Portland State University PDXScholar

Biology Faculty Publications and Presentations

Biology

5-19-2021

Coxiella Burnetii and Related Tick Endosymbionts Evolved from Pathogenic Ancestors

Amanda E. Brenner Portland State University, amanda.brenner@pdx.edu

Sebastián Muñoz-Leal Universidad de Concepción

Madhur Sachan Portland State University, madhur@pdx.edu

Marcelo B. Labruna Universidade de São Paulo

Rahul Raghavan Portland State University, rahul.raghavan@pdx.edu

Follow this and additional works at: https://pdxscholar.library.pdx.edu/bio_fac

Part of the Biology Commons Let us know how access to this document benefits you.

Citation Details

Brenner, A. E., Muñoz-Leal, S., Sachan, M., Labruna, M. B., & Raghavan, R. (2021). *Coxiella burnetii* and related tick endosymbionts evolved from pathogenic ancestors. *Genome Biology and Evolution*, evab108. https://doi.org/10.1093/gbe/evab108

This Article is brought to you for free and open access. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: pdxscholar@pdx.edu.

2 3		
4	1	Coxiella burnetii and related tick endosymbionts evolved from pathogenic ancestors
5 6 7	2	
8 9 10	3	Amanda E. Brenner ¹ , Sebastián Muñoz-Leal ² , Madhur Sachan ¹ , Marcelo B. Labruna ³ ,
11 12	4	Rahul Raghavan ^{1,4*}
13 14 15	5	
16 17 18	6	¹ Department of Biology and Center for Life in Extreme Environments, Portland State
19 20 21	7	University, Portland, OR 97201, USA.
21 22 23	8	² Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias,
24 25 26	9	Universidad de Concepción, Chillán, Ñuble, Chile.
27 28 29	10	³ Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de
30 31	11	Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.
32 33 34	12	⁴ Department of Biology and South Texas Center for Emerging Infectious Diseases, The
35 36 37	13	University of Texas at San Antonio, San Antonio, TX 78249, USA.
38 39	14	
40 41 42	15	*Author for correspondence:
43 44 45	16	Rahul Raghavan Phone: 210-458-7016 Email: <u>rahul.raghavan@utsa.edu</u>
46 47 48	17	
49 50	18	
51 52 53 54 55 56		© The Author(s) 2021. Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
57 58 59		1

20	Both symbiotic and pathogenic bacteria in the family Coxiellaceae cause morbidity and
21	mortality in humans and animals. For instance, Coxiella-like endosymbionts (CLEs)
22	improve the reproductive success of ticks — a major disease vector, while <i>Coxiella</i>
23	burnetii causes human Q fever, and uncharacterized coxiellae infect both animals and
24	humans. To better understand the evolution of pathogenesis and symbiosis in this
25	group of intracellular bacteria, we sequenced the genome of a CLE present in the soft
26	tick Ornithodoros amblus (CLEOA) and compared it to the genomes of other bacteria in
27	the order Legionellales. Our analyses confirmed that CLEOA is more closely related to
28	C. burnetii, the human pathogen, than to CLEs in hard ticks, and showed that most
29	clades of CLEs contain both endosymbionts and pathogens, indicating that several CLE
30	lineages have evolved independently from pathogenic Coxiella. We also determined that
31	the last common ancestor of CLEOA and C. burnetii was equipped to infect
32	macrophages, and that even though horizontal gene transfer (HGT) contributed
33	significantly to the evolution of <i>C. burnetii</i> , most acquisition events occurred primarily
34	in ancestors predating the CLEOA-C. burnetii divergence. These discoveries clarify the
35	evolution of <i>C. burnetii</i> , which previously was assumed to have emerged when an
36	avirulent tick endosymbiont recently gained virulence factors via HGT. Finally, we
37	identified several metabolic pathways, including heme biosynthesis, that are likely
38	critical to the intracellular growth of the human pathogen but not the tick symbiont,

1		
2 3	20	and show that the use of home analog is a promising approach to controlling C hypertii
4	39	and show that the use of neme analog is a promising approach to controlling C. burneth
5 6	40	infactions
7	40	infections.
8	/11	
9 10	71	
11		
12 13		
14		
15		
16 17		
18		
19 20		
20 21		
22		
23 24		
24		
26		
27 28		
29		
30		
31 32		
33		
34 25		
36		
37		
38 39		
40		
41 42		
42 43		
44		
45 46		
47		
48		
49 50		
51		
52		
55 54		
55		
56 57		
58		
59		http://mamapusarintaontral.com/aba
60		http://nc.manuscriptcentral.com/gbe

Page 4 of 51

Downloaded from https://academic.oup.com/gbe/advance-article/doi/10.1093/gbe/evab108/6278299 by guest on 26 May 202-

SIGNIFICANCE

42 Key words: Coxiella, tick, endosymbiont, pathogen, heme

Coxiellae are enigmatic intracellular bacteria that adversely affect human and animal health, but their evolutionary origins and intracellular biology are not clearly understood. Here, by sequencing the first genome of a soft-tick endosymbiont, and combining this information with phylogenetic and phylogenomic analyses, we show that endosymbiotic coxiellae evolved from pathogenic ancestors, and that the human pathogen *Coxiella burnetii* evolved from a preexisting pathogen — not from an avirulent tick endosymbiont as previously assumed. Additionally, having the genome of a closely related non-pathogen allowed us, for the first time, to perform in-depth comparative genomic analyses, which identified several metabolic processes that are likely critical to *C. burnetii*'s intracellular growth and virulence. Knowledge gained from this study, in addition to helping us better understand the evolution of coxiellae, should hasten the development of novel therapies to control Q fever and could be applied to controlling the spread of ticks.

http://mc.manuscriptcentral.com/gbe

59 INTRODUCTION

60	A bacterium's genome size and gene content signal both the degree of its dependence
61	on the host and the length of the bacterium-host relationship. For example, a bacterium
62	that has established a long-term, obligate symbiosis would have a tiny genome filled
63	with protein-coding genes (Wernegreen et al. 2000). Conversely, the genome of a
64	bacterium that is in early stages of symbiosis is usually large and contains numerous
65	pseudogenized genes, which, as the relationship progresses, would eventually be lost,
66	resulting in a tiny genome (Moran 2002; McCutcheon and Moran 2011). The genomes of
67	Coxiella-like endosymbionts (CLEs) found in ticks (Acari: Ixodida) fall into both
68	categories: Some ticks, e.g., Amblyomma americanum and A. sculptum, contain small-
69	genomed CLEs (~0.6 Mbp) that have few pseudogenes, indicating that they represent an
70	ancient lineage of tick endosymbionts (Smith et al. 2015). In contrast, CLEs in
71	Rhipicephalus turanicus (CRt), and R. sanguineus have large genomes (~1.7 Mbp) filled
72	with pseudogenes, denoting that the bacteria are in early stages of symbioses (Gottlieb
73	et al. 2015; Tsementzi et al. 2018). While most ticks contain CLEs, a few have Francisella-
74	like endosymbionts (FLEs) (Gerhart et al. 2016, 2018; Duron et al. 2017). All FLEs
75	studied to date have large genomes (~1.5 Mbp) with hundreds of pseudogenes,
76	including inactivated virulence genes, indicating that FLEs evolved recently from
77	pathogenic ancestors (Gerhart et al. 2016, 2018; Duron et al. 2018). Irrespective of their
78	age, CLEs and FLEs improve the reproductive fitness of their hosts by likely providing

metabolites missing in vertebrate blood, ticks' sole nutritional source (Gottlieb et al. 2015; Smith et al. 2015; Gerhart et al. 2016, 2018; Duron et al. 2017, 2018; Tsementzi et al. 2018).

C. burnetii, the causative agent of human Q fever, has also been detected in ticks; in fact, the intracellular pathogen was first isolated from hard ticks Dermacentor andersoni and Haemaphysalis humerosa (Cox 1938; Smith and Derrick 1940). In addition, transstadial transmission and fecal excretion of C. burnetii occur in laboratory-raised ticks (Eldin et al. 2017; Körner et al. 2020). However, it is not clear whether ticks play any meaningful role in the natural spread of C. burnetii (Duron et al. 2015b); instead, Q fever generally occurs following inhalation of C. burnetii-contaminated aerosols originating from infected farm animals (Maurin and Raoult 1999; Eldin et al. 2017). Within the human lungs, C. burnetii infects alveolar macrophages and generates a large replicative vacuole, termed the Coxiella-containing vacuole (CCV), by subverting host responses through a Dot/Icm Type IVB secretion system (T4BSS). This secretion system is essential to the pathogenicity of both C. burnetii and Legionella pneumophila, the two established pathogens in the order Legionellales (Segal et al. 1999; Chen et al. 2010; Beare et al. 2011; Newton et al. 2014; Burstein et al. 2016). Genes for T4BSS, which evolved from conjugation machinery, have spread across the bacterial kingdom via horizontal gene transfer (HGT), a process through which organisms gain foreign genes,

98	allowing them to quickly adapt to a new environment (Ochman et al. 2000; Lerat et al.
99	2005).
100	The closest relatives of <i>C. burnetii</i> are CLEs present in ticks (Almeida et al. 2012;
101	Duron et al. 2015a; Smith et al. 2015), leading to the notion that the human pathogen
102	emerged when an avirulent tick endosymbiont gained pathogenicity genes, probably
103	via HGT (Duron et al. 2015a; Gerhart et al. 2016). Contrary to this hypothesis, by
104	sequencing the genome of a CLE in Ornithodoros amblus (henceforth referred to as
105	CLEOA), we show that a common virulent ancestor gave rise to both C. burnetii and
106	CLEOA. The potentially-pathogenic ancestor contained genes for most virulence
107	factors, including T4BSS, indicating that the erstwhile bacterium was likely capable of
108	infecting mammalian macrophages. In CLEOA, homologs of most virulence-associated
109	genes have been rendered non-functional, but genes for B vitamin and cofactor
110	biosynthesis have been retained, suggesting that a virulent bacterium has morphed into
111	a nutrient-provisioning tick endosymbiont. In a similar fashion, we found that several
112	other tick endosymbionts likely evolved from pathogenic ancestors, indicating that
113	pathogen-to-endosymbiont transformation is widespread across ticks. Finally, by
114	inhibiting C. burnetii growth using a synthetic analog of heme, a metabolite produced
115	by C. burnetii but not by CLEOA, we demonstrate how knowledge gained through
116	comparative genomics could be applied to developing novel strategies to control Q
117	fever, which is difficult to treat with currently available antibiotics.

2 3	118	
4 5	110	
6 7	119	RESULTS
8 9 10	120	CLEOA arose from a pathogenic ancestor
11 12	121	Phylogenetic trees based mainly on 16S rDNA have previously indicated that the
13 14 15	122	closest relatives of <i>C. burnetii</i> are CLEs present in <i>Orniothodoros</i> and <i>Argas</i> soft ticks
16 17 18	123	(family Argasidae) (Almeida et al. 2012; Duron et al. 2015a; Smith et al. 2015); however,
19 20 21	124	all CLE genomes available to date are from CLEs in hard ticks (family Ixodidae)
21 22 23	125	(Gottlieb et al. 2015; Smith et al. 2015; Tsementzi et al. 2018; Guizzo et al. 2017),
24 25 26	126	stymieing earlier efforts to understand C. burnetii evolution. Here, by sequencing the
27 28	127	first soft-tick CLE genome, we were able to build a more definitive phylogenomic tree,
29 30 31	128	which confirmed that CLEOA is a sister taxon of <i>C. burnetii</i> (Fig. 1; Supplemental Table
32 33 34	129	S1). In addition, the presence of pseudogenized T4BSS genes in CLEOA indicates that
35 36 37	130	the tick-symbiont evolved from a pathogenic ancestor with a functional T4BSS (Fig. 2;
38 39	131	Supplemental Table S2).
40 41 42	132	To resolve the ancestry of pathogenicity in Legionellales we determined the
43 44 45	133	prevalence of T4BSS, which is an essential virulence factors in this group of bacteria that
46 47 48	134	includes human pathogens (C. burnetii and L. pneumophila), opportunistic pathogens
48 49 50	135	(Rickettsiella), and symbionts (CLEs). Our analyses revealed that the secretion system is
51 52 53	136	intact in all members of this order with the exception of CLEs, which only contained
54 55 56 57	137	remnants of the T4BSS (Figs. 1, 2). The most parsimonious explanation for this phyletic
57 58 59 60		8 http://mc.manuscriptcentral.com/gbe

59

2		
3 4 5	138	pattern is that T4BSS was present in the common ancestor of all Legionellales and was
6 7	139	later lost in lineages that gave rise to CLEs, including CLEOA.
8 9 10	140	
11 12	141	Multiple CLEs have evolved from pathogens
13 14 15	142	Coxiella detected in ticks are classified into four clades, three of which contain
16 17 18	143	intermingled pathogens and endosymbionts (Fig. 3; Supplemental Table S3; Duron et
19 20	144	al. 2015a). Clade A includes C. burnetii — the human pathogen, and CLEOA, which
21 22 23	145	arose from a pathogenic ancestor, as discussed above. In Clade B, CLEs of Haemaphysalis
24 25 26	146	ticks are present along with a presumably pathogenic Coxiella that caused horse
27 28	147	infection (Seo et al. 2016). Clade C has CRt, a pathogen-derived endosymbiont, along
29 30 31	148	with strains that caused opportunistic human skin infections (Gottlieb et al. 2015;
32 33 34	149	Angelakis et al. 2016; Guimard et al. 2017; Tsementzi et al. 2018; Ben-Yosef et al. 2020).
35 36 37	150	Only Clade D, which contains small-genomed CLEs (e.g., CLEAA), has no known
38 39	151	pathogenic representatives. This phylogenetic pattern of endosymbionts clustering with
40 41 42	152	pathogens indicate that, similar to the pathogenic ancestry of CLEOA and CRt, CLEs of
43 44 45	153	several other ticks have also evolved from pathogenic coxiellae. Thus, based on
46 47	154	phylogenetic and T4BSS distribution patterns, we surmise that Coxiella strains that
48 49 50	155	infect vertebrates (e.g., humans, horses, birds) and invertebrates (e.g., crayfish) are
51 52 53	156	widespread across the globe (Fig. 3), and many of them have evolved into tick
54 55 56 57 58	157	endosymbionts.

2 3 4	158	
5 6 7	159	HGT was a major contributor to gene accumulation in <i>C. burnetii</i> 's ancestors
8 9 10	160	In order to better understand the evolution of <i>C. burnetii</i> , we traced the ancestry of its
11 12	161	protein-coding genes by determining whether their orthologs — either functional or
13 14 15	162	pseudogenized — were present in other Legionellales members. Out of 1,530 protein-
16 17 18	163	coding genes whose ancestries we could trace, 790 were deemed to be ancestral,
19 20 21	164	meaning it was present in the ancestor that diverged from Legionella (Node 1), and an
22 23	165	additional 585 genes originated in Nodes 2-4 (Fig. 4; Supplemental Table S4). This data
24 25 26	166	demonstrates that the common ancestor of <i>C. burnetii</i> and CLEOA contained most of the
27 28 29	167	genes, including virulence factors, present in C. burnetii, and was hence well equipped
30 31 22	168	to infect mammals.
32 33 34	169	A major impediment to unspooling the evolutionary history of <i>C. burnetii</i> is the
35 36 37	170	sparse availability of Coxiellaceae genomes, which makes it difficult to ascertain
38 39 40	171	whether genes were gained by <i>C. burnetii</i> 's ancestors at a Nodes 2-5 or were instead lost
40 41 42	172	in other bacteria represented at each node. To overcome this difficulty, we calculated
43 44 45	173	each C. burnetii gene's nucleotide composition (%GC) and Codon Adaptation Index
46 47 48	174	(CAI), two measures known to distinguish foreign-origin genes from ancestral ones
49 50	175	(Fig. 4; Supplemental Table S5; Sharp and Li 1987; Lawrence and Ochman 1997; Jansen
51 52 53	176	et al. 2003; Raghavan et al. 2012). Both %GC and CAI values for genes that originated in
54 55 56 57	177	Nodes 3-5 were significantly different from those of ancestral (Node 1) genes, indicating
58 59 60		http://mc.manuscriptcentral.com/gbe 10

Page 11 of 51

2 3 4	178	that a considerable portion of these genes were likely acquired horizontally. [Node 2
5 6 7	179	genes were excluded from this analysis due to small sample size ($n=13$).] Interestingly,
8 9	180	%GC and CAI values for Node 5 genes were not significantly different from those
10 11 12	181	gained at Node 4, suggesting that many of the genes currently found only in the human
13 14 15	182	pathogen were present in the common ancestor of <i>C. burnetii</i> and CLEOA, and were
16 17 18	183	later lost in the tick endosymbiont. However, it is clear that HGT has contributed to the
19 20	184	accumulation of genes at Node 5 as well because 88 out of 155 genes in this category
21 22 23	185	showed phylogenetic patterns consistent with HGT (Supplemental Fig. S1, Table S6).
24 25 26	186	Cumulatively, our results validate the important role HGT has played in assembling <i>C</i> .
20 27 28	187	burnetii's protein repertoire (Moses et al. 2017), and show that this process occurred
29 30 31	188	principally in ancestors that preceded the C. burnetii-CLEOA split.
32 33 34	189	
35 36	190	CLEOA potentially provides O. amblus with nutrients missing in vertebrate blood
37 38 39	191	Similar to other hematophagic organisms (Duron and Gottlieb 2020), ticks likely obtain
40 41 42	192	nutrients missing in blood from endosymbiotic bacteria such as CLEs and FLEs
43 44	193	(Gottlieb et al. 2015; Smith et al. 2015; Gerhart et al. 2016, 2018; Duron et al. 2018;
45 46 47	194	Tsementzi et al. 2018). In accordance with this idea, although CLEOA has lost a large
48 49 50	195	number of genes (Table 1), it has retained complete pathways for the synthesis of
51 52 53	196	several B-vitamins and cofactors (Fig. 5). Interestingly, these pathways are also present
54 55	197	in <i>C. burnetii</i> , indicating that the genes are of ancestral origin and could be critical to the
56 57 58		
59 60		http://mc.manuscriptcentral.com/gbe 11

198	intracellular growth of both the endosymbiont and the human pathogen.
199	CLEOA also contains 91 genes that are absent or have been deactivated in C.
200	burnetii (Supplemental Table S7). It is likely that many of these CLEOA-specific genes
201	have functions in the tick ecosystem but are not useful during mammalian infections.
202	Collectively, based on its genomic features (Table 1), recent loss of T4BSS (Fig. 2), and
203	presence of intact pathways for synthesizing B vitamins and cofactors (Fig. 5), we
204	conclude that a pathogenic Coxiella was recruited to function as a nutrient-provisioning
205	endosymbiont in O. amblus.
206	
207	
208	CLEOA has not retained genes that allow C. burnetii to withstand the harsh environs
209	of CCV
210	Loss of T4BSS and associated genes. Because C. burnetii diverged from CLEOA
211	recently, it provided us an opportunity to perform a thorough comparison of the
212	human pathogen's genome to that of a closely-related non-pathogen. Our analysis
213	identified 980 functional genes in C. burnetii whose orthologs have been either
214	pseudogenized or deleted in CLEOA (Supplemental Table S8). Among them are genes
215	for T4BSS and for effectors secreted through T4BSS (Fig. 2; Supplemental Table S2) that
216	enable C. burnetii to generate its intracellular replicative niche, termed Coxiella-
217	containing vacuole (CCV) (Chen et al. 2010; Beare et al. 2011; Martinez et al. 2014, 2020;

1 2		
3 4	218	Newton et al. 2014). In addition, genes for PmrAB and EirA that control T4BSS activity,
5 6 7	219	and for eight T4BSS effectors present on C. burnetii's QpH1 plasmid have been
8 9	220	inactivated in CLEOA (Maturana et al. 2013; Beare et al. 2014; Kuba et al. 2020).
10 11 12	221	Therefore, the secretion system, which is critical to the intra-macrophage growth of <i>C</i> .
13 14 15	222	burnetii, is clearly not required for CLEOA to grow within tick cells.
16 17	223	
18 19 20	224	Loss of transporters of antibacterial molecules. To protect itself from noxious
21 22 23	225	molecules produced by the host, C. burnetii likely depends on transport proteins that
24 25	226	efflux harmful substances out of its cytoplasm. For instance, macrophages increase Cu ²⁺
26 27 28	227	concentration within phagosomes to kill intracellular bacteria (Neyrolles et al. 2015),
29 30 31	228	and <i>C. burnetii</i> probably utilizes a P-1B type ATPase to export copper from its
32 33	229	cytoplasm to sustain intracellular growth (Rowland and Niederweis 2012). This
34 35 36	230	ATPase, along with 18 others of unknown function, have been pseudogenized or
37 38 39	231	deleted in CLEOA (Supplemental Table S9). In addition, C. burnetii encodes 25 putative
40 41 42	232	transporters that could facilitate the pathogen's growth within CCV, out of which, 19
43 44	233	have become non-functional in CLEOA (Supplemental Table S9), suggestive of the mild
45 46 47	234	nature of the tick endosymbiont's intracellular compartment where antibacterial
48 49 50	235	molecules are probably not a major threat.
50 51 52	236	
53 54 55		
56 57 58		
59 60		1 http://mc.manuscriptcentral.com/gbe

1 2	
2 3	
4 5	-
6	
7 8	
9	
10 11	
12	
13 14	
15	4
16 17	-
18	•
19 20	
20	
22 23	
23 24	
25 26	
20 27	
28	
29 30	
31	4
32 33	-
34	-
35 36	
37	
38 39	
40	
41 42	
43	
44 45	4
46	
47 49	4
48 49	-
50	•
52	
53	
54 55	
56	
57 58	
59	

237	Diminished pH regulation. A defining feature of CCV is its acidity (pH ~4.75) (Vallejo
238	Esquerra et al. 2017; Samanta et al. 2019). To compensate, C. burnetii utilizes several
239	mechanisms to maintain its cytoplasmic pH close to neutral (Hackstadt 1983), many of
240	which have been rendered non-functional in CLEOA. For example, the enzyme
241	carbonic anhydrase that catalyzes the production of bicarbonate (HCO ³⁻) buffer from
242	CO ₂ (Vallejo Esquerra et al. 2017; Bury-Moné et al. 2008) has been pseudogenized in
243	CLEOA (Supplemental Table S10). Another pH-regulating strategy used by C. burnetii is
244	to remove excess protons in its cytoplasm via proton-antiporters such as the multi-
245	protein Mrp antiporter, a pair of Na ⁺ /H ⁺ antiporters, and a K ⁺ /H ⁺ antiporter. C. burnetii
246	also encodes a pair of glutamate/gamma-aminobutyrate (GABA) antiporters that export
247	GABA in exchange for glutamate, thereby reducing the cytoplasmic proton content. The
248	Mrp antiporter, one of the two Na ⁺ /H ⁺ antiporters, and both glutamate/GABA
249	antiporters have been pseudogenized in CLEOA (Supplemental Table S10). A hallmark
250	of <i>C. burnetii</i> is its unusually high number of basic proteins (~46% of proteins have pI
251	values ≥9; average pI 8.22) that could function as a "proton sink," which allows the
252	pathogen to maintain its cytoplasmic pH close to neutral (Seshadri et al. 2003). In
253	contrast, only ~39% of proteins in CLEOA have pI values ≥9 (average pI 8.0), again
254	illustrating a lack of acidic stress within CLEOA's intracellular vacuole. Collectively,
255	our data suggest that the endosymbiont does not face the constant threat of excess

protons entering its cytoplasm, probably because its intracellular niche, unlike C. *burnetii*'s, has a pH closer to neutral.

1 2 2	259	Loss of cell membrane and cell wall genes. In gram-negative bacteria, inner and outer
3 4 5	260	membranes along with peptidoglycan play important roles in stress response (Rowlett
6 7 8	261	et al. 2017). In CLEOA, the gene that encodes PlsC, which converts lysophosphatidic
9 0	262	acid into phosphatidic acid (PA), a universal intermediate in the biosynthesis of
2 3	263	membrane phospholipids, has been pseudogenized. The <i>plsC</i> gene is essential in
4 5 6	264	Escherichia coli, and a transposon insertion in this gene in C. burnetii caused severe
7 8 9	265	intracellular growth defect (Coleman 1990; Martinez et al. 2014); hence, it is not clear
0 1	266	how CLEOA is able to build its membranes without a functional <i>plsC</i> , but one
2 3 4	267	possibility is that the endosymbiont utilizes PA obtained from its host. Another
5 6 7	268	membrane-associated loss of function in CLEOA is the pseudogenization of the <i>pldA</i>
, 8 9	269	gene that encodes phospholipase A (PldA), which is critical to C. burnetii's outer
0 1 2	270	membrane function and for optimal growth within macrophages (Stead et al. 2018). As
3 4 5	271	for its peptidoglycan, CLEOA contains intact genes for D, D-transpeptidases (also
6 7	272	known as penicillin-binding proteins) that catalyze 4-3 peptide cross-links between D-
o 9 0	273	alanine and diaminopimelate; however, all L, D-transpeptidase genes (annotated as
1 2 3	274	"enhanced entry proteins") have been pseudogenized, indicating that the tick symbiont
4 5 6	275	does not have the ability to generate 3–3 cross-links between diaminopimelate
7		

1 2	
3 4	2
5 6 7	2
8 9	2
10 11 12	2
13 14 15	2
16 17	2
18 19 20	2
21 22 23	2
24 25	2
26 27 28	2
29 30 31	2
32 33	2
34 35 36	2
37 38 39	2
40 41	2
42 43 44	2
45 46 47	2
48 49 50	2
50 51 52	2
53 54 55	2
56 57	
59 60	

276	molecules in its peptidoglycan. These nonclassical cross-links contribute to <i>C. burnetii</i> 's
277	environmental stability (Sandoz et al. 2016), and are probably not critical to CLEOA
278	because the endosymbiont is passed vertically from one generation to next. Collectively,
279	as observed in other endosymbionts (Nakabachi et al. 2006; McCutcheon and Moran
280	2010; Chong and Moran 2018), CLEOA lacks numerous proteins that are typically
281	considered integral to the optimal functioning of bacterial cell membrane and cell wall.
282	
283	Loss of antioxidant genes. An intricate network of antioxidants allows C. burnetii to
284	thrives in a phagolysosome-derived intracellular vacuole (Mertens and Samuel 2012). In
285	contrast to CCV, oxidative stress appears to be minimal in CLEOA's intracellular
286	vacuole because the endosymbiont contains only a streamlined version of C. burnetii's
287	antioxidant defense system. For instance, C. burnetii contains two superoxide
288	dismutases (SODs), but CLEOA has retained the cytoplasmic Fe-containing SodB, but
289	not SodC, the periplasmic Cu/Zn-SOD. OxyR, the master regulator of peroxide stress,
290	along with a catalase, a peroxidase (AhpC2), a methionine sulfoxide reductase, a
291	hemerythrin-like protein, and a glutathione transferase that together help mitigate
292	oxidative stress have also been deactivated in CLEOA (Supplemental Table S11). In
293	addition, C. burnetii, but not CLEOA, has the ability to synthesize queuine, a guanine
294	analog, found in the first anticodon position of several post-transcriptionally modified
295	tRNAs (Iwata-Reuyl 2003). The precise functions of queuine is not understood, but it is

Page 17 of 51

1

2	
3	29
4	
6	20
7	25
8	20
9 10	29
10	
12	29
13	
14	30
15 16	
17	30
18	
19	30
20	50
21 22	20
23	30
24	
25	30
26 27	
28	30
29	
30	30
31 22	
33	30
34	50
35	20
36 27	30
37 38	
39	30
40	
41	31
42 43	
44	31
45	
46	31
4/ 18	51
49	21
50	21
51	
52 52	31
55 54	
55	31
56	
57	
58 59	
22	

60

96 thought to promote the activity of antioxidant enzymes, including catalase, superoxide 97 dismutase, and glutathione transferase, most of which, as mentioned above, have lost 98 their functionality in CLEOA (Koh and Sarin 2018). 99 *C. burnetii* utilizes both cytochrome bd (encoded by genes *cydABX*) and 0 cytochrome o (encoded by genes cyoABCD) as terminal oxidases, but CLEOA has only retained cytochrome o genes. Cytochrome bd, which also functions as a quinol)1)2 peroxidase that prevents the buildup of oxidative free radicals (Endley et al. 2001;)3 Omsland and Heinzen 2011), has become nonfunctional in the tick endosymbiont. In addition, CLEOA does not encode genes for an acid phosphatase and two sterol)4)5 reductases that likely modify host proteins and cholesterol, respectively, to protect *C*.)6 *burnetii* from host-induced oxidative stress (Seshadri et al. 2003; Gilk et al. 2010; Hill and)7 Samuel 2011; Gilk 2012). Finally, C. burnetii is thought to compensate for the lack of the 8(oxidative branch of Pentose Phosphate Pathway (PPP)— a major source of NADPH, by)9 utilizing alternative NADPH-regenerating enzymes such as short chain 0 dehydrogenases and sterol reductases, and by salvaging NAD⁺ from the host (Bitew et 1 al. 2018, 2020). In CLEOA, all four short chain dehydrogenases, the two eukaryote-like 2 sterol reductases, and the nicotinate-salvaging protein have become nonfunctional. In .3 total, while the human pathogen contains several mechanisms to defend against .4 oxidative stress, most of these antioxidant systems have been lost in CLEOA, most .5 likely due to minimal oxidative stress experienced by the bacterium within tick cells.

1 2	
2 3 4	316
5 6 7	317
8 9	318
10 11 12	319
13 14 15	320
16 17	321
18 19 20	322
21 22	323
23 24 25	324
26 27 28	325
20 29 30	326
31 32 33	320
34 35	227
36 37	328
38 39	329
40 41 42	330
43 44 45	331
46 47	332
48 49 50	333
50 51 52	334
53 54 55	335
56 57	
58	
59 60	

16 Collectively, the loss of T4BSS, transporters, pH regulation, cell wall modification, and antioxidant defense in CLEOA show that its intracellular vacuole is a less stressful place 317 to live than the phagolysosome-derived CCV occupied by C. burnetii. 18

320 Heme analog inhibits C. burnetii growth

321 Cytochromes require heme as a cofactor, but CLEOA does not contain a functional 322 heme biosynthesis pathway, which is present in *C. burnetii* (Supplemental Table S12). 323 The only intact heme biosynthesis gene in CLEOA is *ctaB*, which encodes an enzyme 324 that converts heme b to heme o, a component of cytochrome o — the sole terminal 325 cytochrome oxidase present in CLEOA (Saiki et al. 1992). Based on this evidence, the 326 endosymbiont appears to import heme b from the tick hemocoel (vertebrate 327 hemoglobin contains heme b) and converts it to heme o using the *ctaB*-encoded 828 protoheme IX farnesyltransferase. Additionally, while C. burnetii can import ferrous 329 iron released from iron-containing host molecules such as ferritin and transferrin (Sanchez and Omsland 2020), free Fe²⁺ does not seem to be important for CLEOA's 30 31 intracellular growth because the iron transporter FeoB has been pseudogenized, 32 suggesting that host-derived heme b serves as the tick endosymbiont's heme and iron 333 source. 34 The heme biosynthesis pathway, while absent in CLEOA, is conserved in all 335 strains of *C. burnetii*, probably because the iron-protoporphyrin molecule is critical to

1 2		
3 4	336	the pathogen's ability to grow within human macrophages (Moses et al. 2017). We
5 6 7	337	tested C. burnetii's dependence on heme by treating both axenically grown and
8 9	338	intracellular C. burnetii with gallium protoporphyrin IX (GaPPIX), which can replace
10 11 12	339	heme in cytochromes and other heme-containing enzymes (Hijazi et al. 2017, 2018). As
13 14 15	340	shown in Fig. 6 , ≥250 nM of GaPPIX caused significant inhibition of <i>C. burnetii</i> growth
16 17	341	in ACCM-2, and treatment with $\ge 2\mu M$ of GaPPIX resulted in significant growth
18 19 20	342	impairment of C. burnetii within THP-1 cells. Reassuringly, only GaPPIX concentrations
21 22 23	343	of \geq 512µM caused cytotoxicity in THP-1 cells (Fig. 6C), indicating that gallium
23 24 25	344	compounds could potentially be used to treat <i>C. burnetii</i> infections.
26 27 28	345	
29 30 21	346	DISCUSSION
32 33	347	Although symbiotic and pathogenic coxiellae associated with ticks are found across the
34 35 36	348	globe, it is not clear how pathogenesis and symbiosis evolved in this group of bacteria.
37 38		
39 40	349	Here we show that CLEOA, a soft-tick symbiont, and <i>C. burnetii</i> , a human pathogen,
40 41 42	350	evolved recently from a common ancestor that contained genes necessary to infect
43 44 45	351	macrophages. Additionally, while HGT contributed significantly to the evolution of <i>C</i> .
46 47	352	burnetii, it occurred in ancestors prior to the divergence of CLEOA and C. burnetii
48 49 50	353	lineages. These discoveries clarify the evolution of <i>C. burnetii</i> , which previously was
51 52	354	thought to have evolved from an avirulent tick endosymbiont by gaining virulence
55 55	355	factors via HGT. We further show that the evolution of <i>C. burnetii</i> and CLEOA fits into a
56 57		
58 59 60		http://mc.manuscriptcentral.com/gbe 19

2	
5 4	3
5 6 7	35
8 9	35
10 11 12	35
13 14 15	36
16 17 18	36
19 20 21 22	36
23 24	36
25 26 27	36
28 29 30	36
31 32	36
33 34 35	36
36 37 38	30
39 40	36
41 42 43	37
44 45 46	37
47 48	37
49 50 51	37
52 53 54	37
55 56 57	37
58 59	

60

1

56 general pattern of tick-associated coxiellae originating from pathogens, thereby revealing that CLEs, as described previously for FLEs, originated from pathogenic 57 ancestors. Lastly, by comparing the genomes of *C. burnetii* and CLEOA, we were able to 58 59 gain new insights into the intracellular biology of both bacteria, and show that 60 metabolic pathways retained only in the human pathogen are promising targets for the 61 development of new treatments against Q fever. Emergence of tick-symbionts from virulent ancestors. Coxiella species related to CLEs 62 63 infect a wide range of animals (Shivaprasad et al. 2008; Woc-Colburn et al. 2008; 64 Angelakis et al. 2016; Seo et al. 2016; Guimard et al. 2017; Elliman and Owens 2020; 65 Needle et al. 2020), but these infectious strains are not the closest relatives of *C. burnetii*; 66 instead, the human pathogen's closest relative is the soft-tick symbiont CLEOA. Akin to 67 the CLEOA-C. burnetii relationship, CRt, the endosymbiont in R. turanicus, is closely 68 related to pathogenic Coxiella (termed "Candidatus Coxiella massiliensis") isolated from 69 human skin infections, and a strain of *Coxiella* isolated from horse blood is closely 70 related to CLEs present in *Haemaphysalis* ticks (Angelakis et al. 2016; Seo et al. 2016; Guimard et al. 2017). In addition to these pathogens, bacteria related to CLEs have 71 72 repeatedly caused fatal bird and crayfish infections (Fig. 3; Shivaprasad et al. 2008; 73 Woc-Colburn et al. 2008; Elliman and Owens 2020; Needle et al. 2020). Microscopic and 74 histological data from avian infections demonstrated that the bacteria have the ability to 75 generate CCV-like compartments within macrophages, and both avian and human skin

Page 21 of 51

2	
3 ⊿	Э
5	
6 7	3
8 9	3
10	-
11 12	Э
13 14	2
15 16	
17	3
18 19	-
20 21	3
22 23	
24	Э
25 26	3
27 28	
29 30	Э
31 32	З
33	
34 35	3
36 37	3
38 39	
40 41	Э
42	З
43 44	
45 46	3
47 48	Э
49	
51	3
52 53	Э
54 55	
56 57	3
58	
74	

60

376 infection strains have "small-cell" and "large-cell" morphologies - two distinct 377 characteristics of *C. burnetii* — suggesting that the bacteria are genuine vertebrate pathogens (Shivaprasad et al. 2008; Woc-Colburn et al. 2008; Angelakis et al. 2016; 378 379 Guimard et al. 2017; Needle et al. 2020). Further research, including sequencing their 380 genomes, is required to elucidate the biology and pathogenicity of these infective strains and to understand why only one, i.e., C. burnetii, among several virulent lineages 381 382 have evolved into a bona fide human pathogen. 383 Tick endosymbionts are ephemeral. Phylogenies of only a few CLEs are congruent 384 with those of their hosts (Duron et al. 2017; Binetruy et al. 2020), probably because older CLEs get replaced by newer CLEs derived from distantly-related coxiellae. In a similar 385 386 fashion, FLEs seem to have replaced older CLEs in several tick lineages (Gerhart et al. 387 2016, 2018; Duron et al. 2017, 2018). This ephemeral nature of CLEs is surprising 388 because hematophagic arthropods typically need a reliable partner to gain nutrients 389 that are in short supply in vertebrate blood (Duron and Gottlieb 2020; Duarte et al. 1999; 390 Sterkel et al. 2017). Insects such as bedbugs and body lice that face similar nutrient scarcity have evolved stable long-term relationships with endosymbionts (Perotti et al. 391 392 2007; Hosokawa et al. 2010). It is not clear why that is not the case in ticks, but one 393 possibility is that ticks do not need to establish long-term relationships because they 394 frequently encounter pathogenic bacteria that are predisposed to becoming nutrientprovisioning endosymbionts. Another reason for the unstable nature of CLE-tick 395

2 3 4	396	relationships could be that the constant turnover of endosymbionts protects ticks from
5 6 7	397	being dependent on an endosymbiont with reduced nutrient-provisioning capability
8 9 10	398	(Russell et al. 2017; Bennett and Moran 2020). Gaining new symbionts via horizontal
11 12	399	transmission could also protect ticks from becoming dependent on a degraded
13 14 15	400	endosymbiont. While the mechanistic details of this process are not understood,
16 17 18	401	phylogenetic patterns of CLE and FLE distribution strongly indicate the occurrence of
19 20 21	402	horizontal transmission of bacteria between ticks (Gerhart et al. 2016, 2018; Duron et al.
22 23	403	2017; Binetruy et al. 2020). It should be noted however that not all tick-endosymbionts
24 25 26	404	are short-lived. Ticks that carry CLEs belonging to Clade D (Fig. 3) appear to have
27 28 29	405	established long-term relationships with their endosymbionts. For instance, CLEs in A.
30 31	406	americanum and A. sculptum have highly reduced (~0.60 Mbp) genomes that are similar
32 33 34	407	in size to Buchnera, which established its symbiosis with aphids more than 200 million
35 36 37	408	years ago (Moran et al. 1993). Putting all this information together, it appears that a
38 39 40	409	combination of vertical inheritance, horizontal transmission, and periodic replacement
40 41 42	410	of old symbionts with new pathogen-derived symbionts underlies the complex
43 44 45	411	distribution pattern of endosymbionts observed in ticks (Gottlieb et al. 2015; Smith et al.
46 47 48	412	2015; Gerhart et al. 2016, 2018; Duron et al. 2017; Tsementzi et al. 2018; Binetruy et al.
49 50	413	2020).
51 52 53	414	
54 55 56		
57 58		
59 60		http://mc.manuscriptcentral.com/gbe 22

Page 23 of 51

2 3 4	415	Functions of CLEs and FLEs. While the exact functions of FLEs and CLEs have not been
5 6 7	416	fully characterized, previous studies have shown that they infect tick ovaries and are
8 9 10	417	often the predominant bacterium present in long-term laboratory tick colonies, an
10 11 12	418	indication that the bacteria are vertically transmitted and are essential to ticks'
13 14 15	419	wellbeing (Reinhardt et al. 1972; Klyachko et al. 2007; Buysse et al. 2019; Smith et al.
16 17 18	420	2015; Gerhart et al. 2016, 2018). In addition, removal of the resident endosymbiont via
19 20	421	antibiotic treatment reduced tick fitness, which was reversed when ticks were provided
21 22 23	422	with B vitamins (Zhong et al. 2007; Smith et al. 2015; Gerhart et al. 2016; Guizzo et al.
24 25 26	423	2017; Zhang et al. 2017; Duron et al. 2018; Li et al. 2018; Ben-Yosef et al. 2020). Our
27 28	424	genome analyses support a nutrient-provisioning role for tick endosymbionts because
29 30 31	425	the genes required to synthesize several B vitamins and cofactors are conserved in all
32 33 34	426	CLEs and FLEs. Future experiments should clarify whether any or all of these nutrients
35 36 27	427	form the basis for the CLE-tick and FLE-tick symbioses.
37 38 39	428	
40 41 42	429	Pathogen-specific metabolic processes are potential targets to control Q fever. Genetic
43 44 45	430	and physiological capabilities accumulated by a bacterium are critical to its ability to
45 46 47	431	adapt to new environments, especially ones such as intra-macrophage vacuoles that do
48 49 50	432	not facilitate the gain of new genes via HGT. In accordance with this idea, our analyses
51 52 53	433	showed that virulence factors and metabolic genes utilized by <i>C. burnetii</i> to grow within
54 55	434	CCV were present in the common ancestor of <i>C. burnetii</i> and CLEOA. Befitting its
56 57 58		
59 60		http://mc.manuscriptcentral.com/gbe 23

60

2 3 4	435	obligate endosymbiotic lifestyle, many of these genes have become non-functional in	
5 6 7	436	CLEOA, allowing us to identify metabolic processes that are likely critical to <i>C</i> .	
8 9 10	437	burnetii's intracellular growth. One metabolite that is exclusively produced by the	
11 12	438	pathogen is heme, the iron-protoporphyrin required for oxidative phosphorylation,	
13 14 15	439	among other functions. To test the importance of heme to <i>C. burnetii</i> , we exposed the	
16 17 18	440	bacterium to GaPPIX, a Ga(III) complex of protoporphyrin IX. Ga(III) inhibits bacteria	ıl
19 20	441	growth because it binds to biological complexes that normally binds to Fe(III), but	
21 22 23	442	under physiological conditions Ga(III) is not reduced to Ga(II), thereby disrupting	
24 25 26	443	essential redox-driven biological processes (Bernstein 1998). We chose GaPPIX over	
27 28	444	other gallium-based formulations because it could replace heme in cytochromes, is	
29 30 31	445	known to be bactericidal, and is not toxic to primary human fibroblasts and establishe	ed
32 33 34	446	cell lines (Stojiljkovic et al. 1999; Arivett et al. 2015; Hijazi et al. 2018). <i>C. burnetii</i> lacks	
35 36 27	447	homologs of known heme transporters (Moses et al. 2017), hence, it is not clear how	
37 38 39	448	GaPPIX enters into the pathogen, but our growth assays clearly demonstrated that the	5
40 41 42	449	heme analog is very effective at inhibiting both axenic and intracellular growth of <i>C</i> .	
43 44 45	450	burnetii (Fig. 6). Encouragingly, a recent human trial showed that Ga could improve	
46 47	451	lung function in people with cystic fibrosis and chronic Pseudomonas aeruginosa lung	
48 49 50	452	infections, and that the molecule worked synergistically with other antibiotics to inhib	oit
51 52 53	453	bacterial growth (Goss et al. 2018). Although further work is required to gauge its	
54 55 56 57 58 59	454	impact on human microbiome, Ga, which has been approved by FDA for intravenous	
53			Z 4

455 administration (Bonchi et al. 2014), and its derivatives such as GaPPIX, hold great456 promise as new therapeutic tools.

458 METHODS

Genome sequencing and assembly. An O. amblus female, collected from soil underneath rocks near a Spheniscus humbolti (Humboldt penguin) nesting area in Isla Grande de Atacama, Chile, was identified as described in Clifford et al. 1980. DNA was extracted from the tick using DNeasy Blood & Tissue kit (Qiagen) and was submitted to Yale Center for Genome Analysis for Illumina (NovaSeq) sequencing. The resulting 150 bp paired-end reads were trimmed using Trimmomatic resulting in approximately 220 million read pairs of suitable quality (Bolger et al. 2014). The reads were assembled into contigs using metaSPAdes (Nurk et al. 2017), and open reading frames (ORFs) were identified using Prodigal (Hyatt et al. 2010). RNammer (Lagesen et al. 2007) was used to identify ribosomal RNA in all contigs and sequencing coverage values were used to determine the relative abundance of bacteria: 88.5% Coxiella, 4.6% Alkalihalobacillus, 3.8% Sporosarcina, and 3.1% Oceanobacillus. Contigs containing Coxiella genes were tentatively identified using BLASTn and BLASTp by comparing to a database of all publicly available sequences from

473 Coxiellacea members. CONCOCT (Alneberg et al. 2014) was used for binning contigs

474 based on coverage and k-mer composition, and these finding were merged with

2	
3	475
4	475
5	
6	476
7	
8 0	477
9 10	777
11	
12	478
13	
14	479
15	
16	
17	480
18	
19	481
20 21	
21	400
23	482
24	
25	483
26	
27	лол
28	404
29	
30 31	485
32	
33	486
34	100
35	_
36	487
37	
38	488
39	
40 1	400
41	489
43	
44	490
45	
46	401
47	491
48	
49	492
50 51	
52	703
53	-53
54	
55	494
56	
57	
58	
59 60	
00	

1

475	BLAST-based binning results. Approximately 20 million paired reads that mapped to
476	contigs identified as containing Coxiella genes were used for a final metaSPAdes
477	assembly resulting in a total of 101 contigs. The final collection of contigs was verified
478	using hmmsearch (Potter et al. 2018) to identify essential single-copy genes (Albertsen
479	et al. 2013), as well as RNammer (Lagesen et al. 2007) and tRNAscan-SE (Chan and
480	Lowe 2019) to identify ribosomal and transfer RNAs, respectively. We were unable to
481	stitch the contigs together into a closed chromosome because 49 out of the 101 CLEOA
482	contigs contained the insertion sequence IS1111 at one or both ends. Similar to the
483	CLEOA genome, multiple copies of IS1111 is present in the genomes of other CLEs and
484	C. burnetii, and is known to have an impact on genome evolution and gene content
485	(Duron 2015; Beare et al. 2009). Although we couldn't close the genome, the presence of
486	106 out of 111 highly conserved single-copy genes in both CLEOA and C. burnetii
487	indicate that most of the CLEOA genome is represented in the assembled contigs. The
488	final set of 101 contigs were submitted to NCBI (accession VFIV00000000) and
489	annotated using the Prokaryotic Genome Pipeline.
490	
491	Phylogenetic analysis. Orthofinder (Emms and Kelly 2015) was utilized to identify 205
492	single-copy genes present in 52 representative species from the order Legionellales

(Supplemental Tables S1, S13) in order to build the comprehensive phylogenomic tree

Supplemental Fig. S2. A subset of 117 genes conserved in 30 species (Supplemental

Tables S1, S13) were used to generate Fig. 1. For both trees, nucleotide sequences were

2	
3	105
4	495
5	
6 7	496
/ 8	
9	497
10	
11	400
12	498
13	
14	499
15	
16	F00
1/	500
18 10	
20	501
20	
22	502
23	502
24	
25	503
26	
27	504
28	504
29 30	
31	505
32	
33	506
34	
35	F07
36	507
37	
38	508
39 40	
41	E00
42	509
43	
44	510
45	
46	511
47	511
48	
49 50	512
50	
52	513
53	010
54	F 4 - 4
55	514
56	
57	
58 50	
59 60	
00	

196	aligned individually using global MAFFT (Katoh and Standley 2013) and were then
197	concatenated. GBlocks (Talavera and Castresana 2007) was used to cull ambiguously
198	aligned regions and jModelTest2 (Darriba et al. 2012) was used to select the appropriate
199	model (GTR+I+G). Maximum Likelihood trees were generated using RaxML and
500	Bayesian trees were produced using MrBayes (Ronquist et al. 2012; Stamatakis 2014).
501	The 16S rDNA trees were built using the same process as above, with the final tree
502	based on 1203 nucleotide positions, and nodes with less than 70% support collapsed. To
503	confirm the HGT origin of Node 5 genes, homologs were identified via BLASTp (NCBI
504	nr database, e-value ≤10e-5, identity ≥30% identity, coverage ≥70%). The nucleotide
505	sequences of the homologs were collected into a database, and the Phylomizer pipeline
506	(https://github.com/Gabaldonlab/phylomizer) was used to generate individual
507	Maximum Likelihood trees using the 75 most closely related homolog sequences. Each
508	tree was then compared to an NCBI Taxonomy-based tree to validate HGT
509	(Supplemental Fig. S1).
510	
511	Determination of nodes of gene origin. The presence of functional homologs of <i>C</i> .
512	burnetii RSA493 (AE016828.3) genes in other members of the order Legionellales was
513	determined using BLASTp (identity \geq 30%, coverage \geq 70%, e-value \leq 10e-5), and
514	pseudogenized homologs were detected using tBLASTn (identity ≥30%, coverage ≥50%,

1 2	
- 3 4	ļ
5 6 7	ļ
8 9	ļ
10 11 12	ļ
13 14	Į
15 16 17	I
18 19	
20 21 22	
22 23 24	
25 26	ļ
27 28 29	ļ
30 31	ļ
32 33 34	ļ
35 36	ļ
37 38 39	ļ
40 41	ļ
42 43 44	I
44 45 46	
47 48	
49 50 51	
52 53	ļ
54 55 56	
57 58	
59 60	

515	e-value ≤10e-5). The presence/absence profile was utilized in Gain and Loss Mapping
516	Engine (GLOOME) (Cohen et al. 2010) to determine the posterior probability of each
517	gene's presence at nodes N1-N5. For each C. burnetii gene, the node of origin was
518	marked as the oldest node at which posterior probability was ≥ 0.7 , with all subsequent
519	nodes also having posterior probability of ≥ 0.7 , as described previously (Peer and
520	Margalit 2014). We also identified 409 genes that are conserved in all CLEs
521	(Supplemental Table S14) using BLASTp (identity ≥30%, coverage ≥70%, e-value ≤10e-
522	5).
523	
524	Calculation of CAI and pI. We identified 22 highly conserved single-copy protein-
525	coding genes in C. burnetii that were highly expressed in both ACCM-2 and within
526	human macrophages based on previous RNA-seq data (Supplemental Table S5; Warrier
527	et al. 2014; Wachter et al. 2019). CodonW (http://codonw.sourceforge.net) was used to
528	generate CAI values for the 22 genes in order to generate a model for optimal codon
529	usage in <i>C. burnetii</i> , which was then compared to CAI values of sets of genes acquired at
530	each node. All 22 genes used to build the model belonged to Node 1, and were not
531	included in this analysis. Potentially spurious genes (n=224) that did not have any
532	detectable homologs outside of <i>C. burnetii</i> , as well as genes with undetermined nodes of
533	origin (n=44) were excluded from this analysis (Supplemental Table S15). Isoelectric

2	
3	534
5 6 7	535
8 9 10	536
10 11 12	537
13 14 15	538
16 17	539
18 19 20	540
21 22 23	541
24 25	542
26 27 28	543
29 30 31	544
32 33	545
34 35 36	546
37 38	547
39 40 41	548
42 43 44	549
45	545
46 47	550
48 49 50	551
51 52	552
55 55	553
56 57	
58	
59 60	

points (pI) for all proteins in CLEOA and C. burnetii RSA493 (AE016828.3) were calculated using IPC (Kozlowski 2016). 35 36 37 **GaPPIX** susceptibility assay 38 A 10mM GaPPIX (Frontier Scientific) solution was prepared in dimethyl sulfoxide (DMSO) and was stored at 4°C under dark conditions until further use. C. burnetii was 39 40 cultured in ACCM-2 for 2 days at 37°C, 5% CO₂ and 2.5% O₂, and ~2x10⁷ genome equivalents were resuspended in fresh ACCM-2 containing 125nM, 250nM, 500nM, 41 1mM, 2mM, 4mM, or 8mM GaPPIX in 96-well black-bottom microplates (Greiner Bio-42 43 One). Bacterial growth was measured using PicoGreen (Invitrogen) as described 44 previously (Moses et al. 2017). 45 THP-1 human monocytes (ATCC, TIB-202) were cultured in sterile RPMI-1640 46 medium (Gibco) supplemented with 1mM sodium pyruvate, 0.05 mM beta-47 mercaptoethanol, 1% Pen-Strep, and 4500 mg/L glucose with 10% heat-inactivated fetal 48 bovine serum (FBS) at 37°C, 5% CO2 in 6-well tissue culture plates. Prior to infection, 49 cells were differentiated into macrophages by treating with 30 nM phorbol 12-myristate 50 13-acetate (PMA) for 24h, followed by resting in PMA-free RPMI for 24h. Infection of 51 THP-1 cells with *C. burnetii* was carried out using a 7d bacterial culture at a multiplicity 52 of infection of 25. After briefly washing the cells with PBS, bacteria-containing medium was added to each well and gently centrifuged for 10 minutes followed by incubation at 53

1 2	
3 4	5
5 6 7	5
8 9 10	5
10 11 12	5
13 14 15	5
16 17 18	5
19 20	5
21 22 23	5
24 25 26	5
27 28	5
29 30 31	5
32 33 34	5
35 36	5
37 38 39	5
40 41 42	5
43 44 45	5
46 47	5
48 49 50	5
51 52 53	5
54 55	5
56 57	
58 59	
60	

554	37° C, 5% CO ₂ for two hours. To remove extracellular bacteria, cells were washed three
555	times with PBS, and replaced with antibiotic-free RPMI and were incubated for 48h
556	before treating with GaPPIX- (2uM, 8uM, and 32uM) or DMSO- (as control) containing
557	media. After 72h, cells were washed three times with PBS and intracellular bacterial
558	load was measure using qPCR, as we described previously (Moses et al. 2017). Potential
559	cytotoxicity of GaPPIX was determined by measuring the levels of released lactate
560	dehydrogenase (LDH) in cell supernatants using an LDH Cytotoxicity Assay Kit
561	(Invitrogen).
562	
563	
564	
565	DATA AVAILABILITY
566	The CLEOA genome generated in this study has been submitted to the NCBI Assembly
567	database (https://www.ncbi.nlm.nih.gov/assembly/) under Whole Genome Shotgun
568	(WGS) accession prefix VFIV, BioSample SAMN12040594, and BioProject PRJNA548565
569	
570	ACKNOWLEDGEMENTS
571	We thank Samantha Fancher, Andrew Ashford and Jim Archuleta for technical help,
572	and Daniel González-Acuña for assisting in tick collection. This project was supported
573	in part by NIH grants AI123464, AI126385, and AI133023 to R.R.

۱.

1		
2 3		
4	574	
5		
6	575	
/ 8		
9	576	
10		
11	577	REFERENCES
12 13		
14		
15	578	Albertsen M. Hugenholtz P. Skarshewski A. Nielsen KL. Tyson GW. Nielsen PH. 2013.
16	579	Genome sequences of rare uncultured bacteria obtained by differential coverage
17	580	binning of multiple metagenomes. Nat Biotechnol 31 : 533–538
19	580	billing of multiple metagenomes. <i>Nut Distection</i> 31 , 555–556.
20	581	Almeida AP Marcili A Leite RC Nieri-Bastos FA Domingues IN Martins IR Labruna
21	501	MR 2012 Corialla sumbiont in the tick Omithedance nectuation (Acari, Arganidae)
22 23	582	TIL TIL P DI 2 202 200
24	583	11CKS 11CK-Borne D1S 3: 203–206.
25	504	
26 27	584	Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lanti L, Loman NJ,
27 28	585	Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and
29	586	composition. <i>Nat Methods</i> 11 : 1144–1146.
30		
31	587	Angelakis E, Mediannikov O, Jos S-L, Berenger J-M, Parola P, Raoult D. 2016. Candidatus
32 33	588	Coxiella massiliensis infection. Emerg Infect Dis 22: 285–288.
34		
35	589	Arivett BA, Fiester SE, Ohneck EJ, Penwell WF, Kaufman CM, Relich RF, Actis LA.
36 27	590	2015. Antimicrobial activity of gallium protoporphyrin IX against Acinetobacter
38	591	baumannii strains displaying different antibiotic resistance phenotypes.
39	592	Antimicrob Agents Chemother 59 : 7657–7665.
40		
41 42	593	Beare PA, Gilk SD, Larson CL, Hill J, Stead CM, Omsland A, Cockrell DC, Howe D,
43	594	Voth DE, Heinzen RA. 2011. Dot/Icm type IVB secretion system requirements for
44	595	<i>Coxiella burnetii</i> growth in human macrophages. <i>mBio</i> 2 : e00175-00111.
45		
46 47	596	Beare PA, Sandoz KM, Larson CL, Howe D, Kronmiller B, Heinzen RA. 2014. Essential
48	597	role for the response regulator PmrA in <i>Coxiella burnetii</i> type 4B secretion and
49	598	colonization of mammalian host cells <i>I Bacteriol</i> 196 : 1925–1940
50	330	
51	599	Ben-Yosef M. Rot A. Mahagna M. Kapri F. Behar A. Gottlieb Y. 2020. <i>Coriella</i> -like
53	600	Endosymbiont of <i>Rhinicenhalus sanguineus</i> is required for physiological processes
54	601	during ontogony. Ereat Microhiol 11: 402
55	001	
56 57		
58		
59		31
60		nttp://mc.manuscriptcentral.com/gbe

1

2		
3	602	Bennett GM, Moran NA. 2015. Heritable symbiosis: The advantages and perils of an
4 5	603	evolutionary rabbit hole. Proc Natl Acad Sci U S A 112 : 10169–10176.
6		
7	604	Bernstein LR. 1998. Mechanisms of therapeutic activity for gallium. <i>Pharmacol Rev</i> 50:
8 9	605	665–682.
10		
11	606	Binetruy F, Buysse M, Lejarre Q, Barosi R, Villa M, Rahola N, Paupy C, Ayala D, Duron
12 13	607	O. 2020. Microbial community structure reveals instability of nutritional
14	608	symbiosis during the evolutionary radiation of Amblyomma ticks. Mol Ecol 29:
15	609	1016–1029.
16 17		
18	610	Bitew MA, Hofmann J, De Souza DP, Wawegama NK, Newton HJ, Sansom FM. 2020.
19	611	SdrA, an NADP(H)-regenerating enzyme, is crucial for Coxiella burnetii to resist
20 21	612	oxidative stress and replicate intracellularly. Cell Microbiol 22: e13154.
22		
23	613	Bitew MA, Khoo CA, Neha N, De Souza DP, Tull D, Wawegama NK, Newton HJ,
24 25	614	Sansom FM. 2018. De novo NAD synthesis is required for intracellular
26	615	replication of Coxiella burnetii, the causative agent of the neglected zoonotic
27	616	disease Q fever. J Biol Chem 293 : 18636–18645.
28 20		
30	617	Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
31	618	sequence data. <i>Bioinformatics</i> 30 : 2114–2120.
32 33		
34	619	Bonchi C, Imperi F, Minandri F, Visca P, Frangipani E. 2014. Repurposing of gallium-
35	620	based drugs for antibacterial therapy: Gallium-based antibacterials. <i>BioFactors</i> 40 :
36 37	621	303–312.
38	622	
39	622	Burstein D, Amaro F, Zusman T, Lifshitz Z, Cohen O, Gilbert JA, Pupko T, Shuman HA,
40 41	623	Segal G. 2016. Genomic analysis of 38 <i>Legionella</i> species identifies large and
42	624	diverse effector repertoires. Nat Genet 48: 167–175.
43	C25	Prese Mará C. Marda CI. Pall CE. Thibannian M. Stinal V. Eashishan C. Astá D. Huanna
44 45	025	M Labima A. Thibarga I.M. at al. 2008. Balas of alreas and hate earthering
46	626	M, Labigne A, Thiberge J-M, et al. 2008. Roles of alpha and beta carbonic
47	627	annydrases of <i>Helicobacter pylori</i> in the urease-dependent response to acidity and
48 40	628	in colonization of the murine gastric mucosa. <i>Infect Immun</i> 76: 497–509.
49 50	620	Chan P.P. Louis T.M. 2010 T.P.N.Ascan SE: Soarching for tP.N.A. gapos in gapomic
51	620	chan 11, Lowe TW. 2019. TRNAScan-SE. Searching for tRNA genes in genomic
52 53	050	sequences. <i>Wiethous Wol Diol</i> 1962 . 1–14.
55 54		
55		
56 57		
57 58		
59		32

1 2		
3	631	Chen C. Banga S. Mertens K. Weber MM. Corbaslieva I. Tan Y. Luo Z-O. Samuel IF.
4	622	2010 Large scale identification and translocation of type IV secretion substrates
5 6	622	by Coviella humatii Proc Natl Acad Sci U.S. A 107 : 21755, 21760
7	055	by Coxieita burnetii. Proc Nati Acau Sci & S A 10 7. 21755–21760.
8 9	634	Chong RA, Moran NA. 2018. Evolutionary loss and replacement of Buchnera, the
10	635	obligate endosymbiont of aphids. <i>ISME J</i> 12 : 898–908.
11		
12 13	636	Clifford CM, Hoogstraal H, Radovsky FJ, Stiller D, Keirans JE. 1980. Ornithodoros
14	637	(Alectorobius) amblus (Acarina: Ixodoidea: Argasidae): identity, marine bird and
15	638	human hosts, virus infections, and distribution in Peru. J Parasitol 66: 312-323.
16 17		
18	639	Cohen O, Ashkenazy H, Belinky F, Huchon D, Pupko T. 2010. GLOOME: gain loss
19	640	mapping engine. <i>Bioinformatics</i> 26 : 2914–2915.
20		
21 22	641	Coleman J. 1990. Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-
23	642	3- phosphate acyltransferase activity. J Biol Chem 265: 17215–17221.
24		
25 26	643	Cox HR. 1938. A filter-passing infectious agent isolated from ticks: III. Description of
27	644	organism and cultivation experiments. <i>Public Health Rep</i> 53: 2270–2276.
28		
29 30	645	Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new
31	646	heuristics and parallel computing. <i>Nat Methods</i> 9 : 772–772.
32		
33 34	647	Duarte RT, Carvalho Simões MC, Sgarbieri VC. 1999. Bovine blood components:
35	648	fractionation, composition, and nutritive value. J. Agric. Food Chem. 47:231–236.
36		
37 29	649	Duron O, Binetruy F, Noël V, Cremaschi J, McCoy KD, Arnathau C, Plantard O,
39	650	Goolsby J, Pérez de León AA, Heylen DJA, et al. 2017. Evolutionary changes in
40	651	symbiont community structure in ticks. <i>Mol Ecol</i> 26 : 2905–2921.
41 42		
42 43	652	Duron O, Gottlieb Y. 2020. Convergence of nutritional symbioses in obligate blood
44	653	teeders. Trends Parasitol 36 : 816–825.
45	. . .	
40 47	654	Duron O, Morel O, Noel V, Buysse M, Binetruy F, Lancelot R, Loire E, Menard C,
48	655	Bouchez O, Vavre F, et al. 2018. Tick-bacteria mutualism depends on B vitamin
49	656	synthesis pathway. <i>Curr Biol</i> 28 : 1896-1902.e5.
50 51		
52	657	Duron O, Noel V, McCoy KD, Bonazzi M, Sidi-Boumedine K, Morel O, Vavre F, Zenner
53	658	L, Jourdain E, Durand P, et al. 2015a. The recent evolution of a maternally-
54 55	659	inherited endosymbiont of ticks led to the emergence of the Q fever pathogen,
56	660	Coxiella burnetii. PLoS Pathog 11 : e1004892.
57		
58 59		22
~ ~		

2		
3	661	Duron O, Sidi-Boumedine K, Rousset E, Moutailler S, Jourdain E. 2015b. The
4 5	662	importance of ticks in O fever transmission: What has (and has not) been
6	663	demonstrated? Trends Parasitol 31 : 536–552
7	000	
8	664	Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege I-L,
9 10	665	Maurin M Raoult D 2017 From O fever to <i>Coriella hurnetii</i> infection: A
11	666	paradigm change Clin Microbiol Rev 30: 115-190
12	000	paradigit change. Cun Microbiol Rev 50. 115–170.
13 14	667	Filiman IR Owens L 2020 Confirmation that candidatus Coviella cheravi from red claw
15	668	cravitish (Cherax audricarinatus) is a close relative of Coviella hurnetii the agent of
16	000	O formar Latt And Microbiol 71 , 200, 22(
17	669	Q-fever. Lett Appl Microbiol 71: 320–326.
18 19	670	Emme DM Kally S 2015 Ortho Finder: colving fundamental biases in whole genema
20	070	Emins Divi, Keny S. 2015. Orthornider, solving fundamental blases in whole genome
21	671	comparisons dramatically improves orthogroup inference accuracy. Genome Biol
22	6/2	16 : 157.
23 24	C7 0	Endland Manager D. Eister TA 2001 Intermedian afthe and D. Lander in Deventue
25	6/3	Endley S, McMurray D, Ficht TA. 2001. Interruption of the cydB locus in Brucella abortus
26	674	attenuates intracellular survival and virulence in the mouse model of infection. J
27	675	<i>Bacteriol</i> 183 : 2454–2462.
28 29		
30	676	Gerhart JG, Dutcher HA, Brenner AE, Moses AS, Grubhoffer L, Raghavan R. 2018.
31	677	Multiple acquisitions of pathogen-derived <i>Francisella</i> endosymbionts in soft ticks.
32	678	Genome Biol Evol 10: 607–615.
33 34		
35	679	Gerhart JG, Moses AS, Raghavan R. 2016. A Francisella-like endosymbiont in the Gulf
36	680	Coast tick evolved from a mammalian pathogen. Sci Rep 6: 33670.
37 38		
39	681	Gilk SD. 2012. Role of lipids in <i>Coxiella burnetii</i> infection. <i>Adv Exp Med Biol</i> 984 : 199–213.
40		
41 42	682	Gilk SD, Beare PA, Heinzen RA. 2010. <i>Coxiella burnetii</i> expresses a functional Δ 24 sterol
42 43	683	reductase. <i>J Bacteriol</i> 192 : 6154–6159.
44		
45	684	Goss CH, Kaneko Y, Khuu L, Anderson GD, Ravishankar S, Aitken ML, Lechtzin N,
46	685	Zhou G, Czyz DM, McLean K, et al. 2018. Gallium disrupts bacterial iron
47 48	686	metabolism and has therapeutic effects in mice and humans with lung infections.
49	687	Sci Transl Med 10 : eaat7520.
50		
51 52	688	Gottlieb Y, Lalzar I, Klasson L. 2015. Distinctive genome reduction rates revealed by
52 53	689	genomic analyses of two <i>Coxiella</i> -like endosymbionts in ticks. <i>Genome Biol Evol</i> 7:
54	690	1779–1796.
55		
56 57		
57 58		
59		34
60		http://mc.manuscriptcentral.com/gbe

1 2		
3	691	Guimard T. Amrane S. Prudent E. El Karkouri K. Raoult D. Angelakis E. 2017. Case
4 5	692	report: Scalp eschar and neck lymphadenopathy associated with bacteremia due
6 7	693	to <i>Coxiella</i> -like bacteria. <i>Am J Trop Med Hyg</i> 97 : 1319–1322.
8 9	694	Guizzo MG, Parizi LF, Nunes RD, Schama R, Albano RM, Tirloni L, Oldiges DP, Vieira
10	695	RP, Oliveira WHC, Leite M de S, et al. 2017. A Coxiella mutualist symbiont is
11 12	696	essential to the development of Rhipicephalus microplus. Sci Rep 7: 17554.
13 14	697	Hackstadt T. 1983. Estimation of the cytoplasmic pH of <i>Coxiella burnetii</i> and effect of
15 16	698	substrate oxidation on proton motive force. <i>J Bacteriol</i> 154 : 591–597.
17 18	699	Hijazi S, Visaggio D, Pirolo M, Frangipani E, Bernstein L, Visca P. 2018. Antimicrobial
19	700	activity of gallium compounds on ESKAPE pathogens. Front Cell Infect Microbiol
20 21	701	8: 316.
22 23	702	Hijazi S. Visca P. Frangipani F. 2017, Gallium-protoporphyrin IX inhibits <i>Pseudomonas</i>
24 25	703	aeruginosa growth by targeting cytochromes. Front Cell Infect Microbiol 7: 12.
26 27	704	Hill J, Samuel JE. 2011. Coxiella burnetii acid phosphatase inhibits the release of reactive
28	705	oxygen intermediates in polymorphonuclear leukocytes. <i>Infect Immun</i> 79 : 414–
29	706	420.
30 31		
32	707	Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. 2010. <i>Wolbachia</i> as a
33	708	bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci 107: 769–774.
34 35		
36	709	Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal:
37	710	prokaryotic gene recognition and translation initiation site identification. BMC
38 39	711	Bioinformatics 11 : 119.
40 41	712	Iwata-Reuvl D. 2003. Biosynthesis of the 7-deazaguanosine hypermodified nucleosides
42	713	of transfer RNA. <i>Bioorganic Chem</i> 31 : 24–43.
43 44	0	
44 45	714	Jansen R, Bussemaker HJ, Gerstein M. 2003. Revisiting the codon adaptation index from
46	715	a whole-genome perspective: analyzing the relationship between gene
47	716	expression and codon occurrence in yeast using a variety of models <i>Nucleic Acids</i>
48 49	717	Res 31: 2242–2251
50	, 1,	
51	718	Katoh K. Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
52 53	719	improvements in performance and usability Mol Biol Evol 30 , 772–780
54	, 15	
55		
56 57		
58		
59		http://mamppusavinteentral.com/aba
60		nup://mc.manuscripicentral.com/gbe

2						
3	720	Klyachko O, Stein BD, Grindle N, Clay K, Fuqua C. 2007. Localization and visualization				
4 5	721	of a <i>Coxiella</i> -type symbiont within the lone star tick, <i>Amblyomma americanum</i> .				
6 7	722	722 Appl Environ Microbiol 73: 6584–6594.				
8	723	Koh CS. Sarin LP. 2018. Transfer RNA modification and infection – Implications for				
9 10	724	pathogenicity and host responses <i>Biochim Biophys Acta Gene Regul Mech</i> 1861:				
11	725	419–432				
12	725	11/ 102.				
13 14	726	Körner S, Makert GR, Mertens-Scholz K, Henning K, Pfeffer M, Starke A, Nijhof AM,				
15	727	Ulbert S. 2020. Uptake and fecal excretion of <i>Coxiella burnetii</i> by <i>Ixodes ricinus</i> and				
16	728	Dermacentor marginatus ticks Parasit Vectors 13 : 75				
17	/ _0					
19 20	729	Kozlowski LP. 2016. IPC – Isoelectric Point Calculator. Biol Direct 11: 55.				
21	730	Kuba M. Neba N. Newton P. Lee YW. Bennett-Wood V. Hachani A. De Souza DP				
22 23	730	Nuba M, Neta M, Netword T, Lee TW, Definett-Wood V, Haenan M, De Souza DT, Nijagal B. Davalan S. Tull D, et al. 2020. Fir Δ is a novel protein essential for				
23 24	731	intracellular replication of Covialla hurnatii. Infact Immun 88				
25	/52	intracentilar replication of Coxietta burnetit. Inject Immun 88.				
26 27	733	Lagesen K. Hallin P. Rødland F.A. Stærfeldt H-H. Rognes T. Usserv DW 2007				
27	734	RNAmmer: consistent and rapid annotation of ribosomal RNA genes <i>Nucleic</i>				
29	725	Acide Res 35: 3100-3108				
30 21	755					
32	736	Lawrence IG. Ochman H. 1997. Amelioration of bacterial genomes: rates of change and				
33	737	exchange. I Mol Evol 44: 383–397.				
34 25						
35 36	738	Lerat E, Daubin V, Ochman H, Moran NA. 2005. Evolutionary origins of genomic				
37	739	repertoires in bacteria. <i>PLoS Biol</i> 3 : e130.				
38		1				
39 40	740	Li L-H, Zhang Y, Zhu D. 2018. Effects of antibiotic treatment on the fecundity of				
41	741	Rhipicephalus haemaphysaloides ticks. Parasit Vectors 11 .				
42						
43 44	742	Martinez E, Cantet F, Fava L, Norville I, Bonazzi M. 2014. Identification of OmpA, a				
45	743	Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-				
46	744	content screening. PLoS Pathog 10: e1004013.				
47 48						
49	745	Martinez E, Huc-Brandt S, Brelle S, Allombert J, Cantet F, Gannoun-Zaki L, Burette M,				
50	746	Martin M, Letourneur F, Bonazzi M, et al. 2020. The secreted protein kinase CstK				
51 52	747	from Coxiella burnetii influences vacuole development and interacts with the				
53	748	GTPase-activating host protein TBC1D5. J Biol Chem 295 : 7391–7403.				
54						
55 56						
57						
58						
59		http://mc.manuscriptcentral.com/gbe 36				
00						

1

1 2		
3 4	749	Maturana P, Graham JG, Sharma UM, Voth DE. 2013. Refining the plasmid-encoded
5	750	type IV secretion system substrate repertoire of Coxiella burnetii. J Bacteriol 195:
6 7	751	3269–3276.
8 9 10	752	Maurin M, Raoult D. 1999. Q Fever. Clin Microbiol Rev 12: 518–553.
10 11 12 13	753 754	McCutcheon JP, Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. <i>Nat Rev Microbiol</i> 10 : 13–26.
14 15	755	McCutcheon IP Moran NA 2010 Functional convergence in reduced genomes of
16 17	756	bacterial symbionts spanning 200 My of evolution. <i>Genome Biol Evol</i> 2 : 708–718.
18 10	757	Mertens K. Samuel IF. 2012. Defense mechanisms against oxidative stress in <i>Coviella</i>
20 21	758	<i>burnetii</i> : adaptation to a unique intracellular niche. <i>Adv Exp Med Biol</i> 984 : 39–63.
22	759	Moran NA 2002 Microbial minimalism: genome reduction in bacterial pathogens <i>Cell</i>
23 24 25	760	108 : 583–586.
26	761	Moran NA, Munson MA, Baumann P, Ishikawa H, 1993, A molecular clock in
27 28	762	endosymbiotic bacteria is calibrated using the insect bosts Proc Biol Sci 253 : 167–
29	762	171
30	705	1/1.
31 22	764	Moses AS Millar IA Bonazzi M Beare PA Raghavan R 2017 Horizontally acquired
32 33	765	biosymthosis gonos boost Coviella hurnetii's physiology. Evont Cell Infect Microhiol
34	705	
35	/00	7. 174.
36 37	767	Nakabashi A. Vamashita A. Tah H. Ishikawa H. Dunhar HF. Moran NA. Hattori M
38	707	Nakabachi A, Tamashita A, Ton H, Ishikawa H, Dunbar HE, Moran NA, Hatton M.
39	768	2006. The 160-kilodase genome of the bacterial endosymptont Carsonella. Science
40	769	314: 267.
41 42		
43	//0	Needle DB, Agnew DW, Bradway DS, Nordhausen RW, Garner MM. 2020. Avian
44	771	coxiellosis in nine psittacine birds, one black-browed barbet, and one paradise
45 46	772	tanager. Avian Pathol J WVPA 49 : 268–274.
47 48	773	Newton HJ, Kohler LJ, McDonough JA, Temoche-Diaz M, Crabill E, Hartland EL, Roy
49	774	CR. 2014. A screen of Coxiella burnetii mutants reveals important roles for
50	775	Dot/Icm effectors and host autophagy in vacuole biogenesis. <i>PLOS Pathog</i> 10 :
51	776	e1004286
52 52	,,,,	
55 54	777	Nevrolles O. Wolschendorf F. Mitra A. Niederweis M 2015 Mucohacteria metals and
55	772	the macronhage Immunol Rev 249 –263
56 57 58	//0	the macrophage. Intinunul Nev 204. 247-200.
59		37
60		http://mc.manuscriptcentral.com/gbe

2		
3 4	779	Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile
4 5 6	780	metagenomic assembler. Genome Res 27: 824–834.
7	781	Ochman H. Lawrence IG. Groisman EA. 2000. Lateral gene transfer and the nature of
8 9	782	bacterial innovation. <i>Nature</i> 405 : 299–304.
10 11	702	Omeland A. Heinzen BA 2011 Life on the cutside; the reaction of Cavialla humanii from
12	783 701	its bost coll Annu Par Microbiol 65: 111–128
13	764	Its flost cell. Annu Rev Microviol 65. 111–128.
14 15	785	Peer A. Margalit H. 2014. Evolutionary patterns of <i>Escherichia coli</i> small RNAs and their
16	786	regulatory interactions RNA 20: 994–1003
17	,00	
10 19	787	Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. 2018. HMMER web server:
20 21	788	2018 update. Nucleic Acids Res 46: W200–W204.
22	700	Paratti MA Allan IM Road DI Braig HR 2007 Hast symptiant interactions of the
23 24	709	primary endosymbiont of human head and hody lice EASER 121: 1058-1066
25	790	printary endosymbionit of numan nead and body nee. PASED J 21. 1036–1000.
26 27	791	Raghayan R, Kelkar YD, Ochman H, 2012. A selective force favoring increased G+C
27	792	content in bacterial genes. <i>Proc Natl Acad Sci U S A</i> 109 : 14504–14507.
29		
30 31	793	Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu
32	794	L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian
33	795	phylogenetic inference and model choice across a large model space. Syst Biol 61:
34 35	796	539–542.
36		
37	797	Rowland JL, Niederweis M. 2012. Resistance mechanisms of Mycobacterium tuberculosis
38 39	798	against phagosomal copper overload. <i>Tuberc Edinb Scotl</i> 92 : 202–210.
40		
41 42	799	Rowlett VW, Mallampalli VKPS, Karlstaedt A, Dowhan W, Taegtmeyer H, Margolin W,
42 43	800	Vitrac H. 2017. Impact of membrane phospholipid alterations in Escherichia coli
44	801	on cellular function and bacterial stress adaptation. J Bacteriol 199 : e00849-16.
45 46	002	Dussell IA Oliver VM Hensen AV 2017 Pend side for Pushware and Proitamine for all
40 47	802	Mal Fael 26 , 2100, 2202
48	803	<i>IV101 Ecol</i> 26 : 2199–2203.
49 50	804	Saiki K. Mogi T. Anraku Y. 1992. Heme O biosynthesis in <i>Escherichia coli</i> : the cyoF gene
51	805	in the cytochrome bo operon encodes a protoheme IX farnesyltransferase
52	806	Biochem Bionhus Res Commun 189. 1491–1497
53 54	000	
55		
56		
57 58		
59		38

1 2		
3	807	Samanta D. Clemente TM. Schuler BE. Gilk SD 2019 Coxiella hurnetii type 4B secretion
4	808	system-dependent manipulation of endolvsosomal maturation is required for
6	809	bacterial growth <i>PLoS Pathog</i> 15 : e1007855
7	005	
8 9	810	Sanchez SE, Omsland A. 2020. Critical role for molecular iron in Coxiella burnetii
10	811	replication and viability. <i>mSphere</i> 5 : e00458-20.
11		1 7 7
12 13	812	Sandoz KM, Popham DL, Beare PA, Sturdevant DE, Hansen B, Nair V, Heinzen RA.
14	813	2016. Transcriptional profiling of Coxiella burnetii reveals extensive cell wall
15	814	remodeling in the small cell variant developmental form. <i>PloS One</i> 11 : e0149957.
16 17		
18	815	Segal G, Russo JJ, Shuman HA. 1999. Relationships between a new type IV secretion
19	816	system and the icm/dot virulence system of Legionella pneumophila. Mol Microbiol
20 21	817	34 : 799–809.
22		
23	818	Seo M-G, Lee S-H, VanBik D, Ouh I-O, Yun S-H, Choi E, Park Y-S, Lee S-E, Kim JW,
24 25	819	Cho G-J, et al. 2016. Detection and genotyping of <i>Coxiella burnetii</i> and <i>Coxiella</i> -like
26	820	bacteria in horses in South Korea. <i>PloS One</i> 11 : e0156710.
27		
28 29	821	Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin
30	822	H, Davidsen TM, Beanan MJ, et al. 2003. Complete genome sequence of the Q-
31	823	fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100 : 5455–5460.
32 33	07/	Sharp DM Li WH 1087 The order adaptation index a manufus of directional
34	824 925	Sharp FM, LI WH. 1987. The couon adaptation indexa measure of directional
35	825	synonymous codon usage bias, and its potential applications. <i>Nucleic Acius Kes</i>
30 37	820	15 : 1281–1295.
38	827	Shiyaprasad HL, Cadenas MB, Diab SS, Nordhausen R, Bradway D, Crespo R
39 40	828	Breitschwerdt FB 2008 <i>Coriella</i> -like infection in psittacines and a toucan <i>Avian</i>
41	829	Die 52. 426–432
42	025	
43 44	830	Smith DJW, Derrick EH. 1940. Studies in the epidemiology of Q fever: 1. The isolation of
45	831	six strains of <i>Rickettsia burneti</i> from the tick <i>Haemaphysalis humerosa</i> . Aust J Exp
46	832	<i>Biol Med Sci</i> 18 : 1–8.
47 48		
49	833	Smith TA, Driscoll T, Gillespie JJ, Raghavan R. 2015. A <i>Coxiella</i> -like endosymbiont is a
50	834	potential vitamin source for the Lone Star tick. Genome Biol Evol 7: 831–838.
51 52		•
53	835	Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis
54	836	of large phylogenies. <i>Bioinformatics</i> 30 : 1312–1313.
55 56		
57		
58 50		
59 60		http://mc.manuscriptcentral.com/gbe 39

2		
3	837	Stead CM, Cockrell DC, Beare PA, Miller HE, Heinzen RA. 2018. A Coxiella burnetii
4 5	838	phospholipase A homolog pldA is required for optimal growth in macrophages
6	839	and developmental form lipid remodeling <i>BMC Microbiol</i> 18:33
7	055	and developmental form up a remodering. Divie Wierobioi 10.00.
8	840	Sterkel M. Oliveira IHM. Bottino-Rojas V. Paiva-Silva CO. Oliveira PL. 2017. The dose
9	040	males the maison. Netritional overland determines the life traits of blood feeding
10	841	makes the poison. Nutritional overload determines the life traits of blood-feeding
12	842	arthropods. Trends Parasitol. 33:633–644.
13		
14	843	Stojiljkovic I, Kumar V, Srinivasan N. 1999. Non-iron metalloporphyrins: potent
15 16	844	antibacterial compounds that exploit haem/Hb uptake systems of pathogenic
17	845	bacteria. Mol Microbiol 31: 429–442.
18		
19	846	Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent
20	847	and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:
21 22	848	564–577.
23		
24	849	Tsementzi D. Castro Gordillo I. Mahagna M. Gottlieb Y. Konstantinidis KT. 2018.
25	850	Comparison of closely related uncultivated <i>Coriella</i> tick endosymbiont
26 27	851	population genomes reveals clues about the mechanisms of symplosis <i>Environ</i>
28	051	Microbiol 20: 1751 1764
29	852	<i>Wilcrobiol</i> 20 : 1751–1764.
30	050	Valleie Esquerre E. Veng H. Senchez SE. Omeland A. 2017. Dhysics chemical and
31	855	vallejo Esquerra E, Tang H, Sanchez SE, Ohistand A. 2017. Physicochemical and
32 33	854	nutritional requirements for axenic replication suggest physiological basis for
34	855	Coxiella burnetii niche restriction. Front Cell Infect Microbiol 7: 190.
35		
36 27	856	Wachter S, Bonazzi M, Shifflett K, Moses AS, Raghavan R, Minnick MF. 2019. A CsrA-
38	857	binding, <i>trans</i> -acting sRNA of <i>Coxiella burnetii</i> is necessary for optimal
39	858	intracellular growth and vacuole formation during early infection of host cells. J
40	859	<i>Bacteriol</i> 201 : e00524-19.
41		
42 43	860	Warrier I, Hicks LD, Battisti JM, Raghavan R, Minnick MF. 2014. Identification of novel
44	861	small RNAs and characterization of the 6S RNA of <i>Coxiella burnetii</i> . PLoS One 9:
45	862	e100147.
46		
47 48	863	Wernegreen II, Ochman H, Jones IB, Moran NA, 2000, Decoupling of genome size and
49	864	sequence divergence in a symbiotic bacterium I Bacteriol 182: 3867-3869
50	004	sequence divergence in a symbiotic bacterium. J Ducterior 102. 5007-5007.
51	865	Was Colburn AM Corner MM Brodway D West C D'Agostino I Trunkiowicz I Borr
52	805	P. Anderson CE. Burner simus EP. Mandhausen DM. 2009. Estal socialisis in
53 54	866	B, Anderson SE, Kurangirwa FK, Nordnausen KW. 2008. Fatal coxiellosis in
55	867	Swainson's Blue Mountain Rainbow Lorikeets (<i>Trichoglossus haematodus</i>
56	868	moluccanus). Vet Pathol 45 : 247–254.
57		
28 59		40
60		40 http://mc.manuscriptcentral.com/gbe

1 2		
3	960	Zhang C M Li N V Zhang T T Oiu Z V Li V Li L W Liu L Z 2017 Endogumbiont
4	009	CLS III place a role in norma direction and development of <i>Harmanhuselia</i>
5	870	CLS-FII plays a fole in reproduction and development of <i>Fuemuphysuus</i>
7	871	longicornis. Exp Appl Acarol 73: 429–438.
8	072	There I. Leave along A. Barbarry A.C. 2007 Antibiatic treatment of the tick restor
9	872	Zhong J, Jasinskas A, Barbour AG. 2007. Antibiotic treatment of the tick vector
10 11	873	Amblyomma americanum reduced reproductive fitness. PLoS One 2: e405.
12	074	
13	874	
14		
15 16		
17		
18		
19 20		
20 21		
22		
23		
24 25		
26		
27		
28		
29 30		
31		
32		
33 34		
35		
36		
37		
39		
40		
41 42		
42 43		
44		
45		
46 47		
48		
49		
50 51		
52		
53		
54		
55 56		
57		
58		
59 60		http://mc.manuscriptcentral.com/gbe
00		http://neananaschptcentui.com/goe

1
1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
35
55 26
20
3/
38
39
40
41

Table 1. Genome characteristics of CLEOA, C. burnetii, and CRt 875

	876				
			CLEOA	C. burnetii	CRt
				KSA493	
n		NCBI Accession	VFIV00000000	AE016828.3	NZ_CP011126.1
) 1		Length (bp)	1,561,173	1,995,488	1,733,840
2		%GC	40.6	42.7	38.2
3		rRNA (5S, 16S, 23S)	1,1,1	1,1,1	1,1,1
4		tRNA	42	42	48
ว ว		Functional genes	889	1,798	926
7		Pseudogenes	660	197	383
3		Single copy genes ^a	106/111	106/111	105/111
))	877	^a Albertson et al. 2013	, ,	,	,
)	878	7 ilbertboll et ul. 2010			
<u>)</u>	070				
3	0/9				
1 -					
5					
7					
8					
)					
,					
2					
ł :					
,					
ł					
5					
,					
}					
,)					
5					
,					
)			http://mc.m	nanuscriptcentral.com	n/gbe
			1		-

FIGURE LEGENDS

1 2	
2 3 4	880
5 6 7	881
8 9 10	882
11 12	883
13 14 15	884
16 17 18	885
19 20	886
21 22 23	887
24 25 26	888
27 28	889
29 30 31	890
32 33 34	891
35 36 27	892
37 38 39	893
40 41 42	894
43 44 45	895
46 47	896
48 49 50	897
51 52 53	898
54 55	899
56 57 58	
59 60	

81	Figure 1. CLEOA is the closet relative of <i>C. burnetii</i> . Maximum likelihood and
82	Bayesian trees built using 117 single-copy protein-coding genes were combined to
83	generate the shown phylogenomic tree. Bootstrap support and posterior probabilities
84	agreed at all branchpoints and are depicted as a single confidence value. The Dot/Icm
85	Type IVB secretion system (T4BSS), which is critical to pathogenesis, is found in all
86	members of the order Legionellales, but has been pseudogenized in CLEs. Nodes N1-
87	N5 mark major branching points in the evolution of <i>C. burnetii</i> .
88	
89	Figure 2. CLEs contain nonfunctional T4BSS. Comparison of T4BSS genes in CLEOA,
90	C. burnetii RSA493 and CRt indicate that the secretion system has been rendered
91	nonfunctional in tick endosymbionts. Filled blocks represent intact genes. Outlined
92	blocks represent pseudogenized genes.
93	
94	Figure 3. CLE clades contain both tick endosymbionts and pathogens. A 16S rDNA-
95	based phylogenetic tree is shown. Bootstrap support and posterior probabilities are
96	labeled above and below branchpoints, respectively. Nodes with \leq 70% bootstrap
97	support were collapsed to polytomies. Taxa colors represent the continent from which
98	the host was derived. Established pathogens are marked with asterisks. Clades A-D
99	were originally defined by Duron et al. 2015a.

2
З
1
4
5
6
7
8
0
9
10
11
12
13
14
15
15
16
17
18
19
20
21
רב בר
22
23
24
25
26
27
27
28
29
30
31
32
33
24
34
35
36
37
38
30
40
40
41
42
43
44
45
46
40 47
47
48
49
50
51
52
52
)) [/
54
55
56
57
58
50
57

60

1

901	Figure 4. HGT was a major contributor to gene accumulation in <i>C. burnetii</i> 's
902	ancestors. Nodes N1-N5 (as labeled in Fig. 1) represent major branchpoints in the
903	evolution of <i>C. burnetii</i> . (A) and (B) depict %GC and Codon Adaptation Index (CAI)
904	distributions, respectively, for genes originating at each node. Boxes illustrate each
905	distribution's interquartile range while the black line dividing the box represents the
906	median. Whiskers represent minimum and maximum values, excluding outliers (black
907	diamonds) which were determined using the Tukey method. P-values shown in tables
908	are for pairwise T-tests (pooled SD, BKY adjusted). Genes gained at N2 were excluded
909	due to small sample size (<i>n</i> =13). (C) <i>C. burnetii</i> genome composition based on nodes of
910	gene origin: N1: 43.9%, N2: 0.7%, N3: 8.2%, N4: 22.6%, N5: 8.6%. The unlabeled portion
911	represents potentially spurious genes ($n=224$) as well as genes with undefined nodes of
912	origin (<i>n</i> =44).
913	
914	Figure 5. CLEs and FLEs encode B vitamin and cofactor biosynthetic pathways.
915	CLEOA, CRt, CLEAA, FLE-Om (Francisella endosymbiont of Ornithodoros moubata;
916	LVCE0000000), FLE-Am (Francisella endosymbiont of Amblyomma maculatum;
917	LNCT0000000), and <i>F. persica</i> (FLE in <i>Argas arboreus</i> ; NZ_CP013022) contain intact
918	pathways for the synthesis of B vitamins and cofactors. Enzymes catalyzing each step
919	are labeled with gene names and EC numbers. Blocks with no color indicate that a
	4

920	functional copy of a gene was not detected in that genome. Depictions of metabolic
921	pathways modified from Gerhart et al. 2018.
922	
923	Figure 6. A heme analog reduces C. burnetii growth. (A) Bacteria growing in ACCM-2
924	were exposed to concentrations of GaPPIX shown in x-axis and were quantified using
925	PicoGreen at 8h, 24h, 48h, and 72h post-treatment. Data shown are mean fluorescence
926	intensity (± SE) compared to the vehicle control (0nM). Statistical significance was
927	analyzed using two-way repeated measures ANOVA followed by Dunnett's test (n=5).
928	(B) At 72h post-treatment, bacterial growth within THP-1 cells was quantified using
929	qPCR. Data shown as mean fold difference (± SE) compared to control. (C) At 24h post-
930	GaPPIX treatment of THP-1 cells, lactate dehydrogenase (LDH) activity was determined
931	by measuring the level of resorufin formation using an LDH cytotoxicity assay. The
932	cytotoxicity was reported as the percentage LDH released compared to the maximum
933	LDH activity. Data shown as mean percentage LDH released (± SEM). For both B and C,
934	statistical significance was analyzed using one-way ANOVA followed by Dunnett's test
935	(n=3).
936	

Page 48 of 51

