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Fenchel-Rockafellar Theorem in Infinite Dimensions

via Generalized Relative Interiors

D. V. Cuong 1,2, B. S. Mordukhovich3, N. M. Nam4, G. Sandine5

Abstract. In this paper we provide further studies of the Fenchel duality theory in the general

framework of locally convex topological vector (LCTV) spaces. We prove the validity of the Fenchel

strong duality under some qualification conditions via generalized relative interiors imposed on the

epigraphs and the domains of the functions involved. Our results directly generalize the classical

Fenchel-Rockafellar theorem on strong duality from finite dimensions to LCTV spaces.

Key words. Relative interior, quasi-relative interior, intrinsic relative interior, quasi-regularity,

Fenchel duality.

AMS subject classifications. 49J52, 49J53, 90C31

1 Introduction

Duality theory has a central role in optimization theory and its applications. From a primal

optimization problem with the objective function defined in a primal space, a dual problem

in the dual space is formulated with the hope that the new problem is easier to solve, while

having a close relationship with the primal problem. Its important role in optimization

makes the duality theory attractive for extensive research over the past few decades; see,

e.g., [1, 2, 5, 6, 7, 8, 9, 10, 11, 13, 14, 18, 19, 20, 25, 26, 28] and the references therein.

Given a proper convex function f and a proper concave function g defined on R
n, the

classical Fenchel-Rockafellar theorem asserts that

inf{f(x)− g(x) | x ∈ R
n} = sup{g∗(x∗)− f∗(x∗) | x∗ ∈ R

n}, (1.1)

under the assumption that ri (dom (f)) ∩ ri (dom (g)) 6= ∅; see [27, Theorem 31.1]. In the

setting of an LCTV space, the validity of (1.1) requires the continuity assumption of either

f or g at some point in the intersection of their domains; see, e.g., [11, Theorem 1.12].

Nevertheless, this assumption does not reduce to the classical relative interior condition

in [27, Theorem 31.1]. To overcome this shortcoming, generalized interior concepts were

introduced and applied to further study this theorem. Among many generalized interior
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concepts, we refer the readers to the notion of quasi-relative interior introduced by Borwein

and Lewis in [5]. Under the assumption that A(qri(dom g)) ∩ ri (domh) 6= ∅, Borwein and

Lewis proved the following strong duality theorem:

inf{g(x) + h(Ax) | x ∈ X} = sup{−g∗(A∗y∗)− h∗(−y∗) | y∗ ∈ Y ∗},

where g : X → (−∞,∞] defined on an LCTV space X and h : Rn → (−∞,∞] are proper

convex functions, and A : X → R
n is a continuous linear mapping with its adjoint A∗; see

[5, Corollary 4.3]. Note that this new result reduces to the classical Fenchel-Rockafellar

theorem in the finite dimensional case with the use of the identity mapping A, but it does

not provide a full generalization to infinite dimensions. Further significant success in this

research direction was achieved by Boţ, Zălinnescu, and others; see [7, 9, 10, 26, 28, 29] and

the references therein.

The main goal of this paper is to provide a full generalization of the Fenchel-Rockafellar

theorem to the LCTV setting using a number of known generalized relative interior concepts

along with the regularity condition introduced in our recent paper [12]. As a consequence,

we obtain (1.1) for functions defined on LCTV spaces under the assumption that the sets

dom (f)− dom (g), epi (f), and epi (f)− hypo (g) have nonempty relative interiors and

ri
(

dom (f)
)

∩ ri
(

dom (g)
)

6= ∅.

This is a fully infinite-dimensional generalization of the Fenchel-Rockafellar theorem.

Our paper is organized as follows. In Section 2 we introduce basic definitions and clarify

several important known results involving generalized relative interiors used throughout the

paper. Section 3 is devoted to the study of generalized relative interiors for convex graphs

of set-valued mappings between LCTV spaces. In this section, we will extend the results

of [29, Corollary 9(iii)] and [12, Theorem 5.6] to set-valued mappings and provide a similar

result for mappings between LCTV spaces when the codomain is partially ordered. Section

4 is devoted to the study of the Fenchel-Rockafellar theorem in LCTV spaces. Throughout

the paper, we use standard notions and results from convex analysis which can be found

in [30]. All spaces under consideration are Hausdorff real topological vector spaces unless

otherwise stated.

2 On Generalized Relative Interiors

In this section we introduce some standard notation and definitions from convex analysis

in topological vector spaces used throughout the paper. The reader can find more details

in the book by Zălinnescu [30]. We also provide a survey with detailed clarifications of

some known facts involving the generalized relative interiors of convex sets. Throughout

this paper, consider a real Hausdorff topological vector space X with its topological dual

X∗ and the canonical pairing 〈x∗, x〉 := x∗(x) with x ∈ X and x∗ ∈ X∗.

Given a convex subset Ω of a topological vector space X, the relative interior of Ω is defined

by

ri(Ω) :=
{

x ∈ Ω
∣

∣ ∃ neighborhoodV of xwith V ∩ aff (Ω) ⊂ Ω
}

. (2.1)
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If X is finite-dimensional, this notion reduces to the one formulated in [23, Definition 1.68],

since the closure operation is not needed in (2.1) due to the automatic closedness of affine

sets in finite dimensions.

We begin with deriving some useful characterizations of relative interiors of convex sets in

R
n that are important for the subsequent extensions of this notion to convex sets in infinite

dimensions. For the reader’s convenience, we present here the definition of the normal cone

to a convex subset Ω of a topological vector space:

N(x̄; Ω) :=
{

x∗ ∈ X∗
∣

∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω
}

if x̄ ∈ Ω. (2.2)

Theorem 2.1 Let Ω be a nonempty convex set in R
n, and let x̄ ∈ R

n. The following

properties are equivalent:

(a) x̄ ∈ ri (Ω).

(b) x̄ ∈ Ω and for every x ∈ Ω with x 6= x̄ there exists a vector u ∈ Ω such that x̄ ∈ (x, u).

(c) x̄ ∈ Ω and cone(Ω− x̄) is a linear subspace of Rn.

(d) x̄ ∈ Ω and cone(Ω− x̄) is a linear subspace of Rn.

(e) x̄ ∈ Ω and the normal cone N(x̄; Ω) is a subspace of Rn.

The obtained finite-dimensional characterizations of relative interior motivate the major

extensions of this notion to infinite dimensions, which are considered in what follows.

Definition 2.2 Let Ω be a convex subset of a topological vector space X. Then we have:

(a) The intrinsic relative interior of Ω is the set

iri(Ω) :=
{

x ∈ Ω
∣

∣ cone(Ω− x) is a subspace of X
}

.

(b) The quasi-relative interior of Ω is the set

qri(Ω) :=
{

x ∈ Ω
∣

∣ cone(Ω− x) is a subspace of X
}

.

(c) We say that a convex set Ω ⊂ X is quasi-regular if qri(Ω) = iri(Ω).

Due to Theorem 2.1, both notions in Definition 2.2(a,b) reduce to the relative interior of Ω

in finite-dimensional spaces. The one in (a) is also known under the name “intrinsic core”

of Ω, which may be confusing. Definition 2.2(c) designates the property qri(Ω) = iri(Ω) by

labeling the sets satisfying this condition as quasi-regular ones. The latter property plays

an important role in the subsequent results of this section. Some sufficient conditions for

the quasi-regularity property of convex sets are presented below.

To proceed further, we first present a simple equivalent description of intrinsic relative

interior points of nonempty convex sets (see: [4, Lemma 2.3]). Recall that a point x̄ ∈ Ω is

relatively absorbing for Ω if for every x ∈ Ω \ {x̄} there exists u ∈ Ω such that x̄ ∈ (x, u).

3



Proposition 2.3 Let Ω be a nonempty convex subset of a topological vector space X, and

let x̄ ∈ Ω. Then we have x̄ ∈ iri (Ω) if and only if x̄ is a relatively absorbing point of the set

Ω.

Proof. To verity the “if” part, observe that relatively absorbing points of Ω can be equiva-

lently described as follows: for any x ∈ Ω\{x̄} there exists α > 1 such that (1−α)x+αx̄ ∈ Ω.

Pick now any v ∈ cone(Ω − x̄) (v 6= 0) and find λ > 0 with λv + x̄ ∈ Ω. The relative ab-

sorbability of x̄ gives us α > 1 such that

(1− α)(λv + x̄) + αx̄ = λ(α− 1)(−v) + x̄ ∈ Ω.

This yields −v ∈ cone(Ω− x̄), and hence cone(Ω− x̄) is a subspace of X.

To justify the converse implication, pick any x̄ ∈ iri (Ω) and x ∈ Ω (with x 6= x̄). Since

cone(Ω− x̄) is a subspace of X,

x− x̄ ∈ cone(Ω− x̄) and x̄− x ∈ cone(Ω− x̄).

Choose t > 0 such that x̄ − x = t(w − x̄) with w ∈ Ω. Thus we get some number α > 1

(α = 1 + 1/t) for which

(α − 1)(x̄ − x) + x̄ = (1− α)x+ αx̄ ∈ Ω.

The latter means that x̄ is a relatively absorbing point of Ω. �

Note that Proposition 2.3 shows that the equivalence (b)⇐⇒(c) of Theorem 2.1 holds for

nonempty convex sets in X. Furthermore, the other equivalence (d)⇐⇒(e) of Theorem 2.1

suggests a similar relationship in the general LCTV setting established in what follows.

Definition 2.4 Let X be a topological vector space.

(a) Let Ω be a subset of X. Define the polar of Ω by

Ω◦ := {x∗ ∈ X∗ | 〈x∗, w〉 ≤ 1 for all w ∈ Ω}.

(b) Let Θ be a subset of X∗. Define the polar of Θ by

Θ◦ := {x ∈ X | 〈z∗, x〉 ≤ 1 for all z∗ ∈ Θ}.

It follows from the definition that if Ω is a cone in X, then

Ω◦ := {x∗ ∈ X∗ | 〈x∗, w〉 ≤ 0 for all w ∈ Ω}.

Similarly, if Θ is a cone in X∗, then

Θ◦ := {x ∈ X | 〈z∗, x〉 ≤ 0 for all z∗ ∈ Θ}.

Lemma 2.5 Let C be a nonempty convex cone in a LCTV space X. Then

(C◦)◦ = C.

4



Proof. Observe that C◦ is a nonempty convex cone in X∗. It follows directly from the

definition that (C◦)◦ is a closed subset of X and C ⊂ (C◦)◦, thus C ⊂ (C◦)◦. Now, fix

any x ∈ (C◦)◦ and suppose on the contrary that x /∈ C. By the convex strict separation

theorem, there exists x∗ ∈ X∗ such that

〈x∗, u〉 ≤ 0 for all u ∈ C and 〈x∗, x〉 > 0.

Thus x∗ ∈ C◦ and 〈x∗, x〉 > 0 which contradicts the fact that x ∈ (C◦)◦ and completes the

proof. �

Lemma 2.6 Let Ω be a nonempty convex set in a topological vector space X, and let x̄ ∈ Ω.

Then

N(x̄; Ω) = Θ◦ = Θ
◦
,

where Θ := cone(Ω− x̄).

Proof. Fix any x∗ ∈ N(x̄; Ω). By the definition,

〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω.

It follows directly that 〈x∗, w〉 ≤ 0 for all w ∈ Θ, and so x∗ ∈ Θ◦. Now, take any x∗ ∈ Θ◦

and get 〈x∗, w〉 ≤ 0 for all w ∈ Θ. Then for any x ∈ Ω we have x− x̄ ∈ Θ, so 〈x∗, x− x̄〉 ≤ 0.

This implies x∗ ∈ N(x̄; Ω), thus N(x̄; Ω) = Θ◦. It is also straightforward to show that

Θ◦ = Θ
◦
. �

The following result known by [5, Proposition 2.8] presents a simple equivalent description

of quasi-relative interior points of nonempty convex sets.

Proposition 2.7 Let Ω be a nonempty convex subset of an LCTV space X, and let x̄ ∈ Ω.

Then we have
[

x̄ ∈ qri(Ω)
]

⇐⇒
[

N(x̄; Ω) is a subspace of X∗
]

(2.3)

Proof. First, suppose that x̄ ∈ qri(Ω). By the definition, the set Θ, where Θ := cone(Ω−x̄),

is a subspace of X. An easy exercise shows that Θ
◦
is also a subspace of X∗. By Lemma

2.6, the set N(x̄; Ω) = Θ◦ is a subspace of X∗. Conversely, suppose N(x̄; Ω) is a subspace

of X∗. Using Lemma 2.5 and Lemma 2.6, we have

N(x̄; Ω)◦ = (Θ
◦
)◦ = Θ.

Since N(x̄; Ω) is a subspace of X∗, the set N(x̄; Ω)◦ is also a subspace of X. Thus, Θ is a

subspace of X, and hence x̄ ∈ qri(Ω). �

We continue with a well-known version of proper separation of a singleton from a convex set

that gives us yet another characterization of quasi-relative interior; see: [15, Theorem 2.3].

Proposition 2.8 Let Ω be a convex set in an LCTV space X, and let x̄ ∈ Ω. Then the

sets Ω and {x̄} are properly separated if and only if x̄ /∈ qri(Ω).
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Proof. Using the normal cone characterization (2.3) of quasi-relative interior points, we

get that x̄ /∈ qri(Ω) if and only if there exists x∗ ∈ N(x̄; Ω) with −x∗ /∈ N(x̄; Ω). It follows

from the normal cone construction (2.2) for convex sets that 〈x∗, x〉 ≤ 〈x∗, x̄〉 for all x ∈ Ω.

Then the inclusion −x∗ /∈ N(x̄; Ω) gives us an x0 ∈ Ω such that 〈−x∗, x0〉 > 〈−x∗, x̄〉, which
is equivalent to 〈x∗, x0〉 < 〈x∗, x̄〉 and hence justifies the statement of the proposition. �

Next we establish relationships between the notions of relative, intrinsic relative, and quasi-

relative interiors of convex sets in LCTV spaces and give conditions that ensure quasi-

regularity of a set. These results can be found in [4, 5, 28].

Theorem 2.9 Let Ω be a convex subset of a topological vector space X. Then we have the

inclusions

ri (Ω) ⊂ iri (Ω) ⊂ qri(Ω). (2.4)

If furthermore X is locally convex and ri (Ω) 6= ∅, then the inclusions in (2.4) become the

equalities

ri (Ω) = iri (Ω) = qri(Ω). (2.5)

Proof. We first show that ri (Ω) ⊂ iri (Ω). Take x̄ ∈ ri (Ω) and fix x ∈ Ω with x 6= x̄. It

follows from (2.1) that x̄ ∈ Ω and there exists a neighborhood V of x̄ such that

V ∩ aff (Ω) ⊂ Ω. (2.6)

Choose 0 < t < 1 so small that u := x̄+ t(x̄ − x) ∈ V . Then u ∈ aff (Ω) ⊂ aff (Ω), and we

get from (2.6) that u ∈ Ω. It follows that

x̄ =
t

1 + t
x+

1

1 + t
u ∈ (x, u),

which therefore verifies by Proposition 2.3 that x̄ ∈ iri (Ω). This tells us that ri (Ω) ⊂
iri (Ω). The other inclusion iri (Ω) ⊂ qri(Ω) in (2.4) is trivial, since the subspace property

of cone(Ω − x̄) clearly implies that the closure cone(Ω − x̄) is also a linear subspace of X.

To prove the equalities in (2.5), it is sufficient to show that if ri (Ω) 6= ∅ and x̄ ∈ qri(Ω),

then x̄ ∈ ri (Ω). Arguing by contradiction, assume that x̄ /∈ ri (Ω) and begin with the case

where x̄ = 0. If 0 /∈ Ω, then by the strict separation there exists x∗ ∈ X∗ such that

〈x∗, x〉 < 0 for all x ∈ Ω. (2.7)

In the complement setting where 0 ∈ Ω \ ri (Ω), denote X0 := aff (Ω) and get 0 ∈ X0 telling

us that X0 is a closed subspace of X. It is easy to see that 0 /∈ ri (Ω) = intX0
(Ω), where

intX0
(Ω) is the interior of Ω with respect to the space X0. Applying the separation result

to the sets Ω and {0} in the topological space X0, we find x∗0 ∈ X∗
0 ensuring that

〈x∗0, x〉 ≤ 0 for all x ∈ Ω, and 〈x∗0, w̄〉 < 0 for some w̄ ∈ Ω. (2.8)

Then the Hahn-Banach extension theorem from [3, Theorem 2.10] shows that there exists

an extension x∗ ∈ X∗ of x∗0 such that

〈x∗, x〉 ≤ 0 for all x ∈ Ω.

6



In either case there exists x∗ ∈ X∗ such that 〈x∗, x〉 ≤ 0 for all x ∈ Ω and hence for all

x ∈ cone(Ω). Since 0 ∈ qri(Ω), we have that cone(Ω) is a linear subspace, and therefore

〈x∗, x〉 = 0 for all x ∈ cone(Ω).

This contradicts the conditions in (2.8) and also in (2.7), and thus verifies that 0 ∈ ri (Ω).

Turning finally to the general case for x̄, we reduce it to the case where x̄ = 0 due to the

obvious relationships

x̄ ∈ ri (Ω) ⇐⇒ 0 ∈ ri (Ω− x̄) = ri (Ω)− {x̄} and

x̄ ∈ qri(Ω) ⇐⇒ 0 ∈ qri(Ω− x̄) = qri(Ω)− {x̄},

which completes the proof of the theorem. �

As we see below, in the case where ri (Ω) = ∅ the inclusions in (2.4) may be strict in the

simplest infinite-dimensional Hilbert space of sequences ℓ2 with both sets iri (Ω) and qri(Ω)

being nonempty; see [4, 5].

Example 2.10 Let X := ℓ2, and let Ω ⊂ X be given by

Ω :=
{

x = (xk) ∈ X
∣

∣

∣
‖x‖1 :=

∞
∑

k=1

|xk| ≤ 1
}

.

We can check that

iri (Ω) = {x ∈ X | ‖x‖1 < 1}, (2.9)

and

qri(Ω) = Ω \
{

x = (xk) ∈ X
∣

∣ ‖x‖1 = 1,

∃k0 ∈ N such that xk = 0 for all k ≥ k0
}

.
(2.10)

To justify (2.9), we first take any x ∈ iri (Ω) and show that ‖x‖1 < 1. Fix u = 0 ∈ Ω and

find y ∈ Ω such that x = ty+(1− t)u = ty for some t ∈ (0, 1). Since ‖y‖1 ≤ 1 and 0 < t < 1

we have ‖x‖1 = ‖ty‖1 = t‖y‖1 < 1. To justify the converse, we fix any x ∈ X with ‖x‖1 < 1

and show that

cone(Ω− x) = ℓ1, (2.11)

which is a subspace of ℓ2. Take any z ∈ ℓ1 and choose t > 0 sufficiently small such

that ‖x‖1 + t‖z‖1 ≤ 1. It follows that ‖x + tz‖1 ≤ 1, and so x + tz ∈ Ω. This implies

z ∈ cone(Ω − x) and hence the inclusion “⊃” in (2.11). Since the other inclusion in (2.11)

is obvious, we see that x ∈ iri (Ω).

To prove (2.10), observe that for any x ∈ Ω we have

N(x; Ω) = {z ∈ X | 〈x, z〉 = ‖z‖∞}. (2.12)

Indeed, z ∈ N(x; Ω) if and only if 〈z, u− x〉 ≤ 0 for all u ∈ Ω, which is equivalent to

sup{〈z, u〉 | u ∈ Ω} = 〈z, x〉.

7



It is easy to check that Ω = {u ∈ ℓ1 | ‖u‖1 ≤ 1}, and so

sup{〈z, u〉 | u ∈ Ω} = sup{〈z, u〉 | u ∈ l1, ‖u‖1 ≤ 1} = ‖z‖∞,

which clearly implies (2.12).

Now, fix any x ∈ qri(Ω) and suppose to the contrary that x does not belong to the set on

the right-hand side of (2.10). Then x ∈ ℓ2 satisfies

‖x‖1 = 1, xk = 0 for all k ≥ k0 with some k0 ∈ N.

Define z ∈ ℓ2 by zk = sign(xk). Then ‖z‖∞ = 1 and 〈x, z〉 = ∑∞
k=1 xkzk =

∑∞
k=1 |xk| = 1. It

follows from (2.12) that z ∈ N(x; Ω), which is a subspace ofX. It follows that −z ∈ N(x; Ω),

and so 〈−z, 0 − x〉 ≤ 0. This is a contradiction since 〈−z, 0 − x〉 = 〈z, x〉 = 1. This

contradiction tells us that x belongs to the set on the right-hand side of (2.10).

Next, fix any x in the set on the right-hand side of (2.10) and suppose again to the contrary

that x /∈ qri(Ω). Then N(x; Ω) is not a subspace of X. Thus, we can find z 6= 0 such that

z ∈ N(x; Ω). It follows from (2.12) that 〈x, z〉 = ‖z‖∞ 6= 0. Thus,

‖z‖∞ = 〈x, z〉 =
∞
∑

k=1

xkzk ≤
∞
∑

k=1

|xk||zk| ≤ ‖z‖∞
∞
∑

k=1

|xk| = ‖z‖∞‖x‖1 ≤ ‖z‖∞.

This implies ‖x‖1 = 1 and |zk| = ‖z‖∞ > 0 whenever xk 6= 0. Since z ∈ ℓ2 we see that there

exists k0 ∈ N such that xk = 0 for all k ≥ k0. This contradiction shows that x ∈ qri(Ω) and

completes the proof of (2.10).

Next we present an example showing that the intrinsic relative interior may be empty for

convex subsets of ℓ2; see [4].

Example 2.11 Let X := ℓ2, and let Ω ⊂ X be given by

Ω :=
{

x = (x1, x2, . . .) ∈ X
∣

∣

∣
‖x‖2 :=

(

∞
∑

k=1

|xk|2
)1/2

≤ 1, xk ≥ 0 for all k ∈ N

}

.

We are going to show that iri (Ω) = ∅ for this set. Assume on the contrary that there exists

x̄ ∈ iri (Ω). Following Example 2.10, we see that ‖x̄‖ < 1. Next, we will show that x̄k > 0

for all k ∈ N. Indeed, if, for example, x̄1 = 0, then let v := (1, 0, 0, · · · ) ∈ X and easily get

〈v, x̄〉 ≤ inf{〈v, x〉 | x ∈ Ω} and 〈v, x̄〉 < sup{〈v, x〉 | x ∈ Ω}.

Thus, x̄ and Ω are properly separated, and so x̄ ∈ [qri(Ω)]c ⊂ [iri (Ω)]c, a contradiction.

Proposition 2.3 tells us that for each x ∈ Ω we have (1 − α)x + αx̄ ∈ Ω with some α > 1.

Fix ε > 0 and select an increasing sequence of natural numbers {kn} with 0 < x̄kn ≤
ε/4n. Defining x̃ ∈ Ω by x̃kn := ε/2n and x̃k := 0 for all other k ∈ N, let us check that

(1− α)x̃+ αx̄ /∈ Ω whenever α > 1. Indeed, we have the estimate

(

(1− α)x̃+ αx̄
)

kn
≤

(

1− α
) ε

2n
+ α

ε

4n
< 0

for n sufficiently large, which justifies the claim of this example.
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The following result can be found in [5, Proposition 2.16], which gives us a condition to

define a point contained in the set of quasi-relative interior points of a nonempty convex

subset of an LCTV space.

Proposition 2.12 Let Ω be a nonempty convex subset of an LCTV space, and let x̄ ∈ Ω.

Then x̄ ∈ qri(Ω) if and only if x̄ is a nonsupport point of Ω.

Proof. Observe first that any nonsupport point x̄ of Ω can be equivalently described as

follows: whenever x∗ ∈ X∗ we have the implication

[

〈x∗, x− x̄〉 ≥ 0 if x ∈ Ω
]

=⇒
[

〈x∗, x− x̄〉 = 0 if x ∈ Ω
]

. (2.13)

Having this in mind, assume now that x̄ ∈ qri(Ω). Since

[

〈x∗, x− x̄〉 ≥ 0 if x ∈ Ω
]

=⇒
[

〈x∗, u〉 ≥ 0 if u ∈ cone(Ω− x̄)
]

for any x∗ ∈ X∗, and since the set cone(Ω− x̄) is a subspace, we get

〈x∗, u〉 = 0 if u ∈ cone(Ω− x̄), and so 〈x∗, x− x̄〉 = 0 if x ∈ Ω.

The latter means by (2.13) that x̄ is a nonsupport point of Ω.

To verify the “if” part of the proposition, let x̄ be a nonsupport point of Ω. Denoting

C := cone(Ω− x̄) and arguing by contradiction, suppose that C is not a subspace of X, i.e.,

there exists v ∈ C with −v /∈ C. This yields by the strict separation theorem that

〈x∗,−v〉 < 〈x∗, u〉 for all u ∈ C.

for some x∗ ∈ X∗. Taking into account that C is a cone, we obtain that

〈x∗, u〉 ≥ 0 if u ∈ C, and so 〈x∗, x− x̄〉 ≥ 0 if x ∈ Ω.

On the other hand, it follows from 〈x∗,−v〉 < 0 and v ∈ cone(Ω − x̄) that there exist

x ∈ Ω and λ > 0 satisfying 〈x∗,−λ(x − x̄)〉 < 0. The latter implies that 〈x∗, x − x̄〉 > 0

contradicting (2.13), which tells us that x̄ ∈ qri(Ω) and thus completes the proof of the

proposition. �

The following lemma was known from [4, Lemma 3.1] and [5, Lemma 2.9].

Proposition 2.13 Let Ω be a convex subset of a topological vector space X.

(a) If x̄ ∈ ri (Ω) and x̃ ∈ Ω, then (x̃, x̄] ⊂ ri (Ω).

(b) If x̄ ∈ iri (Ω) and x̃ ∈ Ω, then (x̃, x̄] ⊂ iri (Ω).

(c) Suppose further that X is locally convex. If x̄ ∈ qri(Ω) and x̃ ∈ Ω, then (x̃, x̄] ⊂ qri(Ω).

Proof. (a) Fix x̄ ∈ ri (Ω) and x̃ ∈ Ω. If x̄ = x̃, then (x̃, x̄] = {x̄} ⊂ ri (Ω). Now suppose

that x̄ 6= x̃. Since x̄ ∈ ri (Ω), there exists a neighborhood U of x̄ such that U ∩ aff (Ω) ⊂ Ω.

For any λ ∈ [0, 1], we have

(1− λ)
(

U ∩ aff (Ω)
)

+ λx̃ ⊂ Ω.
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Taking y ∈ (x̃, x̄], we have y = (1−λ0)x̄+λ0x̃ for some λ0 ∈ [0, 1). Then V := (1−λ0)U+λ0x̃

is a neighborhood of y. Observe that

V ∩ aff (Ω) = (1− λ0)
(

U ∩ aff (Ω)
)

+ λ0x̃ ⊂ Ω.

This implies y ∈ ri (Ω), and so (x̃, x̄] ⊂ ri (Ω).

(b) Fix x̄ ∈ iri (Ω) and x̃ ∈ Ω. Without loss of generality we can assume that x̄ = 0. Fix

any λ ∈ [0, 1) and let x := λx̃. Justifying x ∈ iri (Ω), we take any ȳ ∈ Ω with ȳ 6= x and

show that there exists ỹ ∈ Ω such that x ∈ (ȳ, ỹ). Indeed, since x̄ = 0 ∈ iri (Ω), we have

−αȳ ∈ Ω for some α > 0. Choosing

ỹ := (1− δ)x̃+ δ(−αȳ) ∈ Ω

where δ = 1−λ
1+λα ∈ [0, 1], we can see that

x = (1− γ)ȳ + γỹ,

where γ = 1+λα
1+α ∈ (0, 1). Thus, x ∈ (ȳ, ỹ) and hence Proposition 2.3 shows that x ∈ iri (Ω).

(c) Fix x̄ ∈ qri(Ω) and x̃ ∈ Ω. Let y := λx̄+(1−λ)x̃ with λ ∈ (0, 1]. Using Proposition 2.7,

we will show that N(y; Ω) is a subspace. Fix any x∗ ∈ N(y; Ω). Then

〈x∗, x− y〉 ≤ 0 for all x ∈ Ω. (2.14)

Using x = x̄ in (2.14) gives 〈x∗, x̄−x̃〉 ≤ 0. Similarly, using x = x̃ in (2.14) gives 〈x∗, x̃−x̄〉 ≤
0. From this we conclude 〈x∗, x̄〉 = 〈x∗, x̃〉, which together with (2.14) gives

〈x∗, x− y〉 = 〈x∗, x− x̃〉 − λ〈x∗, x̄− x̃〉 = 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω.

Thus, x∗ ∈ N(x̄; Ω). Since x̄ ∈ qri(Ω), Proposition 2.7 shows that −x∗ ∈ N(x̄; Ω). Since

〈x∗, x̄〉 = 〈x∗, x̃〉, one has

〈−x∗, x− y〉 = λ〈−x∗, x− x̄〉+ (1− λ)〈−x∗, x− x̃〉 ≤ 0 for all x ∈ Ω,

and hence −x∗ ∈ N(y; Ω). Thus, N(y; Ω) is a subspace, and the result follows from Propo-

sition 2.7. �

The next result provides a useful version of strict separation relative to closed subspaces of

Hilbert spaces; see [12, Lemma 3.7].

Proposition 2.14 Let L be a closed subspace of a Hilbert space X, and let Ω ⊂ L be a

nonempty convex set with x̄ ∈ L and x̄ 6∈ Ω. Then there exists u ∈ L such that

sup
{

〈u, x〉
∣

∣ x ∈ Ω
}

< 〈u, x̄〉.

Proof. Since x̄ /∈ Ω, we see that the sets {x̄} and Ω are strictly separated in X, which

means that there exists a vector v ∈ X such that

sup
{

〈v, x〉
∣

∣ x ∈ Ω
}

< 〈v, x̄〉. (2.15)
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It is well known that any Hilbert space X can be represented as the direct sum X = L⊕L⊥,

where

L⊥ :=
{

w ∈ X
∣

∣ 〈w, x〉 = 0 for all x ∈ L
}

.

If v ∈ L⊥, then (2.15) immediately gives us a contradiction. Thus v ∈ X is represented as

v = u+w with some 0 6= u ∈ L and w ∈ L⊥. This implies that for each x ∈ Ω ⊂ L we have

〈u, x〉 = 〈u, x〉+ 〈w, x〉 = 〈v, x〉 ≤ sup
{

〈v, x〉
∣

∣ x ∈ Ω
}

< 〈v, x̄〉
= 〈u+ w, x̄〉 = 〈u, x̄〉,

which shows that sup{〈u, x〉 | x ∈ Ω} < 〈u, x̄〉. �

Before establishing this result, let us present the following useful technical lemma on intrinsic

relative interiors; see [12, Lemma 3.5].

Lemma 2.15 Let X be an LCTV space, and let Ω ⊂ X be a nonempty, closed, and convex

set with 0 ∈ Ω \ iri(Ω). If iri(Ω) 6= ∅, then aff (Ω) is a closed subspace of X and there exists

a sequence {xk} ⊂ −Ω such that xk /∈ Ω and xk → 0 as k → ∞.

Proof. The set aff (Ω) is closed subspace of X since it is a closed, affine set containing the

origin. Using iri(Ω) 6= ∅ and 0 ∈ Ω \ iri(Ω), let us show that there exists a nonzero vector

x0 ∈ iri(Ω) with −tx0 /∈ Ω for all t > 0. Arguing by contradiction, suppose that −tx0 ∈ Ω

for some t > 0. Then it follows from Proposition 2.13(b) that

0 =
t

1 + t
x0 +

1

1 + t

(

− tx0
)

∈ iri(Ω),

which clearly contradicts the assumption 0 /∈ iri(Ω). Letting xk := −(x0/k) ∈ −Ω gives us

that xk /∈ Ω for every k and that xk → 0 as k → ∞. �

Let us now define the following property, which is automatic in finite dimensions while being

very important for performing limiting procedures in infinite-dimensional spaces.

Definition 2.16 A subset Ω ⊂ X of a normed space X is sequentially normally

compact (SNC) at x̄ ∈ Ω if for any sequence {(xk, x∗k)} ⊂ X×X∗ we have the implication

[

x∗k ∈ N(xk; Ω), xk ∈ Ω, xk → x̄, x∗k
w∗

→ 0
]

=⇒ ‖x∗k‖ → 0. (2.16)

Remark 2.17 The SNC property (2.16) is taken from [22] and investigated therein for

general nonconvex sets in Banach spaces. In the case of closed and convex subsets Ω ⊂ X

of such spaces, this property can be characterized as follows [22, Theorem 1.21]: If a closed

and convex set Ω has nonempty relative interior, then it is SNC at every x̄ ∈ Ω if and only

if the closure of the span of Ω is of finite codimension.

Now we are ready to derive the aforementioned result on the quasi-regularity of convex sets

in infinite dimensions; see [12, Theorem 3.8 (d)].
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Theorem 2.18 Let Ω ⊂ X be a nonempty, closed, and convex subset of a Hilbert space X.

Assume in addition that iri (Ω) 6= ∅, and that Ω is SNC at every point x̄ ∈ Ω. Then this set

is quasi-regular.

Proof. First we verify that in the case where 0 /∈ iri(Ω) the sets Ω and {0} are properly

separated, i.e., there exists a nonzero vector a ∈ X such that

sup
{

〈a, x〉
∣

∣ x ∈ Ω
}

≤ 0 and inf
{

〈a, x〉
∣

∣ x ∈ Ω
}

< 0. (2.17)

If 0 6∈ Ω, this statement is trivial. Suppose now that 0 ∈ Ω \ iri(Ω). Letting L := aff(Ω)

and employing Lemma 2.15 tell us that L is a subspace of X, and that there is a sequence

{xk} ⊂ L for which xk /∈ Ω and xk → 0 as k → ∞. By Proposition 2.14 we find a sequence

{vk} ⊂ L with vk 6= 0 and

sup
{

〈vk, x〉
∣

∣ x ∈ Ω
}

< 〈vk, xk〉 whenever k ∈ N.

Denote wk := vk
‖vk‖

∈ L so ‖wk‖ = 1 for k ∈ N and observe that

〈wk, x〉 < 〈wk, xk〉 ≤ ‖wk‖ · ‖xk‖ = εk for all x ∈ Ω, (2.18)

where εk := ‖xk‖ ↓ 0. Since {wk} is bounded, we let k → ∞ in (2.18) and suppose without

loss of generality that wk
w−→ a ∈ L, which yields

sup
{

〈a, x〉
∣

∣ x ∈ Ω
}

≤ 0. (2.19)

To verify further the strict inequality

inf
{

〈a, x〉
∣

∣ x ∈ Ω
}

< 0,

it suffices to show that there is x̄ ∈ Ω with 〈a, x̄〉 < 0. Arguing by contradiction, suppose

that 〈a, x〉 ≥ 0 for all x ∈ Ω and deduce from (2.19) that 〈a, x〉 = 0 whenever x ∈ Ω. Since

a ∈ L = aff (Ω), there exists a sequence aj → a as j → ∞ with aj ∈ aff (Ω). The latter

inclusion can be rewritten as

aj =

mj
∑

i=1

λj
iω

j
i with

mj
∑

i=1

λj
i = 1 and ωj

i ∈ Ω for i = 1, . . . ,mj ,

which readily implies the equalities

〈a, aj〉 =
mj
∑

i=1

λj
i 〈a, ω

j
i 〉 = 0.

The passage to the limit as j → ∞ gives us a = 0.

Next we deduce from (2.18), by using the Brøndsted-Rockafellar theorem proved in [30,

Theorem 3.1.12], the existence of bk ∈ Ω and uk ∈ X such that

uk ∈ N(bk; Ω), ‖bk‖ ≤ √
εk, and ‖uk − wk‖ ≤ √

εk. (2.20)
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Since ‖wk‖ = 1, it follows from (2.20) that ‖uk‖ → 1. Furthermore, we get from wk
w−→ 0,

εk ↓ 0, and (2.20) that uk
w−→ 0 as k → ∞. Remembering that Ω has the SNC property,

it follows from (2.20) that ‖uk‖ → 0, which clearly contradicts the condition ‖uk‖ → 1 as

k → ∞. This tells us that there exists x̄ ∈ Ω such that 〈a, x̄〉 < 0. This justifies the proper

separation of Ω and {0} in (2.17), so by Proposition 2.8 we conclude that 0 /∈ qri(Ω).

To complete the proof of the quasi-regularity of Ω, it remains to show that qri(Ω) ⊂ iri (Ω).

Picking any x̄ ∈ qri(Ω) gives us 0 ∈ qri(Ω − x̄). Since Ω satisfies the hypotheses of the

theorem, so does Ω− x̄. Applying the proof above gives 0 ∈ iri (Ω− x̄), so x̄ ∈ iri (Ω). This

shows that qri(Ω) ⊂ iri (Ω) and thus finishes the proof of the theorem. �

3 Generalized Relative Interiors for Graph of Set-valued Map-

pings

In this section we study generalized relative interiors of set-valued mappings with convex

graphs and give a version of Rockafellar’s theorem in LCTV spaces. Remember that a

set-valued mapping F : X →→ Y between LCTV spaces is associated with its graph

gph (F ) :=
{

(x, y) ∈ X × Y
∣

∣ y ∈ F (x)
}

,

and it is called convex if its graph is a convex subset of the product space X × Y . We also

consider the domain of F defined by

dom (F ) :=
{

x ∈ X
∣

∣ F (x) 6= ∅
}

.

Let f : X → (−∞,∞] be an extended-real-valued function. Recall that the domain and the

epigraph of f are defined by

• dom (f) :=
{

x ∈ X
∣

∣ f(x) < ∞
}

,

• epi (f) :=
{

(x, α) ∈ X × R
∣

∣ α ≥ f(x)
}

,

The function f is said to be convex if its epigraph is a convex set, and it is called proper if

dom (f) 6= ∅. An extended-real-valued function g : X → [−∞,∞) is said to be concave if

−g is convex, and it is said to be proper if −g is proper. It follows from the definition that

g is concave if and only if the set

hypo (g) :=
{

(x, α) ∈ X × R
∣

∣ α ≤ g(x)
}

is convex.

Let f : X → (−∞,∞] be an extended-real-valued function. Define the set-valued mapping

F : X →→ R given by F (x) := [f(x),∞), then it is easy to see that dom (F ) = dom (f) and

epi (f) = gph (F ) and f is convex if and only if F is.
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Theorem 3.1 Let F : X →→ Y be a convex set-valued mapping between LCTV spaces. Then

we have

qri(gph (F )) ⊃ {(x, y) ∈ X × Y
∣

∣ x ∈ qri
(

dom (F )
)

, y ∈ int
(

F (x)
)

}.

Proof. Pick any (x̄, ȳ) ∈ X×Y with x̄ ∈ qri
(

dom (F )
)

and ȳ ∈ int
(

F (x̄)
)

. By a contradic-

tion, suppose that (x̄, ȳ) /∈ qri
(

gph (F )
)

. Then Proposition 2.8 shows that the sets {(x̄, ȳ)}
and gph (F ) can be properly separated, which means that there exists (x∗, y∗) ∈ X∗ × Y ∗

such that

〈x∗, x〉+ 〈y∗, y〉 ≤ 〈x∗, x̄〉+ 〈y∗, ȳ〉 for all x ∈ dom (F ), y ∈ F (x) (3.1)

and there exists (x̃, ỹ) ∈ gph (F ) such that

〈x∗, x̃〉+ 〈y∗, ỹ〉 < 〈x∗, x̄〉+ 〈y∗, ȳ〉. (3.2)

Choosing x = x̄, (3.1) shows that

〈y∗, y〉 ≤ 〈y∗, ȳ〉 for all y ∈ F (x̄). (3.3)

Since ȳ ∈ int
(

F (x̄)
)

, there exists a symmetric neighborhood V of the origin with V ⊂
int

(

F (x̄)
)

− {ȳ}. It follows from (3.3) that 〈y∗, v〉 ≤ 0 and 〈y∗,−v〉 ≤ 0 for all 0 6= v ∈ V .

Thus, y∗ = 0 on V . Since V is a symmetric neighborhood of the origin, for any y ∈ Y there

exists 0 6= t ∈ R such that ty = v ∈ V and hence 〈y∗, y〉 = 1
t 〈y∗, v〉 = 0. Thus, y∗ = 0 on Y .

It follows from (3.1) and (3.2) that the sets {x̄} and dom (F ) can be properly separated.

Proposition 2.8 shows that x̄ /∈ qri
(

dom (F )
)

. This contradiction completes the proof of the

theorem. �

The following result can be found in [29, Corollary 9(iii)]. In this paper we can see that

this result is a direct corollary of Theorem 3.1 by considering F (x) = [f(x),∞).

Corollary 3.2 Let f : X → (−∞,∞] be a proper convex function. Then we have

qri
(

epi (f)
)

⊃
{

(x, λ) ∈ X × R
∣

∣ x ∈ qri
(

dom (f)
)

, λ > f(x)
}

.

Theorem 3.3 Let F : X →→ Y be a convex set-valued mapping between LCTV spaces. Then

we have

iri (gph (F )) ⊂ {(x, y) ∈ X × Y
∣

∣ x ∈ iri
(

dom(F )
)

, y ∈ iri
(

F (x)
)

}. (3.4)

Proof. To prove (3.4), pick any (x̄, ȳ) ∈ iri
(

gph (F )
)

, we first check that x̄ ∈ iri
(

dom (F )
)

.

For any x ∈ dom (F ) with x 6= x̄ and y ∈ F (x), one has (x̄, ȳ) 6= (x, y) ∈ gph (F ).

Since (x̄, ȳ) ∈ iri
(

gph (F )
)

, Proposition 2.3 shows that there exists (u, v) ∈ gph (F ) such

that (x̄, ȳ) ∈
(

(x, y), (u, v)
)

and hence x̄ ∈ (x, u). Applying Proposition 2.3 gives us that

x̄ ∈ iri
(

dom (F )
)

.

Let us now show that ȳ ∈ iri
(

F (x̄)
)

. Pick any ỹ ∈ F (x̄) with ỹ 6= ȳ, and hence (x̄, ȳ) 6=
(x̄, ỹ). By the assumption that (x̄, ȳ) ∈ iri

(

gph (F )
)

, Proposition 2.3 shows that there

exists (u, v) ∈ gph (F ) such that (x̄, ȳ) ∈
(

(x̄, ỹ), (u, v)
)

. Thus, x̄ ∈ (x̄, u) and hence u = x̄.

Therefore, v ∈ F (u) = F (x̄). It means that there exists v ∈ F (x̄) such that ȳ ∈ (ỹ, v).

Applying Proposition 2.3 gives us that ȳ ∈ iri
(

F (x̄)
)

and (3.4) was proved. �
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Theorem 3.4 Let F : X →→ Y be a convex set-valued mapping between LCTV spaces. Sup-

pose that gph (F ) is quasi-regular and int
(

F (x)
)

6= ∅ for all x ∈ dom (F ). Then we have

qri(gph (F )) = {(x, y) ∈ X × Y
∣

∣ x ∈ qri
(

dom(F )
)

, y ∈ int
(

F (x)
)

} (3.5)

and dom(F ) is quasi-regular.

Proof. Set

Ω := {(x, y) ∈ X × Y
∣

∣ x ∈ qri
(

dom (F )
)

, y ∈ int
(

F (x)
)

}.

Applying Theorem 3.1, we have

qri
(

gph (F )
)

⊃ Ω. (3.6)

Since gph (F ) is quasi-regular and int
(

F (x)
)

6= ∅ for all x ∈ dom (F ), Theorem 2.9 and

Theorem 3.3 show that

qri
(

gph (F )
)

= iri
(

gph (F )
)

⊂ {(x, y) ∈ X × Y
∣

∣ x ∈ iri
(

dom (F )
)

, y ∈ iri
(

F (x)
)

} ⊂ Ω.

(3.7)

The inclusions (3.6) and (3.7) imply (3.5). It also follows from (3.6) and (3.7) that

iri
(

dom (F )
)

= qri
(

dom (F )
)

and hence dom (F ) is quasi-regular. �

The following result is a direct corollary of Theorem 3.4 by considering F (x) = [f(x),∞).

This result also can be seen in [12, Theorem 5.6].

Corollary 3.5 Let f : X → (−∞,∞] be a proper convex function. If epi (f) is quasi-

regular, then dom (f) is quasi-regular and

qri
(

epi (f)
)

=
{

(x, λ) ∈ X × R
∣

∣ x ∈ qri
(

dom (f)
)

, λ > f(x)
}

.

In the following preliminary material leading to Theorem 3.7, we use terminology and apply

results from [21]. Let Y be a linear space and C be a nonempty convex cone in Y . We

define a relation in Y by

y1 ≤C y2 if and only if y2 − y1 ∈ C.

This defines a partial ordering on Y , and in this case we say that Y is partially ordered by

the nonempty convex cone C and refer to Y as an ordered vector space. We also define the

relation

y1 <C y2 if and only if y2 − y1 ∈ C and y1 6= y2.

We say that Y is totally ordered by the nonempty convex cone C if for any y1, y2 ∈ Y we

have either y1 ≤C y2 or y2 ≤C y1.

It is immediate that 0 ≤C y if and only if y ∈ C, so we refer to the points in C as the

nonnegative elements and use the notation Y +. We refer to the supremum and infimum

of a subset U ⊂ Y in the usual sense, namely ȳ = supU if u ≤C ȳ holds for all u ∈ U

and ȳ ≤C y for any other upper bound y for U , and similarly for inf U . If {yn}n∈N is a

sequence in Y , we naturally refer to it is a decreasing sequence if yn+1 ≤C yn for every
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n ∈ N. Finally, a decreasing, nonnegative sequence {pn}n∈N ⊂ Y + converges in order to

0 if 0 = infn∈N{pn} in which case we write pn ↓C 0. Such sequences are used to define a

general notion of order convergence yn →C y in ordered vector spaces [21, Theorem 16.1].

Let f : X → Y be a function between LCTV spaces, where Y is partially ordered by a

nonempty convex cone C. We define the C-domain and the C−epigraph of f as follows:

domC(f) := {x ∈ X
∣

∣ ∃y ∈ Y with f(x) <C y},

epi C(f) := {(x, y) ∈ X × Y
∣

∣ x ∈ dom C(f), f(x) ≤C y}.

The function f is said to be C-proper if dom C(f) 6= ∅. We say that f is C-convex if for all

x1, x2 ∈ dom C(f) and λ ∈ [0, 1] one has

f
(

λx1 + (1− λ)x2
)

≤C λf(x1) + (1− λ)f(x2).

Lemma 3.6 Let X and Y be LCTV spaces with Y is partially ordered by a nonempty

convex cone C and let f : X → Y be a C-proper function. Then f is C-convex if and only

if epi C(f) is a convex subset of X × Y .

Proof. Suppose that f is C-convex. Picking any (x1, y1), (x2, y2) ∈ epiC(f) and λ ∈ [0, 1],

we will show that

λ(x1, y1) + (1− λ)(x2, y2) ∈ epiC(f). (3.8)

Since (xi, yi) ∈ epi C(f), we have yi − f(xi) ∈ C for i = 1, 2. Since C is a convex cone,

λy1+(1−λ)y2−
(

λf(x1)+ (1−λ)f(x2)
)

= λ
(

y1− f(x1)
)

+(1−λ)
(

y2− f(x2)
)

∈ C. (3.9)

Since f is C-convex, we have

λf(x1) + (1− λ)f(x2)− f
(

λx1 + (1− λ)x2
)

∈ C. (3.10)

Thus, (3.9) and (3.10) imply (3.8), and hence epiC(f) is a convex subset of X × Y .

To verify the converse statement, take any x1, x2 ∈ dom (f) and λ ∈ [0, 1], and we will show

that

f
(

λx1 + (1− λ)x2
)

≤C λf(x1) + (1− λ)f(x2). (3.11)

Since xi ∈ dom C(f), we see that (xi, f(xi)) ∈ epiC(f) for i = 1, 2. By the convexity of

epiC(f),

λ
(

x1, f(x1)
)

+ (1− λ)
(

x2, f(x2)
)

=
(

λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2)
)

∈ epiC(f).

Therefore, the definition of epiC(f) implies (3.11) and the lemma has been proved. �

The following result gives us a representation of the intrinsic interior of C-epigraph for a C-

proper convex function between LCTV spaces. To achieve equality, we restrict our attention

to Archimedean ordered vector spaces which have the property that n−1y ↓C 0 whenever
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y ∈ Y +. This is not true in general even if Y is totally ordered. For example, consider

Y = R
2 with the lexicographical partial ordering which is induced by the nonempty convex

cone

C = {(x, y) ∈ R
2
∣

∣ 0 < x} ∪ {(0, y) ∈ R
2
∣

∣ 0 ≤ y}. (3.12)

In this case, the sequence corresponding to pn = n−1(1, 1) where n ∈ N is a decreasing,

nonnegative sequence but (0, 0) ≤C (0,m) ≤C pn for every m,n ∈ N. The origin (0, 0) is a

lower bound for for {pn} but (0, 0) 6= infn∈N{pn}. In fact, infn∈N{pn} does not exist even

though the sequence {pn} is bounded below. This example shows that in a non-Archimedean

ordered vector space Y , it is not true in general that yn →C y in Y and αn → α in R gives

αnyn →C αy in Y . However, this is true if Y is Archimedean [21, Section 16], and we will

use this property in the next result.

Theorem 3.7 Let X and Y be LCTV spaces, let Y be partially ordered by a nonempty

convex cone C, and let f : X → Y be a C-proper convex function. Then we have

iri
(

epi C(f)
)

⊂
{

(x, y) ∈ X × Y
∣

∣ x ∈ iri
(

dom C(f)
)

, f(x) <C y
}

. (3.13)

If in addition Y is totally ordered by C and is Archimedean, then

iri
(

epi C(f)
)

=
{

(x, y) ∈ X × Y
∣

∣ x ∈ iri
(

dom C(f)
)

, f(x) <C y
}

. (3.14)

Proof. Denoting by Ω the set on the right-hand side of (3.13). Let us first verify the in-

clusion (3.13). Pick any (x̄, ȳ) ∈ iri(epi C(f)) and first check that x̄ ∈ iri
(

dom C(f)
)

. Fixing

x ∈ domC(f) with x 6= x̄, we get (x, y) ∈ epi C(f), where y := f(x). Then Proposition 2.3

ensures the existence of (u, v) ∈ epiC(f) such that

(x̄, ȳ) ∈
(

(x, y), (u, v)
)

,

which shows that x̄ ∈ (x, u). Applying Proposition 2.3 again yields x̄ ∈ iri
(

dom C(f)
)

.

Let us now show that f(x̄) <C ȳ. Arguing by contradiction, suppose that ȳ = f(x̄) and take

any (x̄, ỹ) ∈ epiC(f) with f(x̄) <C ỹ. Thus, (x̄, ỹ) 6= (x̄, ȳ) =
(

x̄, f(x̄)
)

. Then it follows

from Proposition 2.3 that there exists (ū, v̄) ∈ epiC(f) such that
(

x̄, f(x̄)
)

∈
(

(x̄, ỹ), (ū, v̄)
)

,

and hence we can find t0 ∈ (0, 1) such that

x̄ = t0x̄+ (1− t0)ū and ȳ = t0ỹ + (1− t0)v̄.

Employing the C-convexity of f shows that

t0ỹ + (1− t0)v̄ = ȳ = f(x̄) ≤C t0f(x̄) + (1− t0)f(ū) <C t0ỹ + (1− t0)f(ū)

thus verifying that v̄ <C f(ū), and hence (ū, v̄) /∈ epi C(f). The obtained contradiction tells

us that f(x̄) <C ȳ and therefore justifies (3.13).

We now suppose that Y is totally ordered by C and is Archimedean. To prove (3.14), fix

any (x̄, ȳ) ∈ Ω giving us x̄ ∈ iri(dom C(f)) and f(x̄) <C ȳ. Picking now any (x, y) ∈ epiC(f)

with (x, y) 6= (x̄, ȳ), let us verify the existence of (ū, v̄) ∈ epiC(f) for which

(x̄, ȳ) ∈
(

(x, y), (ū, v̄)
)

.
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To proceed, we consider following two cases:

Case 1: x 6= x̄. Since x̄ ∈ iri(dom C(f)) and x̄ 6= x ∈ dom C(f), there exists x̃ ∈ dom C(f)

such that x̄ ∈ (x, x̃). Choose ỹ ∈ Y satisfying

(x̄, ȳ) ∈
(

(x, y), (x̃, ỹ)
)

(3.15)

and we will find (ū, v̄) ∈ ((x̄, ȳ), (x̃, ỹ)) with (ū, v̄) ∈ epi C(f). Arguing by contradiction,

suppose that for every (u, v) ∈ ((x̄, ȳ), (x̃, ỹ)) we have (u, v) /∈ epiC(f), i.e., v <C f(u) since

Y is totally ordered. Fix any t ∈ (0, 1) and define the t-dependent elements

ut := tx̃+ (1− t)x̄ and vt := tỹ + (1− t)ȳ,

for which we get (ut, vt) ∈ ((x̄, ȳ), (x̃, ỹ)). The C-convexity of f ensures that

tỹ + (1− t)ȳ = vt <C f(ut) ≤C tf(x̃) + (1− t)f(x̄) ≤C tf(x̃) + (1− t)ȳ.

Since Y is Archimedean, letting t ↓ 0 shows that ȳ = f(x̄), a contradiction that verifies the

existence of a pair (ū, v̄) with

(ū, v̄) ∈
(

(x̄, ȳ), (x̃, ỹ)
)

(3.16)

and (ū, v̄) ∈ epiC(f). Equations (3.15) and (3.16) give that (x̄, ȳ) ∈ ((x, y), (ū, v̄)), and so

it follows from Proposition 2.3 that (x̄, ȳ) ∈ iri(epi C(f)). Therefore, we have (3.14).

Case 2: x = x̄. Since (x, y) 6= (x̄, ȳ), we have y 6= ȳ. We will show that there exists v̄ ∈ Y

such that (x̄, v̄) ∈ epiC(f) and ȳ ∈ (y, v̄). To arrive at a contradiction, suppose that for any

v ∈ Y with ȳ ∈ (y, v) we have (x̄, v) /∈ epiC(f), i.e. v <C f(x̄) since Y is totally ordered.

Fix any t ∈ (0, 1) and define the t-dependent element

vt =
1

t
ȳ +

t− 1

t
y.

Then ȳ ∈ (y, vt) and hence
1

t
ȳ +

t− 1

t
y = vt <C f(x̄).

Again since Y is Archmidean, letting t → 1 shows that ȳ ≤C f(x̄). This contradiction

shows that there exists (x̄, v̄) ∈ epi C(f) such that (x̄, ȳ) ∈
(

(x, y), (x̄, v̄)
)

and hence (x̄, ȳ) ∈
iri

(

epiC(f)
)

and the theorem is proved. �

The following counterexamples show that the equality (3.14) can fail if an ordered vector

space is not totally ordered or is not Archimedean.

Example 3.8 Consider f : R → R
2 given by f(x) := (0, 0) for all x ∈ R and the nonempty

convex cone

C := R
2
+ = {(y, z) ∈ R

2
∣

∣ 0 ≤ x, 0 ≤ y}.
Suppose that R2 is partially ordered by C. Then we can see that dom C(f) = R, epiC(f) =

R × C, and the resuting ordering is not total however R
2 with this partial ordering is

Archimedean. One has

iri
(

epiC(f)
)

= R× intC = R× {(y, z) ∈ R
2
∣

∣ 0 < y, 0 < z}
6= R× C \ {(0, 0)}
= R× {(y, z) ∈ R

2
∣

∣ 0 ≤ y, 0 ≤ z, (y, z) 6= (0, 0)}
= {(x, y, z) ∈ R

3
∣

∣ x ∈ iri
(

dom C(f)
)

, f(x) <C (y, z)}.
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Furthermore, consider the same function f and the lexicographical partial ordering on

R
2 which is induced by the nonempty convex cone C defined in (3.12). Here we have

dom C(f) = R, epiC(f) = R× C, and the resulting ordered vector space is totally ordered

however is not Archimedean. Here too, one has

iri
(

epiC(f)
)

= R× intC = R× {(y, z) ∈ R
2
∣

∣ 0 < y}
6= R× C \ {(0, 0)}
= R×

(

{(x, y) ∈ R
2
∣

∣ 0 < x} ∪ {(0, y) ∈ R
2
∣

∣ 0 < y}
)

= {(x, y, z) ∈ R
3
∣

∣ x ∈ iri
(

dom C(f)
)

, f(x) <C (y, z)}.

The following result is a direct corollary of Theorem 3.7 by considering Y = R, C = [0,∞).

This result also can be seen in [12, Theorem 5.4].

Corollary 3.9 Let f : X → (−∞,∞] be a proper convex function. Then we have

iri
(

epi (f)
)

=
{

(x, λ) ∈ X × R
∣

∣ x ∈ iri
(

dom (f)
)

, λ > f(x)
}

.

4 Convex Separation via Extended Relative Interiors and

Fenchel-Rockafellar Theorem in LCTV Spaces

In this section we derive enhanced versions of convex separation theorems for nonsolid sets in

LCTV spaces under extended relative interiority assumptions. Then we study the Fenchel-

Rockafellar theorem in the general framework of LCTV spaces. Our goal is to establish new

sufficient conditions which guarantee the validity of (1.1) for functions defined on LCTV

spaces.

Before establishing the main convex separation theorem for two nonsolid sets in terms of

their extended relative interiors in LCTV spaces, we present some calculus rules involving

both intrinsic relative and quasi-relative interiors of convex sets; see [4, Lemma 3.3, Lemma

3.4, and Lemma 3.6]. These rules are of their own interest while being instrumental to

derive the aforementioned convex separation theorem.

Theorem 4.1 Let A : X → Y be a linear continuous mapping between two LCTV spaces,

and let Ω ⊂ X be a convex set. The following assertions hold:

(a) We always have the inclusions

A
(

iri (Ω)
)

⊂ iri
(

A(Ω)
)

and A
(

qri(Ω)
)

⊂ qri
(

A(Ω)
)

. (4.1)

(b) If iri (Ω) 6= ∅, then we have the equality

A
(

iri (Ω)
)

= iri
(

A(Ω)
)

. (4.2)

(c) If qri(Ω) 6= ∅ and if the set A(Ω) is quasi-regular, then

A
(

qri(Ω)
)

= qri
(

A(Ω)
)

. (4.3)
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Proof. First we verify assertion (a). Fix any x̄ ∈ iri (Ω) and get that cone(Ω− x̄) is a linear

subspace of X. The linearity of A shows that

cone
(

A(Ω)−A(x̄)
)

= A
(

cone(Ω− x̄)
)

is a linear subspace of Y . Thus A(x̄) ∈ iri
(

A(Ω)
)

. This justifies the first inclusion in (4.1).

Now, pick any x̄ ∈ qri(Ω) and deduce from (2.3) thatN(x̄; Ω) is a subspace ofX∗. Then take

y∗ ∈ N(A(x̄);A(Ω)) meaning that 〈y∗, A(x) − A(x̄)〉 ≤ 0 for all x ∈ Ω, which tells us that

A∗(y∗) ∈ N(x̄; Ω). By the subspace property of N(x̄; Ω) we get that −A∗(y∗) ∈ N(x̄; Ω),

which is equivalent to −y∗ ∈ N(A(x̄);A(Ω)). Thus the normal cone N(A(x̄);A(Ω)) is a

subspace of Y ∗, and so A(x̄) ∈ qri(A(Ω)) by (2.3). This verifies (4.1).

To justify assertion (b), it suffices to check the reverse inclusion “⊃” in (4.2) under the

assumption that iri (Ω) 6= ∅. Fix x̄ ∈ iri (Ω) and set ȳ := A(x̄). It follows from (4.1) that

ȳ ∈ iri
(

A(Ω)
)

. Fix any y ∈ iri
(

A(Ω)
)

. If y = ȳ, then y ∈ A
(

iri (Ω)
)

. In the case where

y 6= ȳ, Proposition 2.3 shows that there exists u ∈ A(Ω) such that y ∈ (u, ȳ). Pick x̃ ∈ Ω

such that A(x̃) = u and get

y = tu+ (1− t)ȳ = tA(x̃) + (1− t)A(x̄) = A(tx̃+ (1− t)x̄)

for some t ∈ (0, 1). Since x̄ ∈ iri (Ω) and x̃ ∈ Ω, Proposition 2.13(b) shows that (x̃, x̄] ⊂
iri (Ω). Thus, xt := tx̃+ (1− t)x̄ ∈ iri (Ω) satisfies y = A(xt). It follows that y ∈ A

(

iri (Ω)
)

.

Finally, we prove the inclusion “⊃” in assertion (c) under the assumptions that qri(Ω) 6= ∅
and A(Ω) is quasi-regular. Fix x̄ ∈ iri (Ω) and set ȳ := A(x̄). By the second inclusion in (a)

we have ȳ = A(x̄) ∈ A
(

qri(Ω)
)

⊂ qri
(

A(Ω)
)

. Fix any y ∈ qri
(

A(Ω)
)

= iri
(

A(Ω)
)

. If y = ȳ,

then y ∈ A
(

qri(Ω)
)

. If y 6= ȳ, by Proposition 2.3 there exists u ∈ A(Ω) such that y ∈ (u, ȳ).

Pick x̃ ∈ Ω such that A(x̃) = u and get

y = tu+ (1− t)ȳ = tA(x̃) + (1− t)A(x̄) = A(tx̃+ (1− t)x̄)

for some t ∈ (0, 1). Then y = A(xt), where xt := tx̃ + (1 − t)x̄) ∈ qri(Ω) by Proposi-

tion 2.13(c). Thus, y ∈ A
(

qri(Ω)
)

, which completes the proof. �

The next theorem presents the major separation result for two nonsolid convex sets in

arbitrary LCTV spaces.

Theorem 4.2 Let Ω1 and Ω2 be convex subsets of an LCTV space X. Assume that

qri(Ω1) 6= ∅, qri(Ω2) 6= ∅, and the set difference Ω1 − Ω2 is quasi-regular. Then the sets Ω1

and Ω2 are properly separated if and only if

qri(Ω1) ∩ qri(Ω2) = ∅. (4.4)

Proof. First we verify that the assumptions of the theorem ensure that

qri(Ω1 − Ω2) = qri(Ω1)− qri(Ω2). (4.5)

Indeed, define the linear continuous mapping A : X ×X → X by A(x, y) := x− y and let

Ω := Ω1 × Ω2. It is easy to check that qri(Ω) = qri(Ω1) × qri(Ω2), and thus qri(Ω) 6= ∅
under the assumptions made. Applying formula (4.3) from Theorem 4.1(c) gives us

qri(Ω1 − Ω2) = qri
(

A(Ω)
)

= A
(

qri(Ω)
)

= qri(Ω1)− qri(Ω2),
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and thus we arrive at the claimed equality (4.5).

Consider further the set difference Ω := Ω1 − Ω2 and get from (4.5) that condition (4.4)

reduces to

0 /∈ qri(Ω1 − Ω2) = qri(Ω1)− qri(Ω2),

and hence 0 /∈ qri(Ω1 − Ω2) = qri(Ω) under the fulfillment of (4.4). Then Proposition 2.8

tells us that the sets Ω and {0} are properly separated, which clearly ensures the proper

separation of the sets Ω1 and Ω2.

To verify the opposite implication, suppose that Ω1 and Ω2 are properly separated, which

implies that the sets Ω = Ω1 − Ω2 and {0} are properly separated as well. Then using

Proposition 2.8 and Theorem 4.1 yields

0 /∈ qri(Ω) = qri(Ω1 − Ω2) = qri(Ω1)− qri(Ω2),

and thus qri(Ω1) ∩ qri(Ω2) = ∅, which completes the proof. �

The following result presents a proper separation theorem in LCTV spaces via relative

interior.

Corollary 4.3 Let Ω1 and Ω2 be nonempty convex subsets of X. Suppose that ri (Ω1) 6= ∅,
ri (Ω2) 6= ∅, and ri (Ω1 − Ω2) 6= ∅. Then Ω1 and Ω2 can be properly separated if and only if

ri (Ω1) ∩ ri (Ω2) = ∅.

Proof. Applying Theorem 2.9, one has qri(Ω1) = iri (Ω1) = ri (Ω1) 6= ∅, qri(Ω2) = iri (Ω2) =

ri (Ω2) 6= ∅, and Ω1−Ω2 is quasi-regular. Theorem 4.2 gives the conclusion of this corollary.

�

It is more convenient in this subsection to consider the primal optimization problem in the

following difference form:

minimize f(x)− g(x) subject to x ∈ X, (4.6)

where f : X → (−∞,∞] is a proper convex function, while g : X → [−∞,∞) is a proper

concave function, i.e., such that the function −g is proper convex. Note that (4.6) is a

minimization problem with the convex objective f + (−g).

As seen above and will be seen in the sequel, the quasi-regularity of convex sets is needed

for the fulfillment of many important results. Theorem 2.9 tells us the quasi-regularity of

a convex set Ω holds in LCTV spaces if ri (Ω) 6= ∅ (in particular, for nonempty convex sets

in finite-dimensions), and of course if Ω is a solid convex set. Next we reveal yet another

general infinite-dimensional setting where convex sets are quasi-regular.

Now we recall the definition of the Fenchel conjugate of extended-real-valued functions.

This concept plays a central role in convex analysis and convex optimization.

Definition 4.4 Let f : X → (−∞,∞] be a convex function and let g : X → [−∞,∞) be a

concave function.
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(a) The convex fenchel conjugate of f is the function f∗ : X∗ → [−∞,∞] given by

f∗(x∗) := sup{〈x∗, x〉 − f(x) | x ∈ X}, x∗ ∈ X∗.

(b) The concave fenchel conjugate of g is the function g∗ : X
∗ → [−∞,∞] given by

g∗(x
∗) := inf{〈x∗, x〉 − g(x) | x ∈ X}, x∗ ∈ X∗.

Note that if dom (f) 6= ∅, then f∗ : X∗ → (−∞,∞] is a convex function and

f∗(x∗) = sup{〈x∗, x〉 − f(x) | x ∈ dom (f)}, x∗ ∈ X∗.

Before the formulation and proof of the main duality theorem given below, we present

the following simple lemma about some properties of intrinsic relative and quasi-relative

interiors as well as quasi-regularity of convex sets that are taken from Definition 2.2.

Lemma 4.5 Let Ω be a convex subset of an LCTV space X, and let q ∈ X. Then we have:

(a) iri (q +Ω) = q + iri (Ω).

(b) qri(q +Ω) = q + qri(Ω).

(c) Ω is quasi-regular if and only if Ω+ q is quasi-regular.

Proof. Fix any x ∈ Ω and observe easily that

cone(q +Ω− x) = cone
(

Ω− (x− q)
)

and cone(q +Ω− x) = cone
(

Ω− (x− q)
)

.

Then we deduce from the definitions of iri and qri that x ∈ iri (q + Ω) if and only if

x − q ∈ iri (Ω), and that x ∈ qri(q + Ω) if and only if x − q ∈ qri(Ω). This readily verifies

both assertions (a) and (b). Assertion (c) follows directly from (a) and (b) and the definition

of quasi-regularity. �

Now we are ready to establish the aforementioned duality theorem for problem (4.6) written

in the difference form.

Theorem 4.6 Let f : X → (−∞,∞] be a proper convex function, and let g : X → [−∞,∞)

be a proper concave function defined on an LCTV space X. Then we have the duality

relationship

inf
{

f(x)− g(x)
∣

∣ x ∈ X
}

= sup
{

g∗(x
∗)− f∗(x∗)

∣

∣ x∗ ∈ X∗
}

(4.7)

provided that the following conditions are satisfied simultaneously:

(a) qri
(

dom (f)
)

∩ qri
(

dom (g)
)

6= ∅.
(b) All the convex sets dom (f)−dom(g), epi (f), and epi (f)−hypo (g) are quasi-regular.
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Proof. Observe first that for any x ∈ X and x∗ ∈ X∗ we have the inequalities

f(x) + f∗(x∗) ≥ 〈x∗, x〉 ≥ g(x) + g∗(x
∗),

which immediately yield the estimate

inf
{

f(x)− g(x)
∣

∣ x ∈ X
}

≥ sup
{

g∗(x
∗)− f∗(x∗)

∣

∣ x∗ ∈ X∗
}

.

Denoting α := inf{f(x) − g(x) | x ∈ X}, it is obvious to see that (4.7) holds if α = −∞.

Considering the case where α is finite, we are going to show that there exists x̄∗ ∈ X∗ such

that g∗(x̄
∗)− f∗(x̄∗) ≥ α, which would readily justify (4.7). To proceed, define the sets

Ω1 := epi (f) and Ω2 :=
{

(x, µ) ∈ X ×R
∣

∣ µ ≤ g(x) + α
}

.

Since the set epi (f) is quasi-regular, we get by Corollary 3.2 and Corollary 3.5 that

qri(Ω2) ⊃
{

(x, µ) ∈ X × R
∣

∣ x ∈ qri
(

dom (g)
)

, µ < g(x) + α
}

,

qri(Ω1) =
{

(x, λ) ∈ X × R
∣

∣ x ∈ qri
(

dom (f)
)

, f(x) < λ
}

.

It follows from the qualification condition qri
(

dom (f)
)

∩ qri
(

dom(g)
)

6= ∅ in (a) that

qri(Ω1) 6= ∅ and qri(Ω2) 6= ∅. Thus qri(Ω1×Ω2) = qri(Ω1)×qri(Ω2) 6= ∅; see [5, Proposition
2.5]. Using f(x) ≥ g(x) + α for all x ∈ X yields

qri(Ω1) ∩ Ω2 = ∅, and so qri(Ω1) ∩ qri(Ω2) = ∅.

Observing further that Ω2 = hypo (g) + {(0, α)}, we get

Ω1 − Ω2 = epi (f)− hypo (g)− {(0, α)}.

It follows from Lemma 4.5 and the imposed assumptions in (b) that the set Ω1 − Ω2 is

quasi-regular. This allows us to apply Theorem 4.2, which ensures that the sets Ω1 and Ω2

are properly separated. Thus there exists a pair (ū∗, β̄) ∈ X∗ × R satisfying the following

two conditions:

inf
(x,λ)∈Ω1

{

〈ū∗, x〉+ β̄λ
}

≥ sup
(y,µ)∈Ω2

{

〈ū∗, y〉+ β̄µ
}

,

sup
(x,λ)∈Ω1

{

〈ū∗, x〉+ β̄λ
}

> inf
(y,µ)∈Ω2

{

〈ū∗, y〉+ β̄µ
}

.

This gives us a constant γ ∈ R such that

〈ū∗, x〉+ β̄λ ≥ γ ≥ 〈ū∗, y〉+ β̄µ (4.8)

whenever (x, λ) ∈ Ω1 and (y, µ) ∈ Ω2. If β̄ = 0, then we have

inf
x∈dom (f)

{

〈ū∗, x〉
}

≥ sup
y∈dom (g)

{

〈ū∗, y〉
}

,

sup
x∈dom (f)

{

〈ū∗, x〉
}

> inf
y∈dom (g)

{

〈ū∗, y〉
}

.
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Thus the sets dom(f) and dom (g) are properly separated, which implies by the character-

ization of Theorem 4.2 that

qri
(

dom (f)
)

∩ qri
(

dom(g)
)

= ∅

under the assumptions made. The obtained contradiction verifies that β̄ 6= 0.

It follows from the structure of Ω1 that for any fixed x0 ∈ dom (f) we have (x0, f(x0)+k) ∈
Ω1 whenever k ∈ N. Thus we deduce from (4.8) that

〈ū∗, x0〉+ β̄
(

f(x0) + k
)

≥ γ for all k ∈ N,

which clearly yields β̄ > 0. It also follows from (4.8) that

〈 ū∗

β̄
, x

〉

+ f(x) ≥ γ ≥
〈 ū∗

β̄
, y
〉

+ g(y) + α for all x ∈ dom (f), y ∈ dom (g).

Letting x̄∗ := −ū∗/β̄ and γ̄ := −γ brings us to the inequalities

f(x) ≥ 〈x̄∗, x〉 − γ̄ and 〈x̄∗, y〉 − γ̄ ≥ g(y) + α

for all x ∈ dom (f) and all y ∈ dom (g).
(4.9)

The first one in (4.9) shows that

γ̄ ≥ sup
{

〈x̄∗, x〉 − f(x)
∣

∣ x ∈ dom (f)
}

= f∗(x̄∗),

while the second inequality in (4.9) tells us that

γ̄ + α ≤ inf
{

〈x̄∗, y〉 − g(y)
∣

∣ y ∈ dom (g)
}

= g∗(x̄
∗).

Thus α ≤ g∗(x̄
∗)− f∗(x̄∗), which completes the proof of the theorem. �

In the rest of this subsection we present three useful consequences of Theorem 4.6. The

first result is based on the efficient condition for quasi-regularity via the SNC property from

Definition 2.16.

Corollary 4.7 Let X be a Hilbert space, and let f : X → (−∞,∞] and g : X → [−∞,∞) be

as in Theorem 4.6. Suppose that all the sets dom (f)−dom(g), epi (f), and epi (f)−hypo (g)

are closed and SNC with nonempty intrinsic relative interiors, and that the qualification

condition

qri
(

dom (f)
)

∩ qri
(

dom(g)
)

6= ∅
is satisfied. Then we have the Fenchel duality (4.7).

Proof. Theorem 2.18 tells us that the sets dom (f)−dom (g), epi (f), and epi (f)−hypo (g)

are quasi-regular under the imposed assumptions. Applying Theorem 4.6, we arrive at the

conclusion of the corollary. �

The next consequence of Theorem 4.6 involves the relative interior notion for convex sets

in LCTV spaces defined in (2.1). Recall that, in contrast to the case of finite-dimensional

spaces, nonempty convex sets may have empty relative interiors in infinite dimensions.
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Corollary 4.8 Let X be an LCTV space, and f : X → (−∞,∞] and g : X → [−∞,∞) be

as in Theorem 4.6. Suppose that the sets dom(f)− dom(g), epi (f), and epi (f)− hypo (g)

have nonempty relative interiors and that the qualification condition

ri
(

dom (f)
)

∩ ri
(

dom (g)
)

6= ∅ (4.10)

is satisfied. Then we have the Fenchel duality (4.7).

Proof. Since the sets dom (f) − dom (g), epi (f), and epi (f) − hypo (g) have nonempty

relative interiors, we apply Theorem 2.9 and conclude that they are quasi-regular. The

duality result now follows from Theorem 4.6. �

As mentioned above, the nonempty relative interior assumptions in Corollary 4.8 are auto-

matic in finite dimensions. On the other hand, the last corollary below appeals to various

equivalent descriptions of nonempty interiors of the sets in question in general LCTV spaces

that do not hold automatically in finite dimensions, while the imposed quasi-relative qual-

ification condition is significantly less restrictive than (4.10) in infinite dimensional spaces.

We will apply the following well-known lemma to obtain the final result.

Lemma 4.9 Let f : X → (−∞,∞] be a convex function. The following properties are

equivalent:

(a) f is continuous at some point x̄ ∈ X.

(b) f is bounded above on a nonempty open set.

(c) int
(

epi (f)
)

6= ∅.
(d) int

(

dom (f)
)

6= ∅ and f is continuous on int
(

dom (f)
)

.

Corollary 4.10 Let X be an LCTV space, and f : X → (−∞,∞] and g : X → [−∞,∞)

be as in Theorem 4.6. Suppose that

qri
(

dom (f)
)

∩ qri
(

dom (g)
)

6= ∅,

and that one the following conditions (a)–(d) is satisfied:

(a) The functions f and g are continuous at some points of their domains.

(b) The function f is bounded from above on a nonempty open set, and let the function g

is bounded from below on some nonempty open set.

(c) The epigraph of f and the hypograph of g have nonempty interiors.

(d) The domains of the functions f and g have nonempty interiors, and these functions

are continuous on interiors of the domains.

Then the Fenchel duality relationship (4.7) holds.

Proof. The assumptions in (c) read as int
(

epi (f)
)

6= ∅ and int
(

hypo (g)
)

6= ∅. Hence we

have the condition int
(

epi (f)−hypo (g)
)

6= ∅. It follows from Lemma 4.9 that int
(

dom (f)
)

6=
∅ and int

(

dom (g)
)

6= ∅, which implies in turn that int
(

dom (f) − dom (g)
)

6= ∅. Thus all

the three sets dom (f) − dom (g), epi (f), and epi (f) − hypo (g) have nonempty relative

interiors. The claimed duality result follows now from Corollary 4.8. �
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