol                                 |
| Indiana Univ              | King Saud Univ                  | Taif Univ                              | Taif Univ                              | Fdn Univ Ceipa                                     |
| Tsinghua Univ             | Swinburne Univ Technol          | Swinburne Univ Technol                 | Sungkyunkwan Univ                      | Cotecmar                                           |
| Chinese Acad Sci          | Norwegian Univ Sci &<br>Technol | Univ Waterloo                          | Univ Virginia                          | Nyu                                                |
| Deakin Univ               | Fordham Univ                    | Univ Management & Technol              | Queensland Univ Technol                | Univ Macau                                         |
| Univ Melbourne            | Menoufia Univ                   | Umm Al Qura Univ                       | Carnegie Mellon Univ                   | Zhejiang Gongshang Univ                            |
| Univ Warwick              | Univ Technol Sydney             | Northeastern Univ                      | Univ Milan                             | Fordham Univ                                       |
| King Abdulaziz Univ       | Minia Univ                      | Univ Texas San Antonio                 | Coventry Univ                          | Cent South Univ                                    |
| Air Univ                  | Deakin Univ                     | Univ Illinois                          | Air Univ                               | Guangzhou Univ                                     |
| Charles Darwin Univ       | Edith Cowan Univ                | King Saud Univ                         | Qatar Univ                             | Huaqiao Univ                                       |
| Purdue Univ               | Univ Jeddah                     | Shanghai Jiao Tong Univ                | Chinese Acad Sci                       | East China Univ Sci & Technol                      |
| Univ Padua                | Univ New South Wales            | Deakin Univ                            | Univ Melbourne                         | Univ Southampton                                   |
| Taif Univ                 | Macquarie Univ                  | Aalborg Univ                           | Virginia Polytech Inst & State<br>Univ | Nist                                               |
| Washington State Univ     | Univ Aegean                     | Aston Univ                             | Southeast Univ                         | Shenzhen Inst Artificial Intelligence & Rob<br>Soc |
| Swinburne Univ<br>Technol | Univ Illinois                   | Univ Calgary                           | Univ Tennessee                         | Univ Sydney                                        |
| Univ Technol Sydney       | Lulea Univ Technol              | Southeast Univ                         | Argonne Natl Lab                       | Swinburne Univ Technol                             |
| Univ Piraeus              | King Abdulaziz Univ             | Virginia Polytech Inst & State<br>Univ | Univ Illinois                          | Xidian Univ                                        |
| Qatar Univ                | Qatar Univ                      | Univ Technol Sydney                    | Univ Cent Florida                      | Shibaura Inst Technol                              |
| Univ Maryland             | Univ Texas San Antonio          | Sichuan Univ                           | Univ Michigan                          | Csiro                                              |
| Univ Strathclyde          | Michigan Technol Univ           | Nanyang Technol Univ                   | George Mason Univ                      | Natl Inst Informat                                 |
| Mississippi State Univ    | Vellore Inst Technol            | Hong Kong Polytech Univ                | Chungnam Natl Univ                     | Ut Mem Hermann Ctr Hlth Care Qual & Saf            |

#### High aggregate constraints.

| Identify                                 | Protect                             | Detect                                 | Respond                          | Recover                                              |
|------------------------------------------|-------------------------------------|----------------------------------------|----------------------------------|------------------------------------------------------|
| Prince Sattam Bin Abdulaziz Univ         | Menoufia Univ                       | King Abdulaziz Univ                    | City Univ London                 | Nanyang Technol Univ                                 |
| King Saud Univ                           | King Saud Univ                      | Prince Sattam Bin Abdulaziz<br>Univ    | Sphynx Technol Solut Ag          | Ajou Univ                                            |
| Indiana Univ                             | Deakin Univ                         | Taif Univ                              | Simplan                          | Xian Univ Technol                                    |
| Univ Texas Dallas                        | Umm Al Qura Univ                    | Umm Al Qura Univ                       | Social Engn Acad                 | Carnegie Mellon Univ                                 |
| Northeastern Univ                        | Birmingham City Univ                | Univ New South Wales                   | Tuv Hellas Tuv Nord Sa           | Univ Macau                                           |
| Northumbria Univ                         | Prince Sattam Bin Abdulaziz<br>Univ | Vellore Inst Technol                   | Itml                             | Zhejiang Gongshang Univ                              |
| Macquarie Univ                           | Univ Technol Sydney                 | Macquarie Univ                         | Atos Spain Sa                    | Fordham Univ                                         |
| Georgia Inst Technol                     | Univ Jeddah                         | Deakin Univ                            | Danaos Shipping Co               | Cent South Univ                                      |
| Taif Univ                                | Future Univ Egypt                   | Jouf Univ                              | Tech Univ Crete                  | Guangzhou Univ                                       |
| Huazhong Univ Sci & Technol              | Macquarie Univ                      | Swinburne Univ Technol                 | Fdn Res & Technol Hellas         | Huaqiao Univ                                         |
| George Mason Univ                        | King Abdulaziz Univ                 | Virginia Tech                          | Hellen Mediterranean Univ<br>Hmu | Tokyo Inst Technol                                   |
| Univ Kent                                | Edith Cowan Univ                    | Univ Technol Sydney                    | Univ Oxford                      | Xi An Jiao Tong Univ                                 |
| Purdue Univ                              | Swinburne Univ Technol              | Shanghai Jiao Tong Univ                | Univ Cent Florida                | Shenzhen Inst Artificial Intelligence &<br>Robot Soc |
| Univ Texas San Antonio                   | Univ Jordan                         | Aalborg Univ                           | Univ Portsmouth                  | Univ Sydney                                          |
| Univ New South Wales                     | Univ Milan                          | Univ Texas San Antonio                 | Univ Texas San Antonio           | Chinese Univ Hong Kong                               |
| Princess Nourah Bint<br>Abdulrahman Univ | Lulea Univ Technol                  | Nanyang Technol Univ                   | Univ Illinois                    | Fdn Univ Ceipa                                       |
| Univ Wollongong                          | Univ Sci & Technol Beijing          | King Khalid Univ                       | Taif Univ                        | Cotecmar                                             |
| Qatar Univ                               | Univ Waterloo                       | King Saud Univ                         | Carnegie Mellon Univ             | Acad Sinica                                          |
| Chongqing Univ                           | China Acad Engn Phys                | Virginia Polytech Inst & State<br>Univ | Argonne Natl Lab                 | Natl Taiwan Univ Sci & Technol                       |
| Kyung Hee Univ                           | Univ Texas San Antonio              | Singapore Univ Technol &<br>Design     | Tech Univ Munich                 | Inst Informat Ind                                    |
| Rmit Univ                                | Virginia Tech                       | Univ Management & Technol              | Umbc                             | Univ Fed Rio De Janeiro                              |
| Delft Univ Technol                       | Babasaheb Bhimrao Ambedkar<br>Univ  | Mit                                    | Georgia State Univ               | Univ Cyprus                                          |
| Air Univ                                 | Minia Univ                          | Norwegian Univ Sci &<br>Technol        | Univ Jyvaskyla                   | Swinburne Univ Technol                               |
| Univ Technol Sydney                      | Purdue Univ                         | Silesian Tech Univ                     | Vignana Bharathi Inst<br>Technol | Xidian Univ                                          |
| Bahria Univ                              | Univ Kebangsaan Malaysia            | Manchester Metropolitan<br>Univ        | Air Univ                         | Csiro                                                |

institution with publications on security incident response, incident analysis and management.

"King Saud Univ", "Univ Texas San Antonio", "Univ Waterloo", "Univ Oxford", "George Mason Univ" come to the fore among the institutions with high betweenness centrality in the identify function. While these institutions stand out as leading universities in the determination process and information gathering, institutions such as "King Saud Univ" and "Univ Oxford" have a particularly strong position in the field of determination. Institutions with high Centralization value in the Protect function include "Taif Univ", "La Trobe Univ", "Guangzhou Univ", "Air Univ", "Deakin Univ". These institutions can be defined as universities that are pioneers in protection measures and security policies. On the other hand, institutions such as "Taif Univ" and "La Trobe Univ" are institutions that have effective studies in the field of conservation. Among the institutions with high Detect Centralization value, "King Abdulaziz Univ", "Prince Sattam Bin Abdulaziz Univ", "Chinese Acad Sci", "Virginia Tech", "Univ Illinois" stand out. These institutions are universities that are pioneers in threat detection, detection of anomalies and security analysis. Institutions such as "King Abdulaziz Univ" and "Chinese Acad Sci" can also be characterized as institutions that have a strong position in detection. Institutions with high Respond Centralization value include "Univ Oxford", "City Univ London", "Alan Turing Inst", "Tokyo Inst Technol", "Ajou Univ". These organizations are pioneers in security incident response, incident analysis and management. Institutions such as "Univ Oxford" and "Tokyo Inst Technol" can be cited among other institutions that have effective work in the field of response. Among the institutions with high Centralization value for the recovery function, "Nanyang Technol Univ", "Xian Univ Technol", "Carnegie Mellon Univ", "Tokyo Inst Technol", "Cent South Univ" stand out. structuring and continuity. Institutions such as "Nanyang Technol Univ" and "Carnegie Mellon Univ" are among other institutions that have a strong position in

the rescue field (Table 11).

Institutions with a high aggregate constraints in the identify function include "Prince Sattam Bin Abdulaziz Univ", "King Saud Univ", "Indiana Univ", "Univ Texas Dallas", and "Northeastern Univ". Although these institutions have a high level of connectivity in the determination process, they are still universities that can work effectively. It can be said that institutions such as "King Saud Univ" and "Prince Sattam Bin Abdulaziz Univ" have an important role in the network and are among the important institutions that are effective in determining their place in the network, even if there is a movement constraint in terms of social network dynamics. "Menoufia Univ", "King Saud Univ", "Deakin Univ", "Umm Al Qura Univ", "Birmingham City Univ" stand out among the institutions with a high aggregate constraints in the protect function. These institutions are universities that operate with limited resources in the conservation processes. Institutions such as "Deakin Univ" and "Umm Al Qura Univ" are institutions that have effective studies on protection despite the high aggregate constraint. "King Abdulaziz Univ", "Prince Sattam Bin Abdulaziz Univ", "Taif Univ", "Umm Al Qura Univ", "Vellore Inst Technol" stand out among the institutions with high aggregate constraints. These institutions are active in threat detection and security analysis with limited momility in terms of social network dynamics. Institutions such as "King Abdulaziz Univ" and "Prince Sattam Bin Abdulaziz Univ" are institutions that have effective studies on detection, despite their high aggregate constraint. Institutions with high aggregate constraint on Respond include "City Univ London", "Sphynx Technol Solut Ag", "Simplan", "Social Engn Acad", "Danaos Shipping Co". These institutions are universities that are active in reacting and managing events with limited flexibility in terms of social network dynamics. Institutions such as "City Univ London" and "Danaos Shipping Co" are institutions that have scientific publications on effective response processes, despite the high aggregate constraint. "Nanyang Technol

#### Low Aggregate constraint.

| Identify                            | Protect                                 | Detect                                 | Respond                        | Recover                                        |
|-------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------|------------------------------------------------|
| Kobe Univ                           | Sci Inst Publ Law                       | Univ Patras                            | Univ Fed Rio De Janeiro        | Univ Illinois                                  |
| Univ Rijeka                         | St Petersburg State Univ                | Univ Politecn Cataluna                 | Wayne State Univ               | Natl Assoc Insurance Commissioners             |
| World Maritime Univ                 | Waterford Inst Technol                  | North Carolina A&T State Univ          | Serv Madriletio Salud          | Telkom Univ                                    |
| Suny Buffalo                        | Singapore Univ Technol &<br>Design      | Florida Int Univ                       | Atos Res & Innovat             | Police Forens Lab Ctr                          |
| Inst Rural Management Anand<br>Irma | Univ Fuerzas Armadas Espe               | Univ West Florida                      | Natl Univ Sci & Technol        | Siemens Ag                                     |
| Dalian Maritime Univ                | St Francis Xavier Univ                  | Florida Polytech Univ                  | Inst Def Studies & Anal        | Friedrich Alexander Univ Erlangen<br>Nuremberg |
| Univ Bradford                       | Natl Acad Internal Affairs              | Yarmouk Univ                           | Univ Brasilia Unb              | Univ Colorado                                  |
| Texas A&M Univ                      | Russian State Univ Humanities           | Al Al Bayt Univ                        | Univ Complutense Madrid<br>Ucm | Univ Chile                                     |
| Novartis Pharma Ag                  | Unsw Sydney                             | Princess Sumaya Univ Technol           | Univ Brasilia                  | Virginia Tech                                  |
| Philips Engn Solut                  | Univ Hong Kong                          | Univ Chinese Acad Sci                  | Univ Brighton                  | Univ Chinese Acad Sci                          |
| Us Mil Acad                         | Shamoon Coll Engn                       | Natl Inst Metrol Qual & Technol        | Stockholm Univ                 | Univ Warwick                                   |
| Clemson Univ                        | Syst On Chip Engn                       | Univ Fed Rio De Janeiro                | Univ East London               | Natl Chin Yi Univ Technol                      |
| Bila Tserkva Natl Agr Univ          | Univ Basque Country                     | Eller Coll Management                  | Anglia Ruskin Univ             | West Pomeranian Univ Technol Szczecin          |
| Natl Acad Internal Affairs          | Univ Chinese Acad Sci                   | Ecole Polytech Fed Lausanne            | Univ Essex                     | Ibm Polska Sp Zoo                              |
| Borys Grinchenko Kyiv Univ          | Univ Dist Columbia                      | Univ Calif Davis                       | T2 Doo                         | West Pomeranian Univ Technol                   |
| Natl Acad Secur Serv Ukraine        | Iowa State Univ                         | State Univ Londrina Uel                | Fernuniv                       | Univ South Australia                           |
| Krasnodar Univ                      | Howard Univ                             | Univ Cadiz                             | Sun Moon Univ                  | Univ Penn                                      |
| Kazan Innovat Univ                  | Irt Systemx                             | Univ Sao Paulo                         | Kyunggi Univ                   | Univ Teknol Mara Uitm                          |
| Univ Montreal                       | New Jersey Inst Technol                 | Univ Informat Technol                  | Sogang Univ                    | Univ Melbourne                                 |
| Ericsson Montreal                   | Brigham & Womens Hosp                   | Nanjing Univ Informat Sci &<br>Technol | Univerza Mariboru              | Rmit Univ                                      |
| Naif Arab Univ Secur Sci            | Technol Inst Philippines Quezon<br>City | Univ So Calif                          | Univ Washington                | Univ Southern Calif                            |
| Korea Univ                          | Univ Guelph                             | Yazd Univ                              | Waterford Inst Technol         | Gazi Univ                                      |
| Peace Res Inst Frankfurt            | European Univ                           | Keene State Coll                       | Univ Zurich Uzh                | Hacettepe Univ                                 |
| Oregon State Univ                   | Univ Informat Technol                   | Fdn Policlin Gemelli                   | Univ Limerick                  | Feng Chia Univ                                 |
| Univ Hail                           | Univ Modena & Reggio Emilia             | Univ Basque Country                    | Confirm Sfi Ctr Smart Mfg      | Areva Gmbh                                     |

Univ", "Ajou Univ", "Xian Univ Technol", "Carnegie Mellon Univ", "Fordham Univ" stand out among institutions with high aggreagte constraint. These institutions are active in managing recovery processes and restructuring systems with high aggregate constraint. Institutions such as "Nanyang Technol Univ" and "Carnegie Mellon Univ" are institutions that have effective rescue efforts despite their high aggregate constraint.

"Kobe Univ", "Univ Rijeka", "World Maritime Univ", "Suny Buffalo", "Inst Rural Management Anand Irma" are among the institutions with low restriction rates clustered for the identify function. These institutions are universities that have wide resources and flexibility according to the dynamics of social network analysis in the determination process. Institutions such as "Kobe Univ" and "World Maritime Univ" are institutions that have effective studies in identification despite their low constraint rate. In other words, although they have certain limitations in terms of connectivity in the network, it can be said that these two institutions exhibit a profile that is open to development. In the studies on the protect function, it is observed that "Sci Inst Publ Law", "St Petersburg State Univ", "Waterford Inst Technol", "Singapore Univ Technol & Design", "Univ Fuerzas Armadas Espe" addresses stand out among the institutions with low restrictions. These institutions are universities that have wide resources and flexibility according to social network analysis dynamics in conservation processes. Institutions such as "St Petersburg State Univ" and "Singapore Univ Technol & Design" are institutions that have effective studies on conservation despite their low rate of limitations. In other words, they have a development potential in research on conservation function. Institutions with low disability rates gathered under Detect are seen as "Univ Patras", "Univ Politecn Cataluna", "North Carolina A&T State Univ", "Florida Int Univ", "Univ West Florida". Institutions such as "Univ Patras" and "Florida Int Univ" are institutions that draw attention with their effective work on the detection function despite their low restriction rate. Institutions with low restriction rates on Respond include "Univ Fed Rio De Janeiro", "Wayne State Univ", "Serv Madriletio Salud", "Atos Res & Innovat", "Univ East London". These institutions are universities that are active in reacting and managing events by having wide resources and flexibility according to social network analysis dynamics. Institutions such as "Univ Fed Rio De Janeiro" and "Wayne State Univ" are institutions that have scientific research into effective response processes despite their low constraint rate. "Univ Illinois", "Natl Assoc Insurance Commissioners", "Telkom Univ", "Police Forens Lab Ctr", "Siemens Ag" stand out among the institutions with low restrictions under recovery. These institutions are the universities that are active in managing the recovery processes and restructuring the systems by having wide resources and flexibility according to the dynamics of social network analysis (Table 13).

If we evaluate the results of institutions with high constraint rates in terms of geographical regions according to their NIST Functions: In the Identify Function, it is seen that King Saud University and Prince Sattam Bin Abdulaziz University in the Middle East play an important role in the identification process. These universities are important institutions that are influential in determining their place in the network. In North America, Indiana University, University of Texas Dallas, and Northeastern University are institutions with high connectivity in determining function. In Protect Function King Saud University in Saudi Arabia is a leading university in protection measures and security policies. In Australia, La Trobe University and Deakin University are institutions that have effective studies with limited resources. In Detect Function, King Abdulaziz University and Prince Sattam Bin Abdulaziz University in Saudi Arabia are leading universities in threat detection, anomaly detection and security analysis. In China, the Chinese Academy of Sciences is an institution with a strong position in threat detection. Virginia Tech and University of Illinois in the USA are the leading universities in the field of threat detection and security analysis. As for the Respond Function, the University of Oxford and City University London in the UK are the leading institutions in security incident response, incident analysis and management. In Japan, Tokyo Institute of Technology is an institution known for effective response studies. In the Recovery Function, Nanyang Technological University in Singapore is strongly positioned to manage recovery processes and reengineer systems. In the US, Carnegie Mellon University is another institution that has been

Aggregate results for topics.

| Identify                                                                                                              | Protect                                                                                                                                                    | Detect                                                                                    | Respond                                                                                                                             | Recover                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| modelling decision-making<br>vulnerability assessment<br>anti-malware behaviour<br>smart factory<br>exploratory study | security assessment methodologies<br>vulnerabilities risks nist perspective<br>pmu placement protection<br>technological survey<br>critical infrastructure | energy internet<br>feature engineering<br>novel framework<br>control system<br>smart grid | construction industry<br>taxonomising countermeasure<br>cyber conflict<br>domain-oriented topic discovery<br>reinforcement learning | scoping review<br>false data injection attack<br>malicious attack-resilience<br>efficient manufacturing<br>scoping review |  |

## Table 15

Aggregate results for institutes.

| Identify                         | Protect                         | Detect                          | Respond                 | Recover                 |
|----------------------------------|---------------------------------|---------------------------------|-------------------------|-------------------------|
| King Saud Univ                   | King Saud Univ                  | Prince Sattam Bin Abdulaziz     | Univ Illinois           | Tokyo Inst Technol      |
|                                  |                                 | Univ                            |                         |                         |
| Prince Sattam Bin Abdulaziz      | Menoufia Univ                   | Taif Univ                       | Umbc                    | Nanyang Technol Univ    |
| Univ                             |                                 |                                 |                         |                         |
| Chinese Acad Sci                 | Umm Al Qura Univ                | King Abdulaziz Univ             | Taif Univ               | Univ Macau              |
| Univ Texas San Antonio           | Univ Jeddah                     | Prince Sultan Univ              | City Univ London        | Zhejiang Gongshang Univ |
| Taif Univ                        | Taif Univ                       | Umm Al Qura Univ                | Univ Milan              | Fordham Univ            |
| King Saud Univ                   | Taif Univ                       | King Abdulaziz Univ             | Univ Oxford             | Nanyang Technol Univ    |
| Univ Texas San Antonio           | La Trobe Univ                   | Prince Sattam Bin Abdulaziz     | Univ Warwick            | Xian Univ Technol       |
|                                  |                                 | Univ                            |                         |                         |
| Univ Waterloo                    | Guangzhou Univ                  | Chinese Acad Sci                | Georgia State Univ      | Carnegie Mellon Univ    |
| Univ Oxford                      | Air Univ                        | Virginia Tech                   | City Univ London        | Ajou Univ               |
| George Mason Univ                | Rmit Univ                       | Singapore Univ Technol & Design | Alan Turing Inst        | Tokyo Inst Technol      |
| Prince Sattam Bin Abdulaziz      | Menoufia Univ                   | King Abdulaziz Univ             | City Univ London        | Nanyang Technol Univ    |
| Univ                             |                                 |                                 |                         |                         |
| King Saud Univ                   | King Saud Univ                  | Prince Sattam Bin Abdulaziz     | Sphynx Technol Solut Ag | Ajou Univ               |
|                                  |                                 | Univ                            |                         |                         |
| Indiana Univ                     | Deakin Univ                     | Taif Univ                       | Simplan                 | Xian Univ Technol       |
| Univ Texas Dallas                | Umm Al Qura Univ                | Umm Al Qura Univ                | Social Engn Acad        | Carnegie Mellon Univ    |
| Northeastern Univ                | Birmingham City Univ            | Univ New South Wales            | Tuv Hellas Tuv Nord Sa  | Univ Macau              |
| Kobe Univ                        | Sci Inst Publ Law               | Univ Patras                     | Univ Fed Rio De Janeiro | Univ Illinois           |
| Univ Rijeka                      | St Petersburg State Univ        | Univ Politecn Cataluna          | Wayne State Univ        | Natl Assoc Insurance    |
|                                  |                                 |                                 |                         | Commissioners           |
| World Maritime Univ              | Waterford Inst Technol          | North Carolina A&T State Univ   | Serv Madriletio Salud   | Telkom Univ             |
| Suny Buffalo                     | Singapore Univ Technol & Design | Florida Int Univ                | Atos Res & Innovat      | Police Forens Lab Ctr   |
| Inst Rural Management Anand Irma | Univ Fuerzas Armadas Espe       | Univ West Florida               | Natl Univ Sci & Technol | Siemens Ag              |

instrumental in recovery efforts.

# 3. Conclusions

When we look at the results obtained in the study, it is possible to say that there are important determinations about the prominent institutions and research areas. In particular, on the 5 functions proposed by NIST: identifying prominent institutions, countries, research focuses, and determining the dominant actors in the five functions mentioned. Thanks to the information obtained, it can be said that it has been developed as a tool that can be used in directing the cooperation models that can be made at the point of R&D policy development.

Tables 14 and 15 show the current research and potential intellectual property topics and domains in cybersecurity. Table 15 lists only the top 5 institutes identified in Tables 10–13. Different metrics are used in each table. Bolded institutes in Table 15 appear 5 or more times in the top 5 lists implying to be centers of research. They all appear to be in Saudi Arabia.

It is thought that the findings obtained in this context will contribute to all institutions and organizations that work on cyber security and make efforts in research and development activities. Following the main actors determined by the results obtained by cluster analysis and social network analysis, together with the method proposed in the study, can be used as a tool that will benefit the production of data-based policy in studies to be put forward in the field of cybersecurity. On the other hand, close monitoring of prominent subject areas, additionally nodal points with low constraints in capturing weak signals, can be used as a tool to identify points that are open to development and gain importance, and to closely monitor institutions and countries that will increase their importance.

Technology standards provide a foundation for intellectual property on which companies can build products and services. We are already seeing knowledge accumulating in this field. We expect the standards will ensure the protection of knowledge.

## CRediT authorship contribution statement

**Tugrul Daim:** Writing – review & editing, Writing – original draft, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Conceptualization. **Haydar Yalcin:** Writing – original draft, Visualization, Formal analysis, Data curation, Conceptualization. **Alain Mermoud:** Writing – review & editing, Supervision, Project administration, Funding acquisition, Conceptualization. **Valentin Mulder:** Writing – original draft, Project administration, Conceptualization.

# Declaration of competing interest

We have no conflicts of interest.

# Data availability

Data will be made available on request.

# Acknowledgement

This research was funded by the grant #8203005331 from Federal Department of Defence, armasuisse Science and Technology,

### Switzerland.

# Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.wpi.2024.102278.

#### References

- Ž. Turk, et al., A systemic framework for addressing cybersecurity in construction, Autom. ConStruct. 133 (2022) 103988.
- [2] D.J. Ferreira, N. Mateus-Coelho, H.S. Mamede, Methodology for Predictive cyber security risk assessment (PCSRA), Proc. Comput. Sci. 219 (2023) 1555–1563.
- [3] M.H. Rahman, T. Wuest, M. Shafae, Manufacturing cybersecurity threat attributes and countermeasures: review, meta-taxonomy, and use cases of cyberattack taxonomies, J. Manuf. Syst. 68 (2023) 196–208.
- [4] K. Zenitani, Attack graph analysis: an explanatory guide. Computers & Security 126 (2023) 103081.
- [5] G.K. Campbell, J.R. Hall II, Integrated Security System Definition, in: In Advances in Security Technology, Elsevier, 1987, pp. 17–31.
- [6] M. Kounavis, et al., Security definitions, entropy measures and constructions for implicitly detecting data corruption, Comput. Commun. 160 (2020) 815–846.
- [7] K. Rouibah, S. Ould-Ali, Dynamic data sharing and security in a collaborative product definition management system, Robot. Comput. Integrated Manuf. 23 (2) (2007) 217–233.
- [8] V.V. Ribeiro, D.S. Cruzes, G.H. Travassos, Moderator factors of software security and performance verification, J. Syst. Software 184 (2022) 111137.
- [9] I.A. Tøndel, D.S. Cruzes, Continuous software security through security prioritisation meetings, J. Syst. Software 194 (2022) 111477.
- [10] F. Liu, C. Wu, X. Lin, A new definition of the contrast of visual cryptography scheme, Inf. Process. Lett. 110 (7) (2010) 241–246.
- [11] K.Y. Yigzaw, et al., Roadmap to successful digital health ecosystems, Roadmap to Successful Digital Health Ecosystems (2022).
- [12] M.J. Guitton, Cybersecurity, Social Engineering, Artificial Intelligence,
- Technological Addictions:: Societal Challenges for the Coming Decade, 2020. [13] J.M. Hatfield, Social engineering in cybersecurity: the evolution of a concept, Comput. Secur. 73 (2018) 102–113.
- [14] R. Sabillon, V. Cavaller, J. Cano, National cyber security strategies: global trends in cyberspace, Int. J. Comput. Syst. Sci. Eng. 5 (5) (2016) 67.
- [15] G. Shukla, S. Gochhait, Cyber security trend analysis using Web of Science: a bibliometric analysis, Eur J Mol Clin Med 7 (6) (2020) 2567–2576.
- [16] S. Kendzierskyj, H. Jahankhani, Critical national infrastructure, C4ISR and cyber weapons in the digital age, Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity (2020) 3–21.
- [17] U.M. Mbanaso, J.A. Makinde, V.E. Kulugh, A methodological approach for characterisation of critical national infrastructure, Int. J. Crit. Infrastruct. 19 (2) (2023) 172–197.
- [18] W. Harrop, A. Matteson, Cyber resilience: a review of critical national infrastructure and cyber security protection measures applied in the UK and USA, J. Bus. Continuity Emerg. Plan. 7 (2) (2014) 149–162.
- [19] J.P.M.T. Dias, Increasing the Dependability of Internet-Of-Things Systems in the Context of End-User Development Environments, 2022.
- [20] M. Tabassum, T. Kosinski, H.R. Lipford, I don't own the data": end user Perceptions of smart home device data Practices and risks, in Fifteenth symposium on usable privacy and security (SOUPS 2019) (2019).
- [21] E. Zeng, S. Mare, F. Roesner, End user security and privacy concerns with smart homes, in: Thirteenth Symposium on Useable Privacy and Security (SOUPS 2017), 2017.
- [22] B. Krumay, E.W. Bernroider, R. Walser, Evaluation of cybersecurity management controls and metrics of critical infrastructures: a literature review considering the NIST cybersecurity framework, in: Secure IT Systems: 23rd Nordic Conference,

NordSec 2018, Oslo, Norway, November 28-30, 2018, Proceedings 23, Springer, 2018.

- [23] S. Shackelford, A. Boustead, C. Makridis, DEFINING "REASONABLE" CYBERSECURITY: LESSONS FROM THE STATES, 2021. Available at SSRN 3919275.
- [24] C.E. Pascoe, Public Draft: The NIST Cybersecurity Framework 2.0. (2023).
- [25] G. Marzi, et al., Product and process innovation in manufacturing firms: a 30-year bibliometric analysis, Scientometrics 113 (2017) 673–704.
- [26] T.U. Daim, et al., Forecasting emerging technologies: Use of bibliometrics and patent analysis, Technol. Forecast. Soc. Change 73 (8) (2006) 981–1012.
- [27] Y.-S. Su, et al., Assessing the technological trajectory of 5G-V2X autonomous driving inventions: use of patent analysis, Technol. Forecast. Soc. Change 196 (2023) 122817.
- [28] S. Li, E. Garces, T. Daim, Technology forecasting by analogy-based on social network analysis: the case of autonomous vehicles, Technol. Forecast. Soc. Change 148 (2019) 119731.
- [29] S. Li, et al., Measuring strategic technological strength: patent portfolio model, Technol. Forecast. Soc. Change 157 (2020) 120119.
- [30] E. Garces, et al., Technology domain analysis: a case of energy-efficient advanced commercial refrigeration technologies, Sustain. Prod. Consum. 12 (2017) 221–233.
- [31] T. Daim, et al., Time lag assessment between research funding and output in emerging technologies, Foresight 9 (4) (2007) 33–44.
- [32] T.U. Daim, N. Gerdsri, Research and development progress assessment through technological and scientific intelligence, Int. J. Technol. Intell. Plann. 5 (4) (2009) 341–356.
- [33] G. Zeba, et al., Technology mining: artificial intelligence in manufacturing, Technol. Forecast. Soc. Change 171 (2021) 120971.
- [34] T.U. Daim, H. Yalçın, Digital Transformations: New Tools and Methods for Mining Technological Intelligence, Edward Elgar Publishing, 2022.
- [35] T. Daim, et al., Forecasting technology trends through the gap between science and technology: the ?ase of software as an E-commerce service, Φορcaŭτ 15 (2021) 12–24, 2 (eng).
- [36] H. Yalcin, T. Daim, Mining research and invention activity for innovation trends: case of blockchain technology, Scientometrics 126 (5) (2021) 3775–3806.
- [37] H. Yalcin, T.U. Daim, Logistics, supply chain management and technology research: An analysis on the axis of technology mining, Transport. Res. E Logist. Transport. Rev. 168 (2022) 102943.
- [38] M. Zamani, et al., Developing metrics for emerging technologies: identification and assessment, Technol. Forecast. Soc. Change 176 (2022) 121456.
- [39] R.K. Blashfield, M.S. Aldenderfer, The literature on cluster analysis, Multivariate Behav. Res. 13 (3) (1978) 271–295.
- [40] J.R. Kettenring, The practice of cluster analysis, J. Classif. 23 (2006) 3–30.
- [41] M. Kampffmeyer, et al., Deep divergence-based approach to clustering, Neural
- Network. 113 (2019) 91–101.
  [42] R. Kwon, et al., Cyber threat dictionary using mitre att&ck matrix and nist cybersecurity framework mapping, in: 2020 Resilience Week (RWS), IEEE, 2020.
- cybersecurity framework mapping, in: 2020 Resilience Week (RWS), IEEE, 2020.
   M. Scofield, Benefiting from the NIST cybersecurity framework, Inf. Manag. 50 (2) (2016) 25.
- [2010] 25.
   [244] L. Shen, The NIST cybersecurity framework: Overview and potential impacts, SciTech Lawyer 10 (4) (2014) 16.
- [45] A. Calder, NIST Cybersecurity Framework: A Pocket Guide, IT Governance Publishing Ltd, 2018.
- [46] A. Dedeke, Cybersecurity framework adoption: using capability levels for implementation tiers and profiles, IEEE Security & Privacy 15 (5) (2017) 47–54.
- [47] B. Bokan, J. Santos, Managing cybersecurity risk using threat based methodology for evaluation of cybersecurity architectures, in: 2021 Systems and Information Engineering Design Symposium (SIEDS), IEEE, 2021.
- [48] S. Cleveland, M. Cleveland, Toward cybersecurity leadership framework, in: Proceedings of the Thirteenth Midwest Association for Information Systems Conference, 2018.
- [49] N.M. Radziwill, M.C. Benton, Cybersecurity cost of quality: managing the costs of cybersecurity risk management, arXiv preprint arXiv:1707.02653 (2017).
- [50] E.C. Thompson, Cybersecurity Incident Response: How to Contain, Eradicate, and Recover from Incidents, Apress, 2018.