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Abstract: This study explored the dynamics of a residential property value premium for proximity
to a light rail transit (LRT) station in the intermediate term (roughly two years) since the pandemic.
We applied a longitudinal quasi-experimental design using repeat sales data from the Portland
Metropolitan Area, Oregon. Our results indicate that the effect of the pandemic on prices of housing
near LRT stations differs between single-family and multi-family markets. Since the pandemic
outbreak, there has been no statically significant difference in the price appreciation between single-
family (SF) housing within an LRT service area and otherwise similar SF homes; however, for
multi-family (MF) homes, those within an LRT service area have experienced a 3.0% lower price
appreciation rate than MFs outside such areas with similar characteristics. Our findings help better
highlight the impact of the pandemic on the real estate market and can inform discussions about
longer-term changes in post-COVID cities and their planning.

Keywords: COVID-19; intermediate effect; residential property value premium; light rail transit
proximity

1. Introduction

The COVID-19 pandemic has been reported to have shifted how people travel and
where they prefer to live [1,2]. At the peak of the pandemic, there was a sharp decline in
overall travel. As lockdown policies began to ease, travel started to slowly resume, with
transit ridership being the slowest to recover. Additionally, many scholars and journalists
postulate that the crisis will transform our relationship with location, as people adjust their
work and daily lives [3]. For instance, since the pandemic, the preference has shifted toward
suburban and exurban areas from denser urban areas such as central business districts [4].
These changes raise the question of whether the COVID-led disruptions have been reflected
in the real estate market, especially for homes proximate to light rail transit (LRT) stations,
which typically enjoy a price premium compared to otherwise similar homes.

Therefore, we attempted to answer how the residential property (i.e., single-family
and multi-family housing) price premium for proximity to LRT stations was affected
by the COVID-19 pandemic in the intermediate term (roughly two years). We applied
a longitudinal quasi-experimental design using repeat sales data with a case study of
the Portland Metropolitan Area, Oregon, which allowed us to quantify the effects of the
pandemic on single-family and multi-family home markets. While it is premature to
assess the long-term impacts of COVID-19 on the real estate market, as its effects are
still unfolding, this paper contributes by (1) providing a timely snapshot of the effects of
the COVID-19 pandemic on the housing market in the intermediate term in the Portland
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Metropolitan Area and (2) helping inform discussions about changes in the post-COVID
cities and their planning.

The remainder of this paper is structured as follows. Section 2 summarizes and
synthesizes the previous literature. Section 3 presents the research design, including the
methodological approaches and data used in this research. Section 4 presents the findings.
Finally, Sections 5 and 6 discuss the results and conclude this study.

2. Literature Review

We begin with a literature review of two topics: (1) an overview of the property value
premium resulting from the proximity to public transit facilities, particularly regarding
light rail transit (LRT) stations in the U.S. context; (2) the impacts of COVID-19 on transit
use and the real estate market. We then synthesize the theoretical frameworks and findings
and present the research gaps and our research questions.

2.1. Property Value Premium

There is some debate about whether a city should build a transit system when con-
sidering its costs and benefits, although transit systems have the potential to generate
positive economic, social, and environmental externalities [5,6]. On the one hand, it is
essential to develop and improve public transportation systems to form sustainable urban
environments, since these modes of transportation can contribute to an increased willing-
ness to pay in exchange for improved accessibility for citizens, particularly marginalized
population groups [7]. On the other hand, the resulting transit-induced capitalization into
property values has made many scholars express their concerns; for instance, vulnerable
people may be forced to move out or live in substandard housing in areas with better transit
accessibility [8]. To achieve sustainable urban development, it is essential to gain a deep
understanding of the land value capture mechanism in relation to the accessibility of public
transportation. This understanding can serve as the foundation for developing strategies
to address the detrimental effects associated with the value premium while still delivering
the benefits, which, in turn, helps in attaining a sustainable urban environment.

Accordingly, the well-known adage in the real estate industry is “location, location,
location”. This implies that location advantages such as good transit accessibility can impact
on property values positively [9], known as a property value premium (also known as
value uplift). In addition, economic theories have established the well-known downward-
sloping bid–rent curve that demonstrates the trade-off between transportation costs and
land values, whereby lower transportation costs in accessible locations result in higher land
values [10–13].

Furthermore, the ample empirical literature has generally confirmed the association
between the transit infrastructure proximity and the values of the surrounding proper-
ties [14–16]. More specifically, regarding the LRT proximity effect in the U.S. context,
Cervero and Duncan [17] found the capitalized benefits to be associated with proximity
benefits in residential properties. Additionally, Hess and Almeida [18] observed the as-
sociation between proximity to an LRT station and residential property value premiums
in Buffalo, New York. Overall, the range of elasticity is been between −0.01 and −0.10,
although the elasticity can vary depending on many factors, such as the study area and
methodological approaches. The meta-analysis performed by Hamidi et al. [19] found the
premium rates for distances of 0 to 0.25 miles (5.40) and 0.25 to 0.5 miles (5.86) when using
discrete distance bands.

Beyond the static effect with a single equilibrium, another body of empirical studies
has identified a causal relationship, whereby transit accessibility can increase property
values [20–22]. For example, Kim and Lahr [23] analyzed the impact of the Hudson–Bergen
Light Rail on residential property values in New Jersey and confirmed that transit proximity
led to a value uplift.

Moreover, the previous literature started to examine the effect of transit from a tempo-
ral dynamic perspective [16,24–26]. For instance, Knaap et al. [27] found that the announce-
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ment of plans for the LRT system in Washington County, Oregon, triggered a premium. The
announcement of the transportation projects generated a net positive premium, which can
be translated into an anticipated capitalization effect [28,29]. Golub et al. [30] also found
that the prices of properties significantly and differently responded to the five planning
phases of the LRT system in Phoenix, Arizona.

Interestingly, previous studies have suggested a “faded-out” property value premium
when transit systems start to operate [31]. Yan et al. [32] revealed that while proximity to
an LRT station in Charlotte, North Carolina, had a significant and negative impact on home
prices before the operation, the effects became insignificant during the operation phase. An
analysis by Cao and Lou [24] indicated that a premium for single-family housing existed
after the announcement of the LRT system in Minneapolis but not before its operation. Ke
and Gkritza [33] found that while the property value increased after the announcement of
the LRT project, the premium reduced or disappeared in size after the LRT began operating.

In summary, a body of empirical studies has suggested that a premium for proximity
to LRT exists, and that the premium can vary over time and even dissipate.

2.2. Impacts of COVID-19 Pandemic
2.2.1. Transit Ridership

The pandemic’s drastic impact on transit usage is well-known. Due to lockdowns,
business closure, shifting to working from home, and travel restrictions, such as “stay-at-
home” orders, as well as the potential risk of spreading COVID-19 among passengers [2],
transit ridership crashed [34–36]. For example, in the U.S., the Washington Metropolitan
Area Transit Authority [37] reported that Metrorail ridership decreased by 90% at the end
of March 2020. Likewise, Hu and Chen [36] found that the COVID-19 pandemic resulted in
an average 72.4% decline in transit ridership in Chicago, Illinois. Nonetheless, Jung [38]
found that transit ridership in low-income groups remained unchanged during the COVID
period.

2.2.2. Real Estate Market

Several studies have explored the changes in residential location preferences due
to the COVID-19 pandemic. For instance, Nanda et al. [4] highlighted that despite the
advantages of central business districts, such as better access to amenities and employment
opportunities, the housing location preference shifted toward secluded housing in the
suburbs immediately after the pandemic outbreak. Similarly, Ramani and Bloom [39]
found that since March 2020, the average rental and housing prices in the largest U.S.
metropolitan areas had declined or remained flat in the central business districts and the
highly-populated areas, while prices increased in areas with lower population density. In
addition, Liu and Su [40] examined aggregate housing price data in the U.S. and found that
the pandemic caused a substantial decrease in housing demands in highly-populated areas.
In sum, these findings revealed that there had been a shift in housing demand from dense
urban areas to more spacious suburbs.

2.3. Research Gaps

The takeaway from the above literature review is that there is an interesting yet
unexplored area of research. So far, the existing research on the impacts of the COVID-19
pandemic has focused on the direct impacts, such as transit ridership and the overall real
estate market. Despite the many studies on the property value premium related to LRT
proximity and its temporal dynamics, none of the previous studies have examined how a
pandemic influences this property value premium. Therefore, we asked how the residential
property price premium for proximity to LRT was affected by the COVID-19 pandemic in
the intermediate term, using the Portland Metropolitan Area, Oregon, as a case study.
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3. Research Design

This section describes the study area, data, and methodological approaches used in
this study.

3.1. Study Area
3.1.1. Portland Metropolitan Area

We chose the Portland Metropolitan Area in Oregon, U.S., as our case study area for the
following reasons. First, the study area has a light rail transit (LRT) system. The regional
transportation agency, the Tri-County Metropolitan Transportation District of Oregon
(TriMet), operates the regions’ LRT system, MAX. The first MAX line (the Red Line) opened
in 1986. Second, since the entire MAX system was well situated before COVID, we can avoid
validity issues related to different property value premiums based on different operational
phases. Specifically, by 2015, the system had expanded to 5 colored-designated lines
covering around 60 miles. As of 2019, the daily ridership was approximately 120,000 [41].

3.1.2. Timeline

We identified two time periods for the Portland case study in the quasi-experimental
design (see Table 1). We chose the period between January 2016 and February 2020 as
the pre-COVID period. Since property prices respond differently at each phase of the
development of an LRT system [30], choosing LRT lines from the same operational phase
will reduce the variation in price premiums and facilitate an appropriate comparison of
property values in an LRT service area between the pre-COVID and peri-COVID periods.
Thus, we identified January 2016 as the beginning of the baseline period because all current
operating LRT lines were established and in operation by the end of 2015.

Table 1. The two time periods in the study.

Periods Description Dates

The pre-COVID period before the COVID-19 outbreak January 2016~February 2020
The peri-COVID period after the COVID-19 outbreak March 2020~December 2021

We selected the period between March 2020 and December 2021 as the peri-COVID
period, as the first presumptive case was identified in February 2020 in the Portland region,
and Oregon Governor Kate Brown first issued a “stay-at-home” order in March 2020. Thus,
the pandemics’ impact on property value premiums, if any, may have started to manifest
from March 2020.

Although roughly two years of the peri-COVID period may not be sufficient to capture
the long-term effects of the pandemic on housing markets, as they could still be unfolding,
we focused on studying the intermediate-term effects on the housing markets. Furthermore,
the previous literature has suggested that the real estate market reacted to COVID-19 within
a short time in the U.S. [42]. Yoruk [43] also found that the housing market reaction to the
pandemic was immediate across major cities in the U.S., using 13 months of sales data.

3.1.3. Broad Trends in Transit Ridership and Residential Property Values in Portland

Figures 1 and 2 present the broad trends in transit ridership and residential property
values for the Portland region in the pre- and peri-COVID periods. Figure 1 shows that
before the pandemic, the estimated weekly boarding number for light rail transit was
approximately 720,000. The LRT ridership decreased by around 35% in March 2020 and
further declined by another 50% in April 2020. However, since April 2020, the ridership has
stabilized, with an average of about 250,000 weekly boardings. The Case–Shiller home price
index values in Figure 2 show an approximately 25% increase in home prices in the Portland
area between January 2020 and November 2021, driven mainly by the Federal Reserve’s
push for low-interest rates to mitigate the pandemic’s impact on the macro-economy.
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Figure 2. The monthly Case–Shiller home price index of the Portland metropolitan area (Adapted
with permission from July 24, 2022, S&P Dow Jones Indices LLC, S&P/Case-Shiller OR-Portland
Home Price Index [POXRSA], retrieved from FRED, Federal Reserve Bank of St. Louis; https:
//fred.stlouisfed.org/series/POXRSA).

3.2. Methodological Approach

Our methodological approach quantified the pandemic’s impact on the residential
property value premium of light rail transit proximity (MAX in the Portland Metropolitan
area) in the intermediate term by modeling homes near LRT stations as the treatment
(treated) group in a quasi-experiment design. The impact is called the treatment effect
in this paper. The treatment effect is the difference in the appreciation of home prices
near stations and between the pre-COVID period (January 2016~February 2020) and the
peri-COVID period (March 2020~December 2021).

3.2.1. Overview of the Four-Step Process

We employed a four-step process of the longitudinal quasi-experimental design to
estimate the treatment effects of single-family and multi-family homes (see Figure 3). We
first collected and cleaned the home sales data and selected homes with at least one repeat
sale between the pre-COVID and peri-COVID period. Second, we identified homes inside
MAX station areas as the treated group and used a propensity score matching (PSM)
method to identify homes outside station areas for the control group, whose characteristics
matched those in the treated group. Third, we developed spatial models with the matched
treated and control pairs to quantify the treatment effect. Finally, we conducted a robustness
test to ensure the validity of the estimated treatment effect.

https://fred.stlouisfed.org/series/POXRSA
https://fred.stlouisfed.org/series/POXRSA


Sustainability 2022, 14, 9107 6 of 17

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 17 
 

MAX station areas as the treated group and used a propensity score matching (PSM) 
method to identify homes outside station areas for the control group, whose 
characteristics matched those in the treated group. Third, we developed spatial models 
with the matched treated and control pairs to quantify the treatment effect. Finally, we 
conducted a robustness test to ensure the validity of the estimated treatment effect. 

Our methodological approach has several advantages. First, the repeat sales data 
helped us alleviate the endogenous bias that mires traditional hedonic regression models 
[44]. Second, the PSM method approximates a randomized experiment [45,46], which 
addresses potential confounders by ensuring comparability across measured covariates 
between the treated and control groups [47]. Third, the spatial models control the spatial 
effects and overcome biases in the results for typical a-spatial hedonic models. Fourth, the 
robustness test validated our final results. We provide details on each step in the following 
subsections. 

 
Figure 3. The four-step process of the longitudinal quasi-experiment design. 

3.2.2. Step 1: Repeat Sales Data Collection and Cleaning 
We used repeat sales data for single-family and multi-family homes in the Portland 

Metropolitan obtained from the Regional Land Information System (RLIS) of the Oregon 
Metro. Homes with one sale transaction in the pre-COVID period and one in the peri-
COVID period were selected. 

We cleaned the data with the following process. First, observations with missing sale 
price information were removed. Second, we used the same filter as Dong [48] and 
excluded transactions with sale prices lower than $50,000 (including records with sale 
prices equaling zero) or higher than $2 million, as such transactions were unlikely to occur 
in the study area. Third, we dropped properties that changed their primary characteristics, 
including the lot size, building size, and land use. 

Lastly, we removed transaction records when the appreciation rate between the two 
periods was below the 2nd percentile or above the 98th percentile for the collected 
samples (e.g., around 1100% price change between the two periods) for the following 
reasons. Specifically, a critical assumption of a repeat sale analysis is that the innate 
characteristics of properties should not change throughout the study period. However, 
our data sources did not have information on the renovation, remodeling, or other 
improvements to a property. Additionally, it is important to rule out the impacts of other 
changes on the value, such as the increased quality of nearby schools and temporary 
closures of nearby amenities, which were not considered in our data set. Thus, we relied 
on the cut-off as a filter for properties with significant improvements between 
transactions. Moreover, because the repeat sales analysis approach is sensitive to extreme 
observations [49], we tried to exclude observations with extreme appreciation rates, such 
as the rate of around 1100% between the two periods. 

  

Figure 3. The four-step process of the longitudinal quasi-experiment design.

Our methodological approach has several advantages. First, the repeat sales data
helped us alleviate the endogenous bias that mires traditional hedonic regression mod-
els [44]. Second, the PSM method approximates a randomized experiment [45,46], which
addresses potential confounders by ensuring comparability across measured covariates
between the treated and control groups [47]. Third, the spatial models control the spatial
effects and overcome biases in the results for typical a-spatial hedonic models. Fourth, the
robustness test validated our final results. We provide details on each step in the following
subsections.

3.2.2. Step 1: Repeat Sales Data Collection and Cleaning

We used repeat sales data for single-family and multi-family homes in the Portland
Metropolitan obtained from the Regional Land Information System (RLIS) of the Oregon
Metro. Homes with one sale transaction in the pre-COVID period and one in the peri-
COVID period were selected.

We cleaned the data with the following process. First, observations with missing
sale price information were removed. Second, we used the same filter as Dong [48] and
excluded transactions with sale prices lower than $50,000 (including records with sale
prices equaling zero) or higher than $2 million, as such transactions were unlikely to occur
in the study area. Third, we dropped properties that changed their primary characteristics,
including the lot size, building size, and land use.

Lastly, we removed transaction records when the appreciation rate between the two
periods was below the 2nd percentile or above the 98th percentile for the collected samples
(e.g., around 1100% price change between the two periods) for the following reasons.
Specifically, a critical assumption of a repeat sale analysis is that the innate characteristics of
properties should not change throughout the study period. However, our data sources did
not have information on the renovation, remodeling, or other improvements to a property.
Additionally, it is important to rule out the impacts of other changes on the value, such
as the increased quality of nearby schools and temporary closures of nearby amenities,
which were not considered in our data set. Thus, we relied on the cut-off as a filter for
properties with significant improvements between transactions. Moreover, because the
repeat sales analysis approach is sensitive to extreme observations [49], we tried to exclude
observations with extreme appreciation rates, such as the rate of around 1100% between
the two periods.

3.2.3. Step 2: Propensity Score Matching

We used the propensity score matching (PSM) method to construct matched pairs
of treated and control homes with similar observed characteristics and to overcome non-
random assignment bias in the observational studies [50]. This step helped us to establish
the direct causal effects of the intervention (the pandemic in our paper) on the outcomes.
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Specifically, we used homes within a half-mile from their nearest MAX station, a
common specification of previous studies on property value premiums [51], as observations
in the treated group, while homes outside a half-mile buffer were in the candidate pool for
the control group. The Portland region has a 14.7-mile commuter rail (WES) system serving
Beaverton, Tigard, Tualatin, and Wilsonville. We excluded observations in the service
area of the commuter rail system from the treated group, as the effect of the pandemic on
commuter rail may differ from that on LRT.

We set a caliper width of 0.2 when identifying matched pairs for the unit in the treated
group with the nearest-neighbors method. The caliper distance defines a tolerance level for
the difference in propensity scores between the treated and the matched control group [52].
We used this caliper width for the following reasons. First, when using calipers with a
width equal to 0.2, approximately 99% of the bias due to the measured confounders can be
eliminated [53]. Additionally, a caliper width of 0.2 produced superior performance when
estimating treatment effects in an experimental study by Wang et al. [52].

The covariates used to estimate the propensity scores included structural charac-
teristics (e.g., lot size), locational factors (e.g., distance to central business district), and
neighborhood characteristics (e.g., median household income). Table 2 below lists the
17 covariates used in PSM with a description and data source, while Table 3 shows the
descriptive statistics. For the covariate balance diagnostics, we used the standardized
differences insensitive to the sample size [54] and paired t-tests [55].

Table 2. Descriptions of the covariates used in the propensity score matching.

Name Description Data
Source

Treated Dummy variable for whether the home is in the treated group, located within a half-mile from the nearest
MAX (light rail transit system in the Portland metropolitan area) station GIS

Structural Characteristics
Bldg Area The building area of a home in square feet RLIS
Lot Area The lot area of a home in square feet RLIS
Year Built The year that a home was built RLIS

Locational Factors

Freeway Log-transformed distance in feet between each home and the nearest freeway at sale year during the
pre-COVID period GIS

Ramp Log-transformed distance in feet between each home and the nearest ramp at sale year during the pre-COVID
period GIS

Bus Log-transformed distance in feet between each home and the nearest bus stop at sale year during the
pre-COVID period GIS

CBD Log-transformed distance in feet between each home and downtown (the City Hall of Portland) at sale year
during the pre-COVID period [46] GIS

Neighborhood Characteristics
Pop Den The total population per acre at the census block group level at sale year during the pre-COVID period ACS

White The proportion of the residents who are non-Hispanic white at sale year during the pre-COVID period ACS
HH Income The median household income at the census block group level at sale year during the pre-COVID period ACS

Education The proportion of the population 25 years and over who attain less than high school at the census block
group level at sale year during the pre-COVID period ACS

Land Mix

The evenness in the spatial footprint of three land uses at census block group level at sale year during the
pre-COVID period: residential, commercial/industrial, and others at sale year during the pre-COVID period

land mix index = 1 −


∣∣∣ r

T − 1
3

∣∣∣+ ∣∣∣ c
T − 1

3

∣∣∣+ ∣∣∣ o
T − 1

3

∣∣∣
4/3


where r is acres in residential use, c is commercial/industrial use, o is acres in other land uses, and T is
r + c + o [56].

GIS

Net Den The total length of roads in feet per acre at the census block group level [57] SLD
Intersect Den The total length of street intersection per square mile at the census block group level [58] SLD

School The total number of schools per acre at the census block group level at sale year during the pre-COVID period GIS
Access Auto The number of jobs within 45 min auto travel time at the census block group level SLD

Access Transit The number of jobs within 45 min transit travel time at the census block group level SLD

Sources. SLD: United States Environmental Protection Agency Smart Location Database version 3.0; ACS: American
Community Survey 2016, 2017, 2018, and 2019 (the 5-year estimates); RLIS: the Regional Land Information System
2016, 2017, 2018, 2019, 2020, 2021, and 2022; GIS: shapefile data obtained from RLIS and calculated in ArcGIS.
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Table 3. Descriptive statistics for the covariates used in the propensity score matching.

Name
Single-Family Housing Multi-Family Housing

N Mean Std. Dev N Mean Std. Dev

Treated 4482 0.11 0.31 1319 0.27 0.44
Bldg Area 4482 1740.17 683.14 1319 1110.19 427.31
Lot Area 4482 5420.81 2268.88 1319 467.88 415.13
Year Built 4482 1976.68 33.58 1319 1986.70 24.06
Freeway 4482 12,350.99 13,784.36 1319 6696.87 11,124.49

Ramp 4482 29,708.26 23,426.22 1319 20,036.30 21,398.93
Bus 4482 4130.57 10,051.20 1319 1937.19 10,545.16
CBD 4482 49,321.33 28,259.63 1319 33,089.20 27,039.27

Pop Den 4482 5530.79 3332.20 1319 7810.15 6127.20
White 4482 80.38 12.06 1319 80.71 12.07

HH Income 4482 75,952.90 29,306.83 1319 73,756.83 27,919.97
Education 4482 8.21 7.26 1319 5.49 6.76
Land Mix 4482 0.42 0.20 1319 0.55 0.19
Net Den 4482 20.36 8.67 1319 25.09 10.23

Intersect Den 4482 125.96 79.70 1319 155.96 91.19
School 4482 1.15 1.47 1319 1.14 1.40

Access Auto 4482 63,692.91 29,062.29 1319 84,329.47 32,269.66
Access Transit 4482 46,730.84 88,329.29 1319 87,232.67 114,657.22

3.2.4. Step 3: Spatial Econometrics Model

After finding matched pairs of treated and control groups, we used spatial lag (spatial
autocorrelation, SAR) and a spatial error model (SEM) to account for the spatial autocorrela-
tion [59,60] in estimating the treatment effect. We used the uniform kernel weight matrices;
specifically, the average number of links was 84.54 in the model for single-family housing
and 126.59 for multi-family housing.

The equation for SAR is as follows:

y = β0 + β1 ∗ T + β2 ∗ Time + βX + ρωy + u (1)

The SEM equation is as follows:

y = β0 + β1 ∗ T + β2 ∗ Time + βX + γωε + v (2)

The dependent variable y in both equations is the log-transformed appreciation rate
of a home y = log(Priceperi−COVID/Pricepre−COVID

)
, which is a common practice in the

previous literature with repeat sales data [20,23,48]. Our focus of the model was on
estimating parameter β1 (the treatment effect) for the dummy variable of matched treatment
group T. We also controlled the length of time (Time) between two transactions to address
seasonality. Lastly, we possibly needed to incorporate any covariates X that were not
perfectly matched via PSM. However, the results of balance diagnostics revealed no need
to control for any covariates used during PSM.

The SAR and SEM approaches differ in how the error term is defined [61]. Specifically,
in SAR, ρω denotes the spatially lagged dependent variable ρ (rho) for the weight matrix
ω. In the SEM, γ denotes the spatial error parameter (lambda), ε denotes the error term
in the a-spatial model weighted by weight matrix ω, u is a vector of error terms in the
spatial lag model, and v is the independent model error in the spatial error model [62,63].
Tables 4 and 5 illustrate the covariates used in spatial econometrics models after data
processing and PSM.
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Table 4. Descriptions of the covariates in spatial econometrics models.

Name Description Data
Source

Dependent variable

ln(appreciation rate)

Log-transformed appreciation rate
The appreciation rate was calculated as the sale price of a residential property during the
COVID-19 pandemic (sold between March 2020 and December 2021) divided by the price
of the same property before the COVID-19 outbreak (sold between January 2016 and
February 2020).

RLIS

Independent variable

Treated The dummy variable for a property located within a half-mile from the nearest MAX
(light rail transit system in the Portland metropolitan area) station RLIS

Length of time Length of time between two transactions in months RLIS

Source. RLIS: The Regional Land Information System 2016, 2017, 2018, 2019, 2020, 2021, 2022.

Table 5. Descriptive statistics for variables in spatial econometrics models.

Name
Single-Family Housing Multi-Family Housing

N Mean Std. Dev N Mean Std. Dev

ln(appreciation rate)
Total sample 860 0.251 0.159 376 0.141 0.157

Matched Treated Group 430 0.249 0.153 188 0.127 0.155
Matched Control Group 430 0.253 0.165 188 0.156 0.158

Appreciation rate
Total sample 860 1.302 0.223 376 1.166 0.192

Matched Treated Group 430 1.300 0.213 188 1.150 0.182
Matched Control Group 430 1.310 0.233 188 1.180 0.202

Length of time
Total sample 860 42.5 12.5 376 41.5 12.7

Matched Treated Group 430 42.7 11.7 188 42.1 12.4
Matched Control Group 430 42.3 13.2 188 40.9 13.1

3.2.5. Step 4: Robustness Test

We tested whether our method and findings were robust in detecting changes in
property value premiums over time in the Portland region in the absence of an exogenous
shock such as the pandemic. This test was crucial to examine whether the treatment effect
estimated in this paper was not due to the overall preference or trends in the housing
market in the region.

We explored the effect of a hypothetical event happening on 1 January 2019. The
method used here was identical to what we used throughout the paper for the pre-COVID
and peri-COVID periods, except the dates for period 1 (the pre-hypothetical event) and
period 2 (the peri-hypothetical event). The pre-hypothetical event period was between
January 2016 and December 2018, while the peri-hypothetical event period was between
January 2019 and February 2020.

4. Results

This section is divided into three subsections: (1) propensity score matching; (2) a
spatial econometrics model; (3) a robustness test.

4.1. Propensity Score Matching
4.1.1. Balance Diagnostics

After the data cleaning process and propensity score matching (PSM) with a caliper
width of 0.2, we obtained 860 single-family homes and 376 multi-family homes in matched
treated and control groups (see Figure 4). Since none of the covariates were above 0.25 [64]
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in Table 6, the PSM performed well, and all covariates were balanced between the two
matched groups. Furthermore, the p-values of the paired t-tests in Table 6 indicate that the
pairs of observations in the matched treated and control groups showed no statistically
significant difference across all 17 covariates in both housing markets. Thus, we constructed
almost perfect matches and approximated random experiments, indicating no need to
control for any of the covariates used in PSM when estimating the treatment effect in spatial
econometrics models.
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Table 6. Results of standardized difference and paired t-tests between matched treated and control
groups after propensity score matching.

Variables

Single-Family Housing Multi-Family Housing

Standardized
Difference

p-Value of
Paired t-Test

Standardized
Difference

p-Value of
Paired t-Test

Bldg Area 0.021 0.748 0.027 0.783
Lot Area 0.063 0.323 0.112 0.306
Year Built 0.015 0.798 0.056 0.475
Freeway 0.065 0.309 0.007 0.949

Ramp 0.019 0.714 0.013 0.878
Bus 0.026 0.769 0.024 0.846
CBD 0.088 0.182 0.019 0.825

Pop Den 0.015 0.828 0.039 0.481
White 0.036 0.571 0.121 0.250

HH Income 0.014 0.817 0.139 0.129
Education 0.010 0.876 0.040 0.740
Land Mix 0.091 0.225 0.137 0.170
Net Den 0.080 0.162 0.052 0.430

Intersect Den 0.062 0.325 0.059 0.339
School 0.041 0.5793 0.096 0.404

Access Auto 0.088 0.127 0.081 0.405
Access Transit 0.058 0.357 0.103 0.258

Sample Size 860 (430 pairs) 376 (188 pairs)

4.1.2. Descriptive Statistics of Matched Treated and Control Groups

Figure 5 shows the distributions of appreciation rates of single-family and multi-family
homes in the two matched groups across the region. It visually reveals that single-family
and multi-family homes with lower appreciation rates may be clustered near light rail
transit (MAX in our study area) stations (green dots). Additionally, Table 5 indicates that
the average appreciation rate for the treated group in both single-family and multi-family
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housing markets was lower than that of the control group. Specifically, the mean differences
in log-transformed appreciation rates were −0.004 in the single-family housing market and
−0.029 in the multi-family housing market.
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4.2. Spatial Econometrics Model
4.2.1. Final Model Specification

Regarding the final model selection, we found that the spatial error model (SEM)
performed better than the a-spatial (OLS) and spatial lag models (SAR) in both single-
family and multi-family housing market analyses. First, Moran’s I [65] results revealed
that the SEM and SAR performed better than the OLS due to the spatial dependency in
the residuals (see Table 7). More importantly, the Lagrange multiplier (LM) tests [66] in
Table 7 indicate that the SEM was superior to the SAR due to the insignificant results for
RLMlag in the single-family housing market and LMlag in the multi-family housing market.
Furthermore, the lower values of the Akaike information criteria (AIC) in the SEM models
support this conclusion. Therefore, we concluded that the SEM was a higher-order model,
so we focused on interpreting the results from the SEM, although we include the results of
the two other models for comparison in the following subsection.

Table 7. The results of spatial autocorrelation checks.

Moran’s I

Lagrange Multiplier (LM) Tests

LM Test for
Spatial Lag

(LMlag)

LM Test for
Spatial Error

(LMerror)

Robust LM Test
for Spatial Lag

(RLMlag)

Robust LM Test
for Spatial Error

(RLMerror)

Portmanteau
Test

(SARMA)

Single-Family
Housing 0.14 *** 27.34 *** 706.09 *** 1.19 679.90 *** 707.28 ***

Multi-Family
Housing 0.26 *** 0.21 1611.80 *** 125.07 *** 1736.60 *** 1736.80 ***

* Significant at p < 0.10; ** significant at p < 0.05; *** significant at p < 0.01.

4.2.2. Treatment Effect

Table 8 shows the results of the a-spatial (OLS), spatial lag (SAR), and spatial error
(SEM) models. In the single-family housing market, the estimated treatment effect indicates
that observations in the treated group showed a negative but insignificant treatment effect
compared to those in the matched control group (the zero-value default in the dummy
variable). Conversely, the total impact of the treatment effect in the multi-family housing
market was −0.030 with a lambda of 0.011. This suggests that the appreciation rate is
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3.0 percent lower for a multi-family home located in a light rail transit service area than
otherwise similar homes. Note that the negative value indicates the lower appreciation
that multi-family homes near stations showed between the pre-COVID-period (January
2016~February 2020) and the peri-COVID-period (March 2020~December 2021), well after
Portland’s LRT system had already been established and supposedly any property value
premium from the LRT had already been reflected in the price. The estimated treatment
effects of the OLS, SAR, and SEM were consistent in direction and significance.

Table 8. Results of the a-spatial, spatial lag, and spatial error models.

Housing Market Single-Family Housing Multi-Family Housing

Final Model No No Yes No No Yes

Models

OLS SAR SEM OLS SAR SEM

Estimate
(Std. Error)

Total Impact
(Std. Error)

Estimate
(Std. Error)

Estimate
(Std. Error)

Total Impact
(Std. Error)

Estimate
(Std. Error)

Constant 0.059 ***
(0.019)

0.046 **
(0.018)

0.046 **
(0.018)

0.039 **
(0.028)

0.065 **
(0.029)

0.067 ***
(0.025)

Treated −0.006
(0.010)

−0.014
(0.010)

−0.008
(0.010)

−0.032 **
(0.016)

−0.031 **
(0.016)

−0.030 **
(0.013)

Length of time 0.005 ***
(0.0004)

0.004 ***
(0.0004)

0.005 ***
(0.0004)

0.003 ***
(0.001)

0.003 ***
(0.001)

0.005 ***
(0.001)

Model statistics
Observations 860 860 860 376 376 376
Adjusted R2 0.128 0.057

Rho 0.003 *** −0.004
Lambda 0.013 *** 0.011 ***

Wald Statistics 19.846 *** 548.201 *** 4.403 ** 907.491 ***
LR Test 20.538 *** 85.775 *** 1.196 156.509 ***

Log-likelihood 429.949 462.567 175.485 253.142
AIC −831.360 −849.898 −915.135 −341.770 −340.970 −496.283

* Significant at p < 0.10; ** significant at p < 0.05; *** significant at p < 0.01. Models: a-spatial model (OLS), spatial
lag model (SAR), and spatial error model (SEM).

4.3. Robustness Test

We conducted an additional analysis to explore whether our method would detect
any changes in the premiums for single-family and multi-family homes without the pan-
demic shock. Here, we tested the effect of a hypothetical event happening on 1 January
2019. Table 9 below reveals that none of the treatment effects were significant even at the
0.1 significance level in the OLS, SAR, and SEM, indicating our method did not estimate a
significant change in the premium for LRT absent of the pandemic. This result proves that
the estimated treatment effect in Table 8 is robust.

Table 9. The results of robustness tests with a hypothetical exogenous shock.

Housing Market Single-Family Housing Multi-Family Housing

Final Model No No Yes No No Yes

Models

OLS SAR SEM OLS SAR SEM

Estimate
(Std. Error)

Total Impact
(Std. Error)

Estimate
(Std. Error)

Estimate
(Std. Error)

Total Impact
(Std. Error)

Estimate
(Std. Error)

Constant 0.314 ***
(0.044)

0.218 ***
(0.053)

0.253 ***
(0.050)

0.103 *
(0.061)

0.082 *
(0.065)

0.152 **
(0.060)

Treated 0.023
(0.033)

0.018
(0.032)

0.020
(0.032)

0.027
(0.038)

0.028
(0.037)

0.031
(0.034)

Length of time −0.004 **
(0.001)

−0.003 *
(0.001)

−0.003 *
(0.001)

0.001
(0.002)

0.001
(0.002)

0.002
(0.002)
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Table 9. Cont.

Housing Market Single-Family Housing Multi-Family Housing

Final Model No No Yes No No Yes

Models

OLS SAR SEM OLS SAR SEM

Estimate
(Std. Error)

Total Impact
(Std. Error)

Estimate
(Std. Error)

Estimate
(Std. Error)

Total Impact
(Std. Error)

Estimate
(Std. Error)

Model statistics
Observations 194 194 194 78 78 78
Adjusted R2 0.023 0.011

Rho 0.012 *** 0.017
Lambda 0.020 ** 0.070 ***

Wald Statistics 8.020 *** 10.374 *** 0.749 145.620 ***
LR Test 8.862 *** 5.345 ** 0.601 14.521 ***

Log-likelihood 17.806 16.047 30.341 37.301
AIC −18.749 −25.611 −22.094 −52.080 −50.681 −64.601

Notes. Pre-hypothetical event: January 2016~December 2018; post-hypothetical event: 01/2019~02/2020. * Signif-
icant at p < 0.10; ** significant at p < 0.05; *** significant at p < 0.01. Models: a-spatial model (OLS), spatial lag
model (SAR), and spatial error model (SEM).

5. Discussions
5.1. Single-Family Housing Market

We found an insignificant effect of the pandemic on the prices of single-family homes
near LRT stations. This finding deserves further discussion. Florida et al. [67] argued that
the pandemic might lead to a series of changes in the short term at the neighborhood level
due to social scarring, the lockdown, the need for measures against future health risks, and
changed preferences in the urban built environment. However, it is unlikely to change
long-standing spatial patterns. Although COVID-19 has influenced our daily lives, such as
reduced transit ridership and changed residential location preferences, our result suggests
that in the intermediate term, transit proximity has not significantly changed its appeal in
the single-family housing market.

Additionally, homebuyers may think that the disruptions from the COVID-19 pan-
demic, even though dramatic and swift, will be short-lived. If they perceive the pandemic
as a short-term disruption, the location preference established over a long time may not
change in a significant way. Furthermore, well after Portland’s LRT system was established,
and supposedly any property value premium for the LRT had already been reflected in the
price, significant disruptions such as the COVID pandemic did not significantly impact the
LRT premium.

Furthermore, Tan and Ma [68] examined how personal attributes, travel attributes,
and the perception of COVID-19 influenced choosing rail transit in a hypothetical situation
where people were resuming their work in the post-COVID 19 era. They found that
the walking time from home to the nearest transit station would negatively impact the
commuter’s choice of rail transit; that is, the research implies that a shorter walking time to
the transit station would not lose its appeal in the single-family housing market, given the
insignificant impact of the pandemic.

5.2. Multi-Family Housing Market

Conversely, the significant negative effect on multi-family homes proximate to transit
stations indicates that they were slightly losing their premium during the pandemic. The
COVID-19 outbreak has generated unusual travel behavior changes, particularly regarding
transit use. For instance, people would likely favor private vehicles rather than public
transit in the post-COVID-19 era [3] because they tend to reduce risk-taking behavior when
living through risk events [69]. For instance, nearly 70% of transit riders have changed
their travel behavior during the pandemic in the Portland region (see Figure 1). Therefore,
we believe that it may disrupt the demand for multi-family homes, resulting in decreased
property values, as transit service areas generally represent a market with multi-family
housing demands sensitive to proximity to amenities and social services.
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Moreover, the finding suggests that in the multi-family housing markets in the region,
the impact of the pandemic did not become “decoupled” from the transit utility, as the
actual ridership volume significantly declined, while the property premiums did decrease
considerably. Specifically, due to the significant decline in transit ridership, the proximity
that offers transit users more convenience, easy access to transit, and a lower probability of
contacting people on the journey to that station may not be important in the multi-family
housing market.

6. Conclusions

Whether the preference for neighborhoods with better transit accessibility remained
during the pandemic was a research question that had not been investigated. To fill this
gap, we used repeat sales data with a quasi-experimental design that would allow us
to establish a causal relationship (if the assumptions of our models are reasonable). We
found different results for the single-family and multi-family housing markets. Specifically,
during the COVID-19 pandemic, single-family homes within a half-mile from the nearest
station showed an insignificant difference in the appreciation rate compared to those with
similar characteristics. In contrast, multi-family homes within a half-mile from the nearest
station received a 3.0% lower appreciation rate than homes with similar characteristics.
Moreover, the robustness test offered evidence that the findings were robust. We believe
our study contributes to a growing body of knowledge about the property value premiums
associated with LRT proximity and COVID-induced disruptions in our life. Additionally,
the findings will help broaden the discussion regarding the changes in post-COVID cities
and their planning implications.

We acknowledge a few limitations of this study. First, our analysis did not consider
other changes due to the pandemic, such as temporarily closed amenities and unemploy-
ment. This may be problematic if the pandemic affects the LRT service area differently
(besides the prices) than the rest of the region. Second, our data source does not provide
common home attributes, including the numbers of bedrooms and bathrooms or interior
design details. Third, our models did not include all factors that homebuyers value when
on the housing market, such as school quality and other amenities. Fourth, we do not know
how generalizable our results from the Portland area are to other regions in the U.S., let
alone across the globe.

For future research, in addition to addressing the limitations listed above when better
data become available, we plan to revisit this study with updated data to estimate the
longer-term effect of the pandemic. Additionally, since our analysis did not address the
relationship between the decreased transit ridership and property value premium, further
research is needed to explore this connection.
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